Advertisement
wasserman all of nonparametric statistics: All of Nonparametric Statistics Larry Wasserman, 2006-09-10 There are many books on various aspects of nonparametric inference such as density estimation, nonparametric regression, bootstrapping, and wavelets methods. But it is hard to ?nd all these topics covered in one place. The goal of this text is to provide readers with a single book where they can ?nd a brief account of many of the modern topics in nonparametric inference. The book is aimed at master’s-level or Ph. D. -level statistics and computer science students. It is also suitable for researchersin statistics, machine lea- ing and data mining who want to get up to speed quickly on modern n- parametric methods. My goal is to quickly acquaint the reader with the basic concepts in many areas rather than tackling any one topic in great detail. In the interest of covering a wide range of topics, while keeping the book short, I have opted to omit most proofs. Bibliographic remarks point the reader to references that contain further details. Of course, I have had to choose topics to include andto omit,the title notwithstanding. For the mostpart,I decided to omit topics that are too big to cover in one chapter. For example, I do not cover classi?cation or nonparametric Bayesian inference. The book developed from my lecture notes for a half-semester (20 hours) course populated mainly by master’s-level students. For Ph. D. |
wasserman all of nonparametric statistics: All of Statistics Larry Wasserman, 2004-09-17 This book is for people who want to learn probability and statistics quickly. It brings together many of the main ideas in modern statistics in one place. The book is suitable for students and researchers in statistics, computer science, data mining and machine learning. This book covers a much wider range of topics than a typical introductory text on mathematical statistics. It includes modern topics like nonparametric curve estimation, bootstrapping and classification, topics that are usually relegated to follow-up courses. The reader is assumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. The text can be used at the advanced undergraduate and graduate level. Larry Wasserman is Professor of Statistics at Carnegie Mellon University. He is also a member of the Center for Automated Learning and Discovery in the School of Computer Science. His research areas include nonparametric inference, asymptotic theory, causality, and applications to astrophysics, bioinformatics, and genetics. He is the 1999 winner of the Committee of Presidents of Statistical Societies Presidents' Award and the 2002 winner of the Centre de recherches mathematiques de Montreal–Statistical Society of Canada Prize in Statistics. He is Associate Editor of The Journal of the American Statistical Association and The Annals of Statistics. He is a fellow of the American Statistical Association and of the Institute of Mathematical Statistics. |
wasserman all of nonparametric statistics: Nonparametric Statistics for Non-Statisticians Gregory W. Corder, Dale I. Foreman, 2011-09-20 A practical and understandable approach to nonparametric statistics for researchers across diverse areas of study As the importance of nonparametric methods in modern statistics continues to grow, these techniques are being increasingly applied to experimental designs across various fields of study. However, researchers are not always properly equipped with the knowledge to correctly apply these methods. Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach fills a void in the current literature by addressing nonparametric statistics in a manner that is easily accessible for readers with a background in the social, behavioral, biological, and physical sciences. Each chapter follows the same comprehensive format, beginning with a general introduction to the particular topic and a list of main learning objectives. A nonparametric procedure is then presented and accompanied by context-based examples that are outlined in a step-by-step fashion. Next, SPSS® screen captures are used to demonstrate how to perform and recognize the steps in the various procedures. Finally, the authors identify and briefly describe actual examples of corresponding nonparametric tests from diverse fields. Using this organized structure, the book outlines essential skills for the application of nonparametric statistical methods, including how to: Test data for normality and randomness Use the Wilcoxon signed rank test to compare two related samples Apply the Mann-Whitney U test to compare two unrelated samples Compare more than two related samples using the Friedman test Employ the Kruskal-Wallis H test to compare more than two unrelated samples Compare variables of ordinal or dichotomous scales Test for nominal scale data A detailed appendix provides guidance on inputting and analyzing the presented data using SPSS®, and supplemental tables of critical values are provided. In addition, the book's FTP site houses supplemental data sets and solutions for further practice. Extensively classroom tested, Nonparametric Statistics for Non-Statisticians is an ideal book for courses on nonparametric statistics at the upper-undergraduate and graduate levels. It is also an excellent reference for professionals and researchers in the social, behavioral, and health sciences who seek a review of nonparametric methods and relevant applications. |
