Advertisement
time series theory and methods free download: Time Series: Theory and Methods Peter J. Brockwell, Richard A. Davis, 2009-05-13 This edition contains a large number of additions and corrections scattered throughout the text, including the incorporation of a new chapter on state-space models. The companion diskette for the IBM PC has expanded into the software package ITSM: An Interactive Time Series Modelling Package for the PC, which includes a manual and can be ordered from Springer-Verlag. * We are indebted to many readers who have used the book and programs and made suggestions for improvements. Unfortunately there is not enough space to acknowledge all who have contributed in this way; however, special mention must be made of our prize-winning fault-finders, Sid Resnick and F. Pukelsheim. Special mention should also be made of Anthony Brockwell, whose advice and support on computing matters was invaluable in the preparation of the new diskettes. We have been fortunate to work on the new edition in the excellent environments provided by the University of Melbourne and Colorado State University. We thank Duane Boes particularly for his support and encouragement throughout, and the Australian Research Council and National Science Foundation for their support of research related to the new material. We are also indebted to Springer-Verlag for their constant support and assistance in preparing the second edition. Fort Collins, Colorado P. J. BROCKWELL November, 1990 R. A. DAVIS * /TSM: An Interactive Time Series Modelling Package for the PC by P. J. Brockwell and R. A. Davis. ISBN: 0-387-97482-2; 1991. |
time series theory and methods free download: Introduction to Time Series and Forecasting Peter J. Brockwell, Richard A. Davis, 2013-03-14 Some of the key mathematical results are stated without proof in order to make the underlying theory acccessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introducitons are also given to cointegration and to non-linear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis. |
time series theory and methods free download: Nonlinear Time Series Randal Douc, Eric Moulines, David Stoffer, 2014-01-06 Designed for researchers and students, Nonlinear Times Series: Theory, Methods and Applications with R Examples familiarizes readers with the principles behind nonlinear time series models—without overwhelming them with difficult mathematical developments. By focusing on basic principles and theory, the authors give readers the background required to craft their own stochastic models, numerical methods, and software. They will also be able to assess the advantages and disadvantages of different approaches, and thus be able to choose the right methods for their purposes. The first part can be seen as a crash course on classical time series, with a special emphasis on linear state space models and detailed coverage of random coefficient autoregressions, both ARCH and GARCH models. The second part introduces Markov chains, discussing stability, the existence of a stationary distribution, ergodicity, limit theorems, and statistical inference. The book concludes with a self-contained account on nonlinear state space and sequential Monte Carlo methods. An elementary introduction to nonlinear state space modeling and sequential Monte Carlo, this section touches on current topics, from the theory of statistical inference to advanced computational methods. The book can be used as a support to an advanced course on these methods, or an introduction to this field before studying more specialized texts. Several chapters highlight recent developments such as explicit rate of convergence of Markov chains and sequential Monte Carlo techniques. And while the chapters are organized in a logical progression, the three parts can be studied independently. Statistics is not a spectator sport, so the book contains more than 200 exercises to challenge readers. These problems strengthen intellectual muscles strained by the introduction of new theory and go on to extend the theory in significant ways. The book helps readers hone their skills in nonlinear time series analysis and their applications. |
time series theory and methods free download: Forecasting: principles and practice Rob J Hyndman, George Athanasopoulos, 2018-05-08 Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly. |
time series theory and methods free download: Time Series Analysis and Its Applications Robert H. Shumway, David S. Stoffer, 2013-03-14 The goals of this book are to develop an appreciation for the richness and versatility of modern time series analysis as a tool for analyzing data, and still maintain a commitment to theoretical integrity, as exemplified by the seminal works of Brillinger (1981) and Hannan (1970) and the texts by Brockwell and Davis (1991) and Fuller (1995). The advent of more powerful computing, es pecially in the last three years, has provided both real data and new software that can take one considerably beyond the fitting of·simple time domain mod els, such as have been elegantly described in the landmark work of Box and Jenkins (1970). The present book is designed to be useful as a text for courses in time series on several different levels and as a reference work for practition ers facing the analysis of time-correlated data in the physical, biological, and social sciences. We believe the book will be useful as a text at both the undergraduate and graduate levels. An undergraduate course can be accessible to students with a background in regression analysis and might include Sections 1. 1-1. 8, 2. 1-2. 9, and 3. 1-3. 8. Similar courses have been taught at the University of California (Berkeley and Davis) in the past using the earlier book on applied time series analysis by Shumway (1988). Such a course is taken by undergraduate students in mathematics, economics, and statistics and attracts graduate students from the agricultural, biological, and environmental sciences. |
