Advertisement
theory of plasticity textbook: Plasticity Theory Jacob Lubliner, 2013-04-22 The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and geotechnical engineers, metallurgists and others. The necessary mathematics and basic mechanics and thermodynamics are covered in an introductory chapter, making the book a self-contained text suitable for advanced undergraduates and graduate students, as well as a reference for practitioners of solid mechanics. |
theory of plasticity textbook: Continuum Theory of Plasticity Akhtar S. Khan, Sujian Huang, 1995-02-28 The only modern, up-to-date introduction to plasticity Despite phenomenal progress in plasticity research over the past fifty years, introductory books on plasticity have changed very little. To meet the need for an up-to-date introduction to the field, Akhtar S. Khan and Sujian Huang have written Continuum Theory of Plasticity--a truly modern text which offers a continuum mechanics approach as well as a lucid presentation of the essential classical contributions. The early chapters give the reader a review of elementary concepts of plasticity, the necessary background material on continuum mechanics, and a discussion of the classical theory of plasticity. Recent developments in the field are then explored in sections on the Mroz Multisurface model, the Dafalias and Popov Two Surface model, the non-linear kinematic hardening model, the endochronic theory of plasticity, and numerous topics in finite deformation plasticity theory and strain space formulation for plastic deformation. Final chapters introduce the fundamentals of the micromechanics of plastic deformation and the analytical coupling between deformation of individual crystals and macroscopic material response of the polycrystal aggregate. For graduate students and researchers in engineering mechanics, mechanical, civil, and aerospace engineering, Continuum Theory of Plasticity offers a modern, comprehensive introduction to the entire subject of plasticity. |
theory of plasticity textbook: Theory of Plasticity Jagabanduhu Chakrabarty, 2012-12-02 Plasticity is concerned with the mechanics of materials deformed beyond their elastic limit. A strong knowledge of plasticity is essential for engineers dealing with a wide range of engineering problems, such as those encountered in the forming of metals, the design of pressure vessels, the mechanics of impact, civil and structural engineering, as well as the understanding of fatigue and the economical design of structures. Theory of Plasticity is the most comprehensive reference on the subject as well as the most up to date -- no other significant Plasticity reference has been published recently, making this of great interest to academics and professionals. This new edition presents extensive new material on the use of computational methods, plus coverage of important developments in cyclic plasticity and soil plasticity. - A complete plasticity reference for graduate students, researchers and practicing engineers; no other book offers such an up to date or comprehensive reference on this key continuum mechanics subject - Updates with new material on computational analysis and applications, new end of chapter exercises - Plasticity is a key subject in all mechanical engineering disciplines, as well as in manufacturing engineering and civil engineering. Chakrabarty is one of the subject's leading figures. |
theory of plasticity textbook: THEORY OF ELASTICITY AND PLASTICITY HELENA, H. JANE, 2017-07-01 Theory of Elasticity and Plasticity is designed as a textbook for both undergraduate and postgraduate students of engineering in civil, mechanical and aeronautical disciplines. This book has been written with the objective of bringing the concepts of elasticity and plasticity to the students in a simplified and comprehensive manner. The basic concepts, definitions, theory as well as practical applications are discussed in a clear, logical and concise manner for better understanding. Starting with, general relationships between stress, strain and deformations, the book deals with specific problems on plane stress, plane strain and torsion in non-circular sections. Advanced topics such as membrane analogy, beams on elastic foundations and plastic analysis of pressure vessels are also discussed elaborately. For better comprehension, the text is well supported with: Large number of worked-out examples in each chapter. Well-labelled illustrations. Numerous Review Questions that reinforce the understanding of the subject. As all the concepts are covered extensively with a blend of theory and practice, this book will be a useful resource to the students. |
theory of plasticity textbook: The Mathematical Theory of Plasticity Rodney Hill, 1998 First published in 1950, this important and classic book presents a mathematical theory of plastic materials, written by one of the leading exponents. |