wasserman all of nonparametric statistics: Nonparametric Density Estimation Luc Devroye, László Györfi, 1985-01-18 This book gives a rigorous, systematic treatment of density estimates, their construction, use and analysis with full proofs. It develops L1 theory, rather than the classical L2, showing how L1 exposes fundamental properties of density estimates masked by L2. |
wasserman all of nonparametric statistics: Introduction to Statistical Inference Jack C. Kiefer, 2012-12-06 This book is based upon lecture notes developed by Jack Kiefer for a course in statistical inference he taught at Cornell University. The notes were distributed to the class in lieu of a textbook, and the problems were used for homework assignments. Relying only on modest prerequisites of probability theory and cal culus, Kiefer's approach to a first course in statistics is to present the central ideas of the modem mathematical theory with a minimum of fuss and formality. He is able to do this by using a rich mixture of examples, pictures, and math ematical derivations to complement a clear and logical discussion of the important ideas in plain English. The straightforwardness of Kiefer's presentation is remarkable in view of the sophistication and depth of his examination of the major theme: How should an intelligent person formulate a statistical problem and choose a statistical procedure to apply to it? Kiefer's view, in the same spirit as Neyman and Wald, is that one should try to assess the consequences of a statistical choice in some quan titative (frequentist) formulation and ought to choose a course of action that is verifiably optimal (or nearly so) without regard to the perceived attractiveness of certain dogmas and methods. |
wasserman all of nonparametric statistics: Applied Nonparametric Statistics Wayne W. Daniel, 2000-06-30 This book covers the most commonly used nonparametric statistical techniques by emphasizing applications rather than theory. Exercises and examples are drawn from various disciplines including agriculture, biology, sociology, education, psychology, medicine, business, geology, and anthropology. The applications of techniques are presented in a step-by-step format that is repeated for all illustrative examples. Concepts are reinforced with many references to statistical literature to show the relevance to real-world problems. Chapters contain references of available computer programs and software packages that apply to methods presented in the book. |
wasserman all of nonparametric statistics: Applied Statistics - Principles and Examples D.R. Cox, 2018-02-19 This book should be of interest to senior undergraduate and postgraduate students of applied statistics. |
wasserman all of nonparametric statistics: Combinatorial Methods in Density Estimation Luc Devroye, Gabor Lugosi, 2012-12-06 Density estimation has evolved enormously since the days of bar plots and histograms, but researchers and users are still struggling with the problem of the selection of the bin widths. This text explores a new paradigm for the data-based or automatic selection of the free parameters of density estimates in general so that the expected error is within a given constant multiple of the best possible error. The paradigm can be used in nearly all density estimates and for most model selection problems, both parametric and nonparametric. It is the first book on this topic. The text is intended for first-year graduate students in statistics and learning theory, and offers a host of opportunities for further research and thesis topics. Each chapter corresponds roughly to one lecture, and is supplemented with many classroom exercises. A one year course in probability theory at the level of Feller's Volume 1 should be more than adequate preparation. Gabor Lugosi is Professor at Universitat Pompeu Fabra in Barcelona, and Luc Debroye is Professor at McGill University in Montreal. In 1996, the authors, together with Lászlo Györfi, published the successful text, A Probabilistic Theory of Pattern Recognition with Springer-Verlag. Both authors have made many contributions in the area of nonparametric estimation. |
wasserman all of nonparametric statistics: A Modern Introduction to Probability and Statistics F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, L.E. Meester, 2006-03-30 Many current texts in the area are just cookbooks and, as a result, students do not know why they perform the methods they are taught, or why the methods work. The strength of this book is that it readdresses these shortcomings; by using examples, often from real life and using real data, the authors show how the fundamentals of probabilistic and statistical theories arise intuitively. A Modern Introduction to Probability and Statistics has numerous quick exercises to give direct feedback to students. In addition there are over 350 exercises, half of which have answers, of which half have full solutions. A website gives access to the data files used in the text, and, for instructors, the remaining solutions. The only pre-requisite is a first course in calculus; the text covers standard statistics and probability material, and develops beyond traditional parametric models to the Poisson process, and on to modern methods such as the bootstrap. |