time series theory and methods free download: Analyzing Neural Time Series Data Mike X Cohen, 2014-01-17 A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings. This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists. Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button. The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches. |
time series theory and methods free download: Nonlinear Time Series Jianqing Fan, Qiwei Yao, 2008-09-11 This is the first book that integrates useful parametric and nonparametric techniques with time series modeling and prediction, the two important goals of time series analysis. Such a book will benefit researchers and practitioners in various fields such as econometricians, meteorologists, biologists, among others who wish to learn useful time series methods within a short period of time. The book also intends to serve as a reference or text book for graduate students in statistics and econometrics. |
time series theory and methods free download: The Analysis of Time Series: Theory and Practice Christopher Chatfield, 2013-12-01 Time-series analysis is an area of statistics which is of particular interest at the present time. Time series arise in many different areas, ranging from marketing to oceanography, and the analysis of such series raises many problems of both a theoretical and practical nature. I first became interested in the subject as a postgraduate student at Imperial College, when I attended a stimulating course of lectures on time-series given by Dr. (now Professor) G. M. Jenkins. The subject has fascinated me ever since. Several books have been written on theoretical aspects of time-series analysis. The aim of this book is to provide an introduction to the subject which bridges the gap between theory and practice. The book has also been written to make what is rather a difficult subject as understandable as possible. Enough theory is given to introduce the concepts of time-series analysis and to make the book mathematically interesting. In addition, practical problems are considered so as to help the reader tackle the analysis of real data. The book assumes a knowledge of basic probability theory and elementary statistical inference (see Appendix III). The book can be used as a text for an undergraduate or postgraduate course in time-series, or it can be used for self tuition by research workers. Throughout the book, references are usually given to recent readily accessible books and journals rather than to the original attributive references. Wold's (1965) bibliography contains many time series references published before 1959. |
time series theory and methods free download: Time Series Analysis Univariate and Multivariate Methods William W. S. Wei, 2018-03-14 With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field. |
time series theory and methods free download: Hydrologic Time Series Analysis Deepesh Machiwal, Madan Kumar Jha, 2012-03-05 There is a dearth of relevant books dealing with both theory and application of time series analysis techniques, particularly in the field of water resources engineering. Therefore, many hydrologists and hydrogeologists face difficulties in adopting time series analysis as one of the tools for their research. This book fills this gap by providing a proper blend of theoretical and practical aspects of time sereies analysis. It deals with a comprehensive overview of time series characteristics in hydrology/water resources engineering, various tools and techniques for analyzing time series data, theoretical details of 31 available statistical tests along with detailed procedures for applying them to real-world time series data, theory and methodology of stochastic modelling, and current status of time series analysis in hydrological sciences. In adition, it demonstrates the application of most time series tests through a case study as well as presents a comparative performance evaluation of various time series tests, together with four invited case studies from India and abroad. This book will not only serve as a textbook for the students and teachers in water resources engineering but will also serve as the most comprehensive reference to educate researchers/scientists about the theory and practice of time series analysis in hydrological sciences. This book will be very useful to the students, researchers, teachers and professionals involved in water resources, hydrology, ecology, climate change, earth science, and environmental studies. |
time series theory and methods free download: Time Series Analysis Jonathan D. Cryer, Kung-Sik Chan, 2008-04-04 This book has been developed for a one-semester course usually attended by students in statistics, economics, business, engineering, and quantitative social sciences. A unique feature of this edition is its integration with the R computing environment. Basic applied statistics is assumed through multiple regression. Calculus is assumed only to the extent of minimizing sums of squares but a calculus-based introduction to statistics is necessary for a thorough understanding of some of the theory. Actual time series data drawn from various disciplines are used throughout the book to illustrate the methodology. |
time series theory and methods free download: Mathematical Foundations of Time Series Analysis Jan Beran, 2018-03-23 This book provides a concise introduction to the mathematical foundations of time series analysis, with an emphasis on mathematical clarity. The text is reduced to the essential logical core, mostly using the symbolic language of mathematics, thus enabling readers to very quickly grasp the essential reasoning behind time series analysis. It appeals to anybody wanting to understand time series in a precise, mathematical manner. It is suitable for graduate courses in time series analysis but is equally useful as a reference work for students and researchers alike. |