theory of plasticity textbook: Theory of Elasticity and Plasticity Valentin Molotnikov, Antonina Molotnikova, 2021-04-12 This book serves as a core text for university curricula in solid body mechanics and, at the same time, examines the main achievements of state of the art research in the mechanics of elastic and non-elastic materials. This latter goal of the book is achieved through rich bibliographic references, many from the authors’ own work. authors. Distinct from similar texts, there are no claims in this volume to a single universal theory of plasticity. However, solutions are given to some new problems and to the construction of models useful both in pedagogic terms for students and practical terms for professional design engineers. Examples include the authors’ decisions about the Brazilian test, stability of rock exposure, and pile foundations. Designed for both upper-level university students and specialists in the mechanics of deformable hard body, the material in this book serves as a source for numerous topics of course and diploma concentration. |
theory of plasticity textbook: Plasticity Alexander Mendelson, 1983 |
theory of plasticity textbook: Elasticity and Plasticity J. N. Goodier, P. G. Hodge, Jr., 2016-04-21 Comprising two classic essays by experts on the mathematical theories of elasticity and plasticity, this volume is noteworthy for its contributions by Russian authors and others previously unrecognized in Western literature. 1958 edition. |
theory of plasticity textbook: Computational Methods for Plasticity Eduardo A. de Souza Neto, Djordje Peric, David R. J. Owen, 2011-09-21 The subject of computational plasticity encapsulates the numerical methods used for the finite element simulation of the behaviour of a wide range of engineering materials considered to be plastic – i.e. those that undergo a permanent change of shape in response to an applied force. Computational Methods for Plasticity: Theory and Applications describes the theory of the associated numerical methods for the simulation of a wide range of plastic engineering materials; from the simplest infinitesimal plasticity theory to more complex damage mechanics and finite strain crystal plasticity models. It is split into three parts - basic concepts, small strains and large strains. Beginning with elementary theory and progressing to advanced, complex theory and computer implementation, it is suitable for use at both introductory and advanced levels. The book: Offers a self-contained text that allows the reader to learn computational plasticity theory and its implementation from one volume. Includes many numerical examples that illustrate the application of the methodologies described. Provides introductory material on related disciplines and procedures such as tensor analysis, continuum mechanics and finite elements for non-linear solid mechanics. Is accompanied by purpose-developed finite element software that illustrates many of the techniques discussed in the text, downloadable from the book’s companion website. This comprehensive text will appeal to postgraduate and graduate students of civil, mechanical, aerospace and materials engineering as well as applied mathematics and courses with computational mechanics components. It will also be of interest to research engineers, scientists and software developers working in the field of computational solid mechanics. |
theory of plasticity textbook: Fundamentals of Engineering Plasticity William F. Hosford, 2013-07-22 William Hosford's book is ideal for those involved in designing sheet metal forming processes. Knowledge of plasticity is essential for the computer simulation of metal forming processes and understanding the advances in plasticity theory is key to formulating sound analyses. The author makes the subject simple by avoiding notations used by specialists in mechanics. R. Hill's authoritative book, Mathematical Theory of Plasticity (1950), presented a comprehensive treatment of continuum plasticity theory up to that time; much of the treatment in this book covers the same ground, but focuses on more practical topics. Hosford has included recent developments in continuum theory, including a newer treatment of anisotropy that has resulted from calculations of yielding based on crystallography, analysis of the role of defects, and forming limit diagrams. A much greater emphasis is placed on deformation mechanisms and the book also includes chapters on slip and dislocation theory and twinning. |