wasserman all of nonparametric statistics: Introduction to Nonparametric Estimation Alexandre B. Tsybakov, 2010-11-29 Developed from lecture notes and ready to be used for a course on the graduate level, this concise text aims to introduce the fundamental concepts of nonparametric estimation theory while maintaining the exposition suitable for a first approach in the field. |
wasserman all of nonparametric statistics: Statistics in the 21st Century Martin A. Tanner, 2019-10-02 This volume discusses an important area of statistics and highlights the most important statistical advances. It is divided into four sections: statistics in the life and medical sciences, business and social science, the physical sciences and engineering, and theory and methods of statistics. |
wasserman all of nonparametric statistics: Statistics in Theory and Practice Robert Lupton, 2020-05-05 Aimed at a diverse scientific audience, including physicists, astronomers, chemists, geologists, and economists, this book explains the theory underlying the classical statistical methods. Its level is between introductory how to texts and intimidating mathematical monographs. A reader without previous exposure to statistics will finish the book with a sound working knowledge of statistical methods, while a reader already familiar with the standard tests will come away with an understanding of their strengths, weaknesses, and domains of applicability. The mathematical level is that of an advanced undergraduate; for example, matrices and Fourier analysis are used where appropriate. Among the topics covered are common probability distributions; sampling and the distribution of sampling statistics; confidence intervals, hypothesis testing, and the theory of tests; estimation (including maximum likelihood); goodness of fit (including c2 and Kolmogorov-Smirnov tests); and non-parametric and rank tests. There are nearly one hundred problems (with answers) designed to bring out points in the text and to cover topics slightly outside the main line of development. |
wasserman all of nonparametric statistics: Bayesian Nonparametrics J.K. Ghosh, R.V. Ramamoorthi, 2006-05-11 This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. It will also appeal to statisticians in general. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian non-parametrics. |
wasserman all of nonparametric statistics: High-Dimensional Statistics Martin J. Wainwright, 2019-02-21 Recent years have witnessed an explosion in the volume and variety of data collected in all scientific disciplines and industrial settings. Such massive data sets present a number of challenges to researchers in statistics and machine learning. This book provides a self-contained introduction to the area of high-dimensional statistics, aimed at the first-year graduate level. It includes chapters that are focused on core methodology and theory - including tail bounds, concentration inequalities, uniform laws and empirical process, and random matrices - as well as chapters devoted to in-depth exploration of particular model classes - including sparse linear models, matrix models with rank constraints, graphical models, and various types of non-parametric models. With hundreds of worked examples and exercises, this text is intended both for courses and for self-study by graduate students and researchers in statistics, machine learning, and related fields who must understand, apply, and adapt modern statistical methods suited to large-scale data. |
wasserman all of nonparametric statistics: Statistical Methods in Water Resources D.R. Helsel, R.M. Hirsch, 1993-03-03 Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences. |
wasserman all of nonparametric statistics: Deconvolution Problems in Nonparametric Statistics Alexander Meister, 2009-03-25 Deconvolution problems occur in many ?elds of nonparametric statistics, for example, density estimation based on contaminated data, nonparametric - gression with errors-in-variables, image and signal deblurring. During the last two decades, those topics have received more and more attention. As appli- tions of deconvolution procedures concern many real-life problems in eco- metrics, biometrics, medical statistics, image reconstruction, one can realize an increasing number of applied statisticians who are interested in nonpa- metric deconvolution methods; on the other hand, some deep results from Fourier analysis, functional analysis, and probability theory are required to understand the construction of deconvolution techniques and their properties so that deconvolution is also particularly challenging for mathematicians. Thegeneraldeconvolutionprobleminstatisticscanbedescribedasfollows: Our goal is estimating a function f while any empirical access is restricted to some quantity h = f?G = f(x?y)dG(y), (1. 1) that is, the convolution of f and some probability distribution G. Therefore, f can be estimated from some observations only indirectly. The strategy is ˆ estimating h ?rst; this means producing an empirical version h of h and, then, ˆ applying a deconvolution procedure to h to estimate f. In the mathematical context, we have to invert the convolution operator with G where some reg- ˆ ularization is required to guarantee that h is contained in the invertibility ˆ domain of the convolution operator. The estimator h has to be chosen with respect to the speci?c statistical experiment. |