time series theory and methods free download: State-Space Methods for Time Series Analysis Jose Casals, Alfredo Garcia-Hiernaux, Miguel Jerez, Sonia Sotoca, A. Alexandre Trindade, 2018-09-03 The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors’ E4 MATLAB® toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work. |
time series theory and methods free download: Climate Time Series Analysis Manfred Mudelsee, 2010-08-26 Climate is a paradigm of a complex system. Analysing climate data is an exciting challenge, which is increased by non-normal distributional shape, serial dependence, uneven spacing and timescale uncertainties. This book presents bootstrap resampling as a computing-intensive method able to meet the challenge. It shows the bootstrap to perform reliably in the most important statistical estimation techniques: regression, spectral analysis, extreme values and correlation. This book is written for climatologists and applied statisticians. It explains step by step the bootstrap algorithms (including novel adaptions) and methods for confidence interval construction. It tests the accuracy of the algorithms by means of Monte Carlo experiments. It analyses a large array of climate time series, giving a detailed account on the data and the associated climatological questions. This makes the book self-contained for graduate students and researchers. |
time series theory and methods free download: Introduction to Modern Time Series Analysis Gebhard Kirchgässner, Jürgen Wolters, 2008-08-27 This book presents modern developments in time series econometrics that are applied to macroeconomic and financial time series. It contains the most important approaches to analyze time series which may be stationary or nonstationary. |
time series theory and methods free download: The Analysis of Time Series Chris Chatfield, Haipeng Xing, 2019-04-25 This new edition of this classic title, now in its seventh edition, presents a balanced and comprehensive introduction to the theory, implementation, and practice of time series analysis. The book covers a wide range of topics, including ARIMA models, forecasting methods, spectral analysis, linear systems, state-space models, the Kalman filters, nonlinear models, volatility models, and multivariate models. |
time series theory and methods free download: Handbook of Financial Time Series Torben Gustav Andersen, Richard A. Davis, Jens-Peter Kreiß, Thomas V. Mikosch, 2009-04-21 The Handbook of Financial Time Series gives an up-to-date overview of the field and covers all relevant topics both from a statistical and an econometrical point of view. There are many fine contributions, and a preamble by Nobel Prize winner Robert F. Engle. |
time series theory and methods free download: Nonlinear Time Series Analysis Ruey S. Tsay, Rong Chen, 2018-09-14 A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models. |
time series theory and methods free download: Heavy-Tailed Time Series Rafal Kulik, Philippe Soulier, 2020-07-01 This book aims to present a comprehensive, self-contained, and concise overview of extreme value theory for time series, incorporating the latest research trends alongside classical methodology. Appropriate for graduate coursework or professional reference, the book requires a background in extreme value theory for i.i.d. data and basics of time series. Following a brief review of foundational concepts, it progresses linearly through topics in limit theorems and time series models while including historical insights at each chapter’s conclusion. Additionally, the book incorporates complete proofs and exercises with solutions as well as substantive reference lists and appendices, featuring a novel commentary on the theory of vague convergence. |
time series theory and methods free download: Econometrics in Theory and Practice Panchanan Das, 2019-09-05 This book introduces econometric analysis of cross section, time series and panel data with the application of statistical software. It serves as a basic text for those who wish to learn and apply econometric analysis in empirical research. The level of presentation is as simple as possible to make it useful for undergraduates as well as graduate students. It contains several examples with real data and Stata programmes and interpretation of the results. While discussing the statistical tools needed to understand empirical economic research, the book attempts to provide a balance between theory and applied research. Various concepts and techniques of econometric analysis are supported by carefully developed examples with the use of statistical software package, Stata 15.1, and assumes that the reader is somewhat familiar with the Strata software. The topics covered in this book are divided into four parts. Part I discusses introductory econometric methods for data analysis that economists and other social scientists use to estimate the economic and social relationships, and to test hypotheses about them, using real-world data. There are five chapters in this part covering the data management issues, details of linear regression models, the related problems due to violation of the classical assumptions. Part II discusses some advanced topics used frequently in empirical research with cross section data. In its three chapters, this part includes some specific problems of regression analysis. Part III deals with time series econometric analysis. It covers intensively both the univariate and multivariate time series econometric models and their applications with software programming in six chapters. Part IV takes care of panel data analysis in four chapters. Different aspects of fixed effects and random effects are discussed here. Panel data analysis has been extended by taking dynamic panel data models which are most suitable for macroeconomic research. The book is invaluable for students and researchers of social sciences, business, management, operations research, engineering, and applied mathematics. |