theory of plasticity textbook: Basic Engineering Plasticity David Rees, 2012-12-02 Plasticity is concerned with understanding the behavior of metals and alloys when loaded beyond the elastic limit, whether as a result of being shaped or as they are employed for load bearing structures. Basic Engineering Plasticity delivers a comprehensive and accessible introduction to the theories of plasticity. It draws upon numerical techniques and theoretical developments to support detailed examples of the application of plasticity theory. This blend of topics and supporting textbook features ensure that this introduction to the science of plasticity will be valuable for a wide range of mechanical and manufacturing engineering students and professionals. - Brings together the elements of the mechanics of plasticity most pertinent to engineers, at both the micro- and macro-levels - Covers the theory and application of topics such as Limit Analysis, Slip Line Field theory, Crystal Plasticity, Sheet and Bulk Metal Forming, as well as the use of Finite Element Analysis - Clear and well-organized with extensive worked engineering application examples, and end of chapter exercises |
theory of plasticity textbook: Deformation Theory of Plasticity Robert Millard Jones, 2009 |
theory of plasticity textbook: Basics of Continuum Plasticity Kwansoo Chung, Myoung-Gyu Lee, 2018-05-02 This book describes the basic principles of plasticity for students and engineers who wish to perform plasticity analyses in their professional lives, and provides an introduction to the application of plasticity theories and basic continuum mechanics in metal forming processes. This book consists of three parts. The first part deals with the characteristics of plasticity and instability under simple tension or compression and plasticity in beam bending and torsion. The second part is designed to provide the basic principles of continuum mechanics, and the last part presents an extension of one-dimensional plasticity to general three-dimensional laws based on the fundamentals of continuum mechanics. Though most parts of the book are written in the context of general plasticity, the last two chapters are specifically devoted to sheet metal forming applications. The homework problems included are designed to reinforce understanding of the concepts involved. This book may be used as a textbook for a one semester course lasting fourteen weeks or longer. This book is intended to be self-sufficient such that readers can study it independently without taking another formal course. However, there are some prerequisites before starting this book, which include a course on engineering mathematics and an introductory course on solid mechanics. |
theory of plasticity textbook: Continuum Mechanics and Plasticity Han-Chin Wu, 2004-12-20 Tremendous advances in computer technologies and methods have precipitated a great demand for refinements in the constitutive models of plasticity. Such refinements include the development of a model that would account for material anisotropy and produces results that compare well with experimental data. Key to developing such models-and to meeting many other challenges in the field- is a firm grasp of the principles of continuum mechanics and how they apply to the formulation of plasticity theory. Also critical is understanding the experimental aspects of plasticity and material anisotropy. Integrating the traditionally separate subjects of continuum mechanics and plasticity, this book builds understanding in all of those areas. Part I provides systematic, comprehensive coverage of continuum mechanics, from a review of Carteisian tensors to the relevant conservation laws and constitutive equation. Part II offers an exhaustive presentation of the continuum theory of plasticity. This includes a unique treatment of the experimental aspects of plasticity, covers anisotropic plasticity, and incorporates recent research results related to the endochronic theory of plasticity obtained by the author and his colleagues. By bringing all of these together in one book, Continuum Mechanics and Plasticity facilitates the learning of solid mechanics. Its readers will be well prepared for pursuing either research related to the mechanical behavior of engineering materials or developmental work in engineering analysis and design. |
theory of plasticity textbook: Engineering Plasticity Z. R. Wang, Weilong Hu, S. J. Yuan, Xiaosong Wang, 2018-03-02 An all-in-one guide to the theory and applications of plasticity in metal forming, featuring examples from the automobile and aerospace industries Provides a solid grounding in plasticity fundamentals and material properties Features models, theorems and analysis of processes and relationships related to plasticity, supported by extensive experimental data Offers a detailed discussion of recent advances and applications in metal forming |
theory of plasticity textbook: Plasticity for Structural Engineers Wai-Fah Chen, D. J. Han, Da-Jian Han, 2007-02-15 J. Ross Publishing Classics are world-renowned texts and monographs written by preeminent scholars. These books are suitable for students, researchers, professionals and libraries. |
theory of plasticity textbook: Theory of Metal Forming Plasticity Andrzej Sluzalec, 2003-10-10 This book provides a modern and comprehensive approach to metal forming plasticity. The contents supply readers with an up-to-date review of elementary concepts of metal forming plasticity, the necessary background material on continuum mechanics, and a discussion of the classical theories of metal forming plasticity. Final chapters introduce the fundamentals of sensitivity in metal forming and stochastic metal forming plasticity. Theory of Metal Forming Plasticity will be of particular interest to graduate students and researches working on plasticity in deparments of engineering mechanics, materials and mechanical engineering. |
theory of plasticity textbook: Introduction to Computational Plasticity Fionn Dunne, Nik Petrinic, 2005-06-09 This book gives an introduction to computational plasticity and includes the kinematics of large deformations, together with relevant continuum mechanics. Central to the book is its focus on computational plasticity, and we cover an introduction to the finite element method which includes both quasi-static and dynamic problems. We then go on to describe explicit and implicit implementations of plasticity models in to finite element software. Throughout the book, we describe the general, multiaxial form of the theory but uniquely, wherever possible, reduce the equations to their simplest, uniaxial form to develop understanding of the general theory and, we hope, physical insight. We provide several examples of implicit and explicit implementations of von Mises time-independent and visco-plasticity in to the commercial code ABAQUS (including the fortran coding), which should prove invaluable to research students and practising engineers developing ABAQUS 'UMATs'. The book bridges the gap between undergraduate material on plasticity and existing advanced texts on nonlinear computational mechanics, which makes it ideal for students and practising engineers alike. It introduces a range of engineering applications, including superplasticity, porous plasticity, cyclic plasticity and thermo-mechanical fatigue, to emphasize the subject's relevance and importance. |
theory of plasticity textbook: Computational Methods in Elasticity and Plasticity A. Anandarajah, 2011-01-04 Computational Methods in Elasticity and Plasticity: Solids and Porous Media presents the latest developments in the area of elastic and elasto-plastic finite element modeling of solids, porous media and pressure-dependent materials and structures. The book covers the following topics in depth: the mathematical foundations of solid mechanics, the finite element method for solids and porous media, the theory of plasticity and the finite element implementation of elasto-plastic constitutive models. The book also includes: -A detailed coverage of elasticity for isotropic and anisotropic solids. -A detailed treatment of nonlinear iterative methods that could be used for nonlinear elastic and elasto-plastic analyses. -A detailed treatment of a kinematic hardening von Mises model that could be used to simulate cyclic behavior of solids. -Discussion of recent advances in the analysis of porous media and pressure-dependent materials in more detail than other books currently available. Computational Methods in Elasticity and Plasticity: Solids and Porous Media also contains problem sets, worked examples and a solutions manual for instructors. |
theory of plasticity textbook: Principles of Hyperplasticity Guy T. Houlsby, Alexander M. Puzrin, 2007-04-18 The approach to plasticity theory developed here is firmly rooted in thermodynamics. Emphasis is placed on the use of potentials and the derivation of incremental response, necessary for numerical analysis. The derivation of constitutive models for irreversible behaviour entirely from two scalar potentials is shown. The use of potentials allows models to be very simply defined, classified and, if necessary, developed and it permits dependent and independent variables to be interchanged, making possible different forms of a model for different applications. The theory is extended to include treatment of rate-dependent materials and a powerful concept, in which a single plastic strain is replaced by a plastic strain function, allowing smooth transitions between elastic and plastic behaviour is introduced. This monograph will benefit academic researchers in mechanics, civil engineering and geomechanics and practising geotechnical engineers; it will also interest numerical analysts in engineering mechanics. |
theory of plasticity textbook: Plasticity P.M. Dixit, U.S. Dixit, 2014-10-23 Explores the Principles of Plasticity Most undergraduate programs lack an undergraduate plasticity theory course, and many graduate programs in design and manufacturing lack a course on plasticity—leaving a number of engineering students without adequate information on the subject. Emphasizing stresses generated in the material and its effect, Plasticity: Fundamentals and Applications effectively addresses this need. This book fills a void by introducing the basic fundamentals of solid mechanics of deformable bodies. It provides a thorough understanding of plasticity theory, introduces the concepts of plasticity, and discusses relevant applications. Studies the Effects of Forces and Motions on Solids The authors make a point of highlighting the importance of plastic deformation, and also discuss the concepts of elasticity (for a clear understanding of plasticity, the elasticity theory must also be understood). In addition, they present information on updated Lagrangian and Eulerian formulations for the modeling of metal forming and machining. Topics covered include: Stress Strain Constitutive relations Fracture Anisotropy Contact problems Plasticity: Fundamentals and Applications enables students to understand the basic fundamentals of plasticity theory, effectively use commercial finite-element (FE) software, and eventually develop their own code. It also provides suitable reference material for mechanical/civil/aerospace engineers, material processing engineers, applied mechanics researchers, mathematicians, and other industry professionals. |
theory of plasticity textbook: Plasticity and Geotechnics Hai-Sui Yu, 2007-01-11 Plasticity and Geotechnics is the first attempt to summarize and present in a single volume the major achievements in the field of plasticity theory for geotechnical materials and its applications to geotechnical analysis and design. The book emerges from the author’s belief that there is an urgent need for the geotechnical and solid mechanics community to have a unified presentation of plasticity theory and its application to geotechnical engineering. |
theory of plasticity textbook: Continuum Mechanics and Theory of Materials Peter Haupt, 2013-03-14 The new edition includes additional analytical methods in the classical theory of viscoelasticity. This leads to a new theory of finite linear viscoelasticity of incompressible isotropic materials. Anisotropic viscoplasticity is completely reformulated and extended to a general constitutive theory that covers crystal plasticity as a special case. |
theory of plasticity textbook: Fundamentals of the Theory of Plasticity L. M. Kachanov, 2013-09-26 Intended for use by advanced engineering students and professionals, this volume focuses on plastic deformation of metals at normal temperatures, as applied to strength of machines and structures. 1971 edition. |
theory of plasticity textbook: Elasticity and Plasticity of Large Deformations Albrecht Bertram, 2021-04-07 This book presents an introduction to material theory and, in particular, to elasticity, plasticity and viscoelasticity, to bring the reader close to the frontiers of today’s knowledge in these particular fields. It starts right from the beginning without assuming much knowledge of the subject. Hence, the book is generally comprehensible to all engineers, physicists, mathematicians, and others. At the beginning of each new section, a brief Comment on the Literature contains recommendations for further reading. This book includes an updated reference list and over 100 changes throughout the book. It contains the latest knowledge on the subject. Two new chapters have been added in this new edition. Now finite viscoelasticity is included, and an Essay on gradient materials, which have recently drawn much attention. |
theory of plasticity textbook: Developmental Plasticity and Evolution Mary Jane West-Eberhard, 2003-03-13 The first comprehensive synthesis on development and evolution: it applies to all aspects of development, at all levels of organization and in all organisms, taking advantage of modern findings on behavior, genetics, endocrinology, molecular biology, evolutionary theory and phylogenetics to show the connections between developmental mechanisms and evolutionary change. This book solves key problems that have impeded a definitive synthesis in the past. It uses new concepts and specific examples to show how to relate environmentally sensitive development to the genetic theory of adaptive evolution and to explain major patterns of change. In this book development includes not only embryology and the ontogeny of morphology, sometimes portrayed inadequately as governed by regulatory genes, but also behavioral development and physiological adaptation, where plasticity is mediated by genetically complex mechanisms like hormones and learning. The book shows how the universal qualities of phenotypes--modular organization and plasticity--facilitate both integration and change. Here you will learn why it is wrong to describe organisms as genetically programmed; why environmental induction is likely to be more important in evolution than random mutation; and why it is crucial to consider both selection and developmental mechanism in explanations of adaptive evolution. This book satisfies the need for a truly general book on development, plasticity and evolution that applies to living organisms in all of their life stages and environments. Using an immense compendium of examples on many kinds of organisms, from viruses and bacteria to higher plants and animals, it shows how the phenotype is reorganized during evolution to produce novelties, and how alternative phenotypes occupy a pivotal role as a phase of evolution that fosters diversification and speeds change. The arguments of this book call for a new view of the major themes of evolutionary biology, as shown in chapters on gradualism, homology, environmental induction, speciation, radiation, macroevolution, punctuation, and the maintenance of sex. No other treatment of development and evolution since Darwin's offers such a comprehensive and critical discussion of the relevant issues. Developmental Plasticity and Evolution is designed for biologists interested in the development and evolution of behavior, life-history patterns, ecology, physiology, morphology and speciation. It will also appeal to evolutionary paleontologists, anthropologists, psychologists, and teachers of general biology. |
theory of plasticity textbook: Engineering Plasticity R. A. C. Slater, 1977 |
theory of plasticity textbook: Dislocation Mechanism-Based Crystal Plasticity Zhuo Zhuang, Zhanli Liu, Yinan Cui, 2019-04-12 Dislocation Based Crystal Plasticity: Theory and Computation at Micron and Submicron Scale provides a comprehensive introduction to the continuum and discreteness dislocation mechanism-based theories and computational methods of crystal plasticity at the micron and submicron scale. Sections cover the fundamental concept of conventional crystal plasticity theory at the macro-scale without size effect, strain gradient crystal plasticity theory based on Taylar law dislocation, mechanism at the mesoscale, phase-field theory of crystal plasticity, computation at the submicron scale, including single crystal plasticity theory, and the discrete-continuous model of crystal plasticity with three-dimensional discrete dislocation dynamics coupling finite element method (DDD-FEM). Three kinds of plastic deformation mechanisms for submicron pillars are systematically presented. Further sections discuss dislocation nucleation and starvation at high strain rate and temperature effect for dislocation annihilation mechanism. - Covers dislocation mechanism-based crystal plasticity theory and computation at the micron and submicron scale - Presents crystal plasticity theory without size effect - Deals with the 3D discrete-continuous (3D DCM) theoretic and computational model of crystal plasticity with 3D discrete dislocation dynamics (3D DDD) coupling finite element method (FEM) - Includes discrete dislocation mechanism-based theory and computation at the submicron scale with single arm source, coating micropillar, lower cyclic loading pillars, and dislocation starvation at the submicron scale |
theory of plasticity textbook: Theory of Plasticity J. Chakrabarty, 1987 |
theory of plasticity textbook: Limit Analysis and Soil Plasticity Wai-Fah Chen, 2007-12-15 This reference describes and illustrates the principles and techniques of limit analysis as applied to soil mechanics in detail. It presents advances on bearing capacity problems of concrete blocks or rock and discusses the modern development of the theory of soil plasticity. |
theory of plasticity textbook: Theory of Cortical Plasticity Leon N. Cooper, 2004 This invaluable book presents a theory of cortical plasticity and shows how this theory leads to experiments that test both its assumptions and consequences. It elucidates, in a manner that is accessible to students as well as researchers, the role which the BCM theory has played in guiding research and suggesting experiments that have led to our present understanding of the mechanisms underlying cortical plasticity. Most of the connections between theory and experiment that are discussed require complex simulations. A unique feature of the book is the accompanying software package, Plasticity. This is provided complete with source code, and enables the reader to repeat any of the simulations quoted in the book as well as to vary either parameters or assumptions. Plasticity is thus a research and an educational tool. Readers can use it to obtain hands-on knowledge of the structure of BCM and various other learning algorithms. They can check and replicate our results as well as test algorithms andrefinements of their own. |
theory of plasticity textbook: Structural Plasticity Wai-Fah Chen, H. Zhang, 1991 |
theory of plasticity textbook: Introduction to Finite Strain Theory for Continuum Elasto-Plasticity Koichi Hashiguchi, Yuki Yamakawa, 2012-11-28 Comprehensive introduction to finite elastoplasticity, addressing various analytical and numerical analyses & including state-of-the-art theories Introduction to Finite Elastoplasticity presents introductory explanations that can be readily understood by readers with only a basic knowledge of elastoplasticity, showing physical backgrounds of concepts in detail and derivation processes of almost all equations. The authors address various analytical and numerical finite strain analyses, including new theories developed in recent years, and explain fundamentals including the push-forward and pull-back operations and the Lie derivatives of tensors. As a foundation to finite strain theory, the authors begin by addressing the advanced mathematical and physical properties of continuum mechanics. They progress to explain a finite elastoplastic constitutive model, discuss numerical issues on stress computation, implement the numerical algorithms for stress computation into large-deformation finite element analysis and illustrate several numerical examples of boundary-value problems. Programs for the stress computation of finite elastoplastic models explained in this book are included in an appendix, and the code can be downloaded from an accompanying website. |
theory of plasticity textbook: Theory of Elasticity and Plasticity Harold Malcolm Westergaard, 1964 |
theory of plasticity textbook: Computational Inelasticity J.C. Simo, T.J.R. Hughes, 2006-05-07 A description of the theoretical foundations of inelasticity, its numerical formulation and implementation, constituting a representative sample of state-of-the-art methodology currently used in inelastic calculations. Among the numerous topics covered are small deformation plasticity and viscoplasticity, convex optimisation theory, integration algorithms for the constitutive equation of plasticity and viscoplasticity, the variational setting of boundary value problems and discretization by finite element methods. Also addressed are the generalisation of the theory to non-smooth yield surface, mathematical numerical analysis issues of general return mapping algorithms, the generalisation to finite-strain inelasticity theory, objective integration algorithms for rate constitutive equations, the theory of hyperelastic-based plasticity models and small and large deformation viscoelasticity. Of great interest to researchers and graduate students in various branches of engineering, especially civil, aeronautical and mechanical, and applied mathematics. |
theory of plasticity textbook: The Theory of Materials Failure Richard M. Christensen, 2013-03-14 A complete and comprehensive theory of failure is developed for homogeneous and isotropic materials. The full range of materials types are covered from very ductile metals to extremely brittle glasses and minerals. Two failure properties suffice to predict the general failure conditions under all states of stress. With this foundation to build upon, many other aspects of failure are also treated, such as extensions to anisotropic fiber composites, cumulative damage, creep and fatigue, and microscale and nanoscale approaches to failure. |
theory of plasticity textbook: Elastoplasticity Theory Koichi Hashiguchi, 2009-05-02 Contents Recent advancements in the performance of industrial products and structures are quite intense. Consequently, mechanical design of high accuracy is necessary to enhance their mechanical performance, strength and durability. The basis for their mechanical design can be provided through elastoplastic deformation analyses. For that reason, industrial engineers in the fields of mechanical, civil, architec- ral, aerospace engineering, etc. must learn pertinent knowledge relevant to elas- plasticity. Numerous books about elastoplasticity have been published since “Mathema- cal Theory of Plasticity”, the notable book of R. Hill (1950), was written in the middle of the last century. That and similar books mainly address conventional plasticity models on the premise that the interior of a yield surface is an elastic domain. However, conventional plasticity models are applicable to the prediction of monotonic loading behavior, but are inapplicable to prediction of deformation behavior of machinery subjected to cyclic loading and civil or architectural str- tures subjected to earthquakes. Elastoplasticity has developed to predict defor- tion behavior under cyclic loading and non-proportional loading and to describe nonlocal, finite and rate-dependent deformation behavior. |
Limit Theory Forums - Frequently Asked Questions
Oct 1, 2023 · User Levels and Groups What are Administrators? Administrators are members assigned with the highest level of control over the entire board.
Limit Theory Forums - Frequently Asked Questions
Oct 1, 2023 · User Levels and Groups What are Administrators? Administrators are members assigned with the highest level of control over the entire board.