wasserman all of nonparametric statistics: Nonparametric Curve Estimation Sam Efromovich, 2008-01-19 This book gives a systematic, comprehensive, and unified account of modern nonparametric statistics of density estimation, nonparametric regression, filtering signals, and time series analysis. The companion software package, available over the Internet, brings all of the discussed topics into the realm of interactive research. Virtually every claim and development mentioned in the book is illustrated with graphs which are available for the reader to reproduce and modify, making the material fully transparent and allowing for complete interactivity. |
wasserman all of nonparametric statistics: Statistics for Non-Statisticians Birger Stjernholm Madsen, 2016-06-03 This book was written for those who need to know how to collect, analyze and present data. It is meant to be a first course for practitioners, a book for private study or brush-up on statistics, and supplementary reading for general statistics classes. The book is untraditional, both with respect to the choice of topics and the presentation: Topics were determined by what is most useful for practical statistical work, and the presentation is as non-mathematical as possible. The book contains many examples using statistical functions in spreadsheets. In this second edition, new topics have been included e.g. within the area of statistical quality control, in order to make the book even more useful for practitioners working in industry. |
wasserman all of nonparametric statistics: Bayesian Data Analysis, Third Edition Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin, 2013-11-01 Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page. |
wasserman all of nonparametric statistics: Algebraic Statistics Giovanni Pistone, Eva Riccomagno, Henry P. Wynn, 2000-12-21 Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model. As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science. |
wasserman all of nonparametric statistics: Statistical Inference as Severe Testing Deborah G. Mayo, 2018-09-20 Unlock today's statistical controversies and irreproducible results by viewing statistics as probing and controlling errors. |
wasserman all of nonparametric statistics: Introduction to Probability Joseph K. Blitzstein, Jessica Hwang, 2014-07-24 Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment. |
wasserman all of nonparametric statistics: Past, Present, and Future of Statistical Science Xihong Lin, Christian Genest, David L. Banks, Geert Molenberghs, David W. Scott, Jane-Ling Wang, 2014-03-26 Past, Present, and Future of Statistical Science was commissioned in 2013 by the Committee of Presidents of Statistical Societies (COPSS) to celebrate its 50th anniversary and the International Year of Statistics. COPSS consists of five charter member statistical societies in North America and is best known for sponsoring prestigious awards in stat |
wasserman all of nonparametric statistics: Modern Statistical Methods for Astronomy Eric D. Feigelson, G. Jogesh Babu, 2012-07-12 Modern astronomical research is beset with a vast range of statistical challenges, ranging from reducing data from megadatasets to characterizing an amazing variety of variable celestial objects or testing astrophysical theory. Linking astronomy to the world of modern statistics, this volume is a unique resource, introducing astronomers to advanced statistics through ready-to-use code in the public domain R statistical software environment. The book presents fundamental results of probability theory and statistical inference, before exploring several fields of applied statistics, such as data smoothing, regression, multivariate analysis and classification, treatment of nondetections, time series analysis, and spatial point processes. It applies the methods discussed to contemporary astronomical research datasets using the R statistical software, making it invaluable for graduate students and researchers facing complex data analysis tasks. A link to the author's website for this book can be found at www.cambridge.org/msma. Material available on their website includes datasets, R code and errata. |
wasserman all of nonparametric statistics: Bayesian Nonparametrics via Neural Networks Herbert K. H. Lee, 2004-01-01 Bayesian Nonparametrics via Neural Networks is the first book to focus on neural networks in the context of nonparametric regression and classification, working within the Bayesian paradigm. Its goal is to demystify neural networks, putting them firmly in a statistical context rather than treating them as a black box. This approach is in contrast to existing books, which tend to treat neural networks as a machine learning algorithm instead of a statistical model. Once this underlying statistical model is recognized, other standard statistical techniques can be applied to improve the model. The Bayesian approach allows better accounting for uncertainty. This book covers uncertainty in model choice and methods to deal with this issue, exploring a number of ideas from statistics and machine learning. A detailed discussion on the choice of prior and new noninformative priors is included, along with a substantial literature review. Written for statisticians using statistical terminology, Bayesian Nonparametrics via Neural Networks will lead statisticians to an increased understanding of the neural network model and its applicability to real-world problems. |
wasserman all of nonparametric statistics: Statistics for People Who (Think They) Hate Statistics Neil J. Salkind, 2016-01-29 Statistics for People Who (Think They) Hate Statistics: Using Microsoft Excel 2016, Fourth Edition presents an often intimidating and difficult subject in a way that is clear, informative, and personable. Researchers and students will appreciate the book's unhurried pace and thorough, friendly presentation. Opening with an introduction to Excel 2016, including coverage of how to use functions and formulas, this edition also shows students how to install the Excel Data Analysis Tools option to access a host of useful analytical techniques. The book walks readers through various statistical procedures, beginning with simple descriptive statistics, correlations, and graphical representations of data, and ending with inferential techniques, analysis of variance, and a new introductory chapter on working with large datasets and data mining using Excel. |
wasserman all of nonparametric statistics: Bayesian Nonparametric Data Analysis Peter Müller, Fernando Andres Quintana, Alejandro Jara, Tim Hanson, 2015-06-17 This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages. |
wasserman all of nonparametric statistics: Understanding Statistics Bruce J. Chalmer, 2020-01-29 Introducing undergraduates to the vital concepts of statistics, this superb textbook allows instructors to include as much—or as little—mathematical detail as may be suitable for their students. Featuring Statpal statistical software for the IBM PC®, the book contains study questions that help solidify students’ understanding of the material and prepare them for the next group of concepts. Many of the exercises, labeled “Statpal exercises,” are especially written for the Statpal statistical package. Understanding Statistics begins with the basic concepts of statistical inference ... presents normal and binomial distributions, general techniques of interval estimation and hypothesis testing, and applications of these techniques to inferences about a single population mean and proportions ... and covers inferences about group differences, including parametric and nonparametric approaches to the two-group case, and the one-way ANOVA and its nonparametric analogue. In addition, this volume considers relationships between two variables, including the correlation co-efficient, Spearman’s rho, and Kendall’s tau ... surveys basic regression methods, including simple, multiple, and stepwise ... and discusses the analysis of variance of factorial designs, the concept of interaction, and the analysis of categorical data using the chi-square test. Complete with tables and drawings plus appendices that furnish instructions for using Statpal software, information on advanced topics, and much more, Understanding Statistics is an ideal text for undergraduate survey courses on statistical methods as well as for courses in economics, psychology, sociology, education, business administration, and others that require basic statistics. |
wasserman all of nonparametric statistics: Nonparametric Statistics with Applications to Science and Engineering Paul Kvam, Brani Vidakovic, 2007-07-23 A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provided throughout the book. Complete with exercise sets, chapter reviews, and a related Web site that features downloadable MATLAB applications, this book is an essential textbook for graduate courses in engineering and the physical sciences and also serves as a valuable reference for researchers who seek a more comprehensive understanding of modern nonparametric statistical methods. |
wasserman all of nonparametric statistics: Principles of Statistical Inference D. R. Cox, 2006-08-10 In this definitive book, D. R. Cox gives a comprehensive and balanced appraisal of statistical inference. He develops the key concepts, describing and comparing the main ideas and controversies over foundational issues that have been keenly argued for more than two-hundred years. Continuing a sixty-year career of major contributions to statistical thought, no one is better placed to give this much-needed account of the field. An appendix gives a more personal assessment of the merits of different ideas. The content ranges from the traditional to the contemporary. While specific applications are not treated, the book is strongly motivated by applications across the sciences and associated technologies. The mathematics is kept as elementary as feasible, though previous knowledge of statistics is assumed. The book will be valued by every user or student of statistics who is serious about understanding the uncertainty inherent in conclusions from statistical analyses. |
wasserman all of nonparametric statistics: Applied Linear Statistical Models with Student CD Michael Kutner, Christopher Nachtsheim, John Neter, William Li, 2004-08-10 Applied Linear Statistical Models 5e is the long established leading authoritative text and reference on statistical modeling, analysis of variance, and the design of experiments. For students in most any discipline where statistical analysis or interpretation is used, ALSM serves as the standard work. The text proceeds through linear and nonlinear regression and modeling for the first half, and through ANOVA and Experimental Design in the second half. All topics are presented in a precise and clear style supported with solved examples, numbered formulae, graphic illustrations, and Comments to provide depth and statistical accuracy and precision. Applications used within the text and the hallmark problems, exercises, projects, and case studies are drawn from virtually all disciplines and fields providing motivation for students in virtually any college. The Fifth edition provides an increased use of computing and graphical analysis throughout, without sacrificing concepts or rigor. In general, the 5e uses larger data sets in examples and exercises, and the use of automated software without loss of understanding. |
wasserman all of nonparametric statistics: Adventures in Stochastic Processes Sidney I. Resnick, 2013-12-11 Stochastic processes are necessary ingredients for building models of a wide variety of phenomena exhibiting time varying randomness. In a lively and imaginative presentation, studded with examples, exercises, and applications, and supported by inclusion of computational procedures, the author has created a textbook that provides easy access to this fundamental topic for many students of applied sciences at many levels. With its carefully modularized discussion and crystal clear differentiation between rigorous proof and plausibility argument, it is accessible to beginners but flexible enough to serve as well those who come to the course with strong backgrounds. The prerequisite background for reading the book is a graduate level pre-measure theoretic probability course. No knowledge of measure theory is presumed and advanced notions of conditioning are scrupulously avoided until the later chapters of the book. The tools of applied probability---discrete spaces, Markov chains, renewal theory, point processes, branching processes, random walks, Brownian motion---are presented to the reader in illuminating discussion. Applications include such topics as queuing, storage, risk analysis, genetics, inventory, choice, economics, sociology, and other. Because of the conviction that analysts who build models should know how to build them for each class of process studied, the author has included such constructions. |
wasserman all of nonparametric statistics: Fundamentals of Nonparametric Bayesian Inference Subhashis Ghosal, Aad van der Vaart, 2017-06-26 Explosive growth in computing power has made Bayesian methods for infinite-dimensional models - Bayesian nonparametrics - a nearly universal framework for inference, finding practical use in numerous subject areas. Written by leading researchers, this authoritative text draws on theoretical advances of the past twenty years to synthesize all aspects of Bayesian nonparametrics, from prior construction to computation and large sample behavior of posteriors. Because understanding the behavior of posteriors is critical to selecting priors that work, the large sample theory is developed systematically, illustrated by various examples of model and prior combinations. Precise sufficient conditions are given, with complete proofs, that ensure desirable posterior properties and behavior. Each chapter ends with historical notes and numerous exercises to deepen and consolidate the reader's understanding, making the book valuable for both graduate students and researchers in statistics and machine learning, as well as in application areas such as econometrics and biostatistics. |
wasserman all of nonparametric statistics: The Kernel Method of Test Equating Alina A. von Davier, Paul W. Holland, Dorothy T. Thayer, 2006-05-10 Kernel Equating (KE) is a powerful, modern and unified approach to test equating. It is based on a flexible family of equipercentile-like equating functions and contains the linear equating function as a special case. Any equipercentile equating method has five steps or parts. They are: 1) pre-smoothing; 2) estimation of the score-probabilities on the target population; 3) continuization; 4) computing and diagnosing the equating function; 5) computing the standard error of equating and related accuracy measures. KE brings these steps together in an organized whole rather than treating them as disparate problems. KE exploits pre-smoothing by fitting log-linear models to score data, and incorporates it into step 5) above. KE provides new tools for diagnosing a given equating function, and for comparing two or more equating functions in order to choose between them. In this book, KE is applied to the four major equating designs and to both Chain Equating and Post-Stratification Equating for the Non-Equivalent groups with Anchor Test Design. This book will be an important reference for several groups: (a) Statisticians and others interested in the theory behind equating methods and the use of model-based statistical methods for data smoothing in applied work; (b) Practitioners who need to equate tests—including those with these responsibilities in testing companies, state testing agencies and school districts; and (c) Instructors in psychometric and measurement programs. The authors assume some familiarity with linear and equipercentile test equating, and with matrix algebra. Alina von Davier is an Associate Research Scientist in the Center for Statistical Theory and Practice, at Educational Testing Service. She has been a research collaborator at the Universities of Trier, Magdeburg, and Kiel, an assistant professor at the Politechnical University of Bucharest and a research scientist at the Institute for Psychology inBucharest. Paul Holland holds the Frederic M. Lord Chair in Measurement and Statistics at Educational Testing Service. He held faculty positions in the Graduate School of Education, University of California, Berkeley and the Harvard Department of Statistics. He is a Fellow of the American Statistical Association, the Institute of Mathematical Statistics, and the American Association for the Advancement of Science. He is an elected Member of the International Statistical Institute and a past president of the Psychometric society. He was awarded the (AERA/ACT) E. F. Lindquist Award, in 2000, and was designated a National Associate of the National Academies of Science in 2002. Dorothy Thayer currently is a consultant in the Center of Statistical Theory and Practice, at Educational Testing Service. Her research interests include computational and statistical methodology, empirical Bayes techniques, missing data procedures and exploratory data analysis techniques. From the reviews: The book is nicely laid out, is extremely well written, and is an excellent text for a semester course or a short course...The book is highly recommended. Short Book Reviews of the International Statistical Institute, December 2004 This book is well-written and the presentation is clear, rigorous, and concise...A rich set of applications is used to illustrate the methods...This book is a gem! I highly recommend it to any statistician or psychometrician who has even a passing interest in test equating. Pscyhometrika, March 2006 This is a great book, and it is the first to focus on the kernel method of test equating. Applied Psychological Measurement, September 2005 |
wasserman all of nonparametric statistics: Probability and Statistical Inference Robert V. Hogg, Elliot A. Tanis, 1988 This user-friendly introduction to the mathematics of probability and statistics (for readers with a background in calculus) uses numerous applications--drawn from biology, education, economics, engineering, environmental studies, exercise science, health science, manufacturing, opinion polls, psychology, sociology, and sports--to help explain and motivate the concepts. A review of selected mathematical techniques is included, and an accompanying CD-ROM contains many of the figures (many animated), and the data included in the examples and exercises (stored in both Minitab compatible format and ASCII). Empirical and Probability Distributions. Probability. Discrete Distributions. Continuous Distributions. Multivariable Distributions. Sampling Distribution Theory. Importance of Understanding Variability. Estimation. Tests of Statistical Hypotheses. Theory of Statistical Inference. Quality Improvement Through Statistical Methods. For anyone interested in the Mathematics of Probability and Statistics. |
wasserman all of nonparametric statistics: An Introduction to the Bootstrap Bradley Efron, R.J. Tibshirani, 1994-05-15 Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets. |
wasserman all of nonparametric statistics: An Introduction to Mathematical Statistics Fetsje Bijma, Marianne Jonker, A. W. van der Vaart, 2017 This book gives an introduction into mathematical statistics. |
wasserman all of nonparametric statistics: Probability and Statistics for Engineering and the Sciences + Enhanced Webassign Access , 2017 |
wasserman all of nonparametric statistics: Causal Inference in Statistics Judea Pearl, Madelyn Glymour, Nicholas P. Jewell, 2016-01-25 CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as Does this treatment harm or help patients? But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding. |
wasserman all of nonparametric statistics: Bayesian and Frequentist Regression Methods Jon Wakefield, 2016-04-01 This book provides a balanced, modern introduction to Bayesian and frequentist methods for regression analysis. The author discusses Frequentist and Bayesian Inferences; Linear Models; Binary Data Models; General Regression Models and Survival Models. |
Sports, Music & Entertainment | Wasserman
Wasserman operates at the epicenter of sports, music, entertainment and culture, serving talent, brands and properties on a global scale. Headquartered in Los Angeles, Wasserman’s …
About Us - Wasserman
Wasserman’s reach spans 6 continents and 28 countries, operating in more than 70 cities across the world. Our global and local insights, knowledge and influence are unsurpassed. We have …
Sports & Media Talent Agency - Wasserman
Wasserman works with iconic sports and media figures across the world in every major sport, utilizing our extensive influence to serve our clients.
Global Presence - Wasserman
Wasserman has locations on six continents, with a global presence across 68 cities in 28 countries worldwide.
Careers - Wasserman
Join Wasserman and become a member of a company that powers the business of sports, music and culture, serving clients with exceptional insight, influence and creativity while making a …
Global Football | Soccer Talent Agency - Wasserman
Wasserman’s global football division has the best representation for men and women footballers around the world, proudly representing players in every major league and competition globally. …
Music Booking Agency | Touring | Brand Partnerships - Wasserman
Wasserman Music is the only leading talent agency with a dedicated team of agents who specialize in booking artists and projects globally with symphony orchestras. With decades of …
Contact Us - Wasserman
Wasserman’s reach spans 6 continents and 28 countries, operating in more than 70 cities across the world. Our global and local insights, knowledge and influence are unsurpassed. We have …
WASSERMAN UNIFIES ITS INDUSTRY-LEADING CREATIVE GROUPS …
Mar 5, 2025 · Global sports, music and entertainment company Wasserman has united its best-in-class creative teams into a singular worldwide group under the Wasserman name, announced …
Music Artist Roster - Wasserman
Search the Wasserman Music artist roster by name or filter by genre or territory to find out how you can connect with the artist's team today.
Sports, Music & Entertainment | Wasserman
Wasserman operates at the epicenter of sports, music, entertainment and culture, serving talent, brands and properties on a global scale. Headquartered in Los Angeles, Wasserman’s …
About Us - Wasserman
Wasserman’s reach spans 6 continents and 28 countries, operating in more than 70 cities across the world. Our global and local insights, knowledge and influence are unsurpassed. We have …
Sports & Media Talent Agency - Wasserman
Wasserman works with iconic sports and media figures across the world in every major sport, utilizing our extensive influence to serve our clients.
Global Presence - Wasserman
Wasserman has locations on six continents, with a global presence across 68 cities in 28 countries worldwide.
Careers - Wasserman
Join Wasserman and become a member of a company that powers the business of sports, music and culture, serving clients with exceptional insight, influence and creativity while making a …
Global Football | Soccer Talent Agency - Wasserman
Wasserman’s global football division has the best representation for men and women footballers around the world, proudly representing players in every major league and competition globally. …
Music Booking Agency | Touring | Brand Partnerships - Wasserman
Wasserman Music is the only leading talent agency with a dedicated team of agents who specialize in booking artists and projects globally with symphony orchestras. With decades of …
Contact Us - Wasserman
Wasserman’s reach spans 6 continents and 28 countries, operating in more than 70 cities across the world. Our global and local insights, knowledge and influence are unsurpassed. We have …
WASSERMAN UNIFIES ITS INDUSTRY-LEADING CREATIVE GROUPS …
Mar 5, 2025 · Global sports, music and entertainment company Wasserman has united its best-in-class creative teams into a singular worldwide group under the Wasserman name, announced …
Music Artist Roster - Wasserman
Search the Wasserman Music artist roster by name or filter by genre or territory to find out how you can connect with the artist's team today.