time series theory and methods free download: Stochastic Models for Time Series Paul Doukhan, 2018-05-25 This book presents essential tools for modelling non-linear time series. The first part of the book describes the main standard tools of probability and statistics that directly apply to the time series context to obtain a wide range of modelling possibilities. Functional estimation and bootstrap are discussed, and stationarity is reviewed. The second part describes a number of tools from Gaussian chaos and proposes a tour of linear time series models. It goes on to address nonlinearity from polynomial or chaotic models for which explicit expansions are available, then turns to Markov and non-Markov linear models and discusses Bernoulli shifts time series models. Finally, the volume focuses on the limit theory, starting with the ergodic theorem, which is seen as the first step for statistics of time series. It defines the distributional range to obtain generic tools for limit theory under long or short-range dependences (LRD/SRD) and explains examples of LRD behaviours. More general techniques (central limit theorems) are described under SRD; mixing and weak dependence are also reviewed. In closing, it describes moment techniques together with their relations to cumulant sums as well as an application to kernel type estimation.The appendix reviews basic probability theory facts and discusses useful laws stemming from the Gaussian laws as well as the basic principles of probability, and is completed by R-scripts used for the figures. Richly illustrated with examples and simulations, the book is recommended for advanced master courses for mathematicians just entering the field of time series, and statisticians who want more mathematical insights into the background of non-linear time series. |
time series theory and methods free download: Time Series Analysis and Inverse Theory for Geophysicists David Gubbins, 2004-03-18 This unique textbook provides the foundation for understanding and applying techniques commonly used in geophysics to process and interpret modern digital data. The geophysicist's toolkit contains a range of techniques which may be divided into two main groups: processing, which concerns time series analysis and is used to separate the signal of interest from background noise; and inversion, which involves generating some map or physical model from the data. These two groups of techniques are normally taught separately, but are here presented together as parts I and II of the book. Part III describes some real applications and includes case studies in seismology, geomagnetism, and gravity. This textbook gives students and practitioners the theoretical background and practical experience, through case studies, computer examples and exercises, to understand and apply new processing methods to modern geophysical datasets. Solutions to the exercises are available on a website at http://publishing.cambridge.org/resources/0521819652 |
time series theory and methods free download: Singular Spectrum Analysis for Time Series Nina Golyandina, Anatoly Zhigljavsky, 2013-01-19 Singular spectrum analysis (SSA) is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA seeks to decompose the original series into a sum of a small number of interpretable components such as trend, oscillatory components and noise. It is based on the singular value decomposition of a specific matrix constructed upon the time series. Neither a parametric model nor stationarity are assumed for the time series. This makes SSA a model-free method and hence enables SSA to have a very wide range of applicability. The present book is devoted to the methodology of SSA and shows how to use SSA both safely and with maximum effect. Potential readers of the book include: professional statisticians and econometricians, specialists in any discipline in which problems of time series analysis and forecasting occur, specialists in signal processing and those needed to extract signals from noisy data, and students taking courses on applied time series analysis. |
time series theory and methods free download: EBOOK: Operations Management: Theory and Practice: Global Edition STEVENSON, WILL, 2019-01-11 EBOOK: Operations Management: Theory and Practice: Global Edition |
time series theory and methods free download: Multivariate Time Series Analysis and Applications William W. S. Wei, 2018-12-31 An essential guide on high dimensional multivariate time series including all the latest topics from one of the leading experts in the field Following the highly successful and much lauded book, Time Series Analysis—Univariate and Multivariate Methods, this new work by William W.S. Wei focuses on high dimensional multivariate time series, and is illustrated with numerous high dimensional empirical time series. Beginning with the fundamentalconcepts and issues of multivariate time series analysis,this book covers many topics that are not found in general multivariate time series books. Some of these are repeated measurements, space-time series modelling, and dimension reduction. The book also looks at vector time series models, multivariate time series regression models, and principle component analysis of multivariate time series. Additionally, it provides readers with information on factor analysis of multivariate time series, multivariate GARCH models, and multivariate spectral analysis of time series. With the development of computers and the internet, we have increased potential for data exploration. In the next few years, dimension will become a more serious problem. Multivariate Time Series Analysis and its Applications provides some initial solutions, which may encourage the development of related software needed for the high dimensional multivariate time series analysis. Written by bestselling author and leading expert in the field Covers topics not yet explored in current multivariate books Features classroom tested material Written specifically for time series courses Multivariate Time Series Analysis and its Applications is designed for an advanced time series analysis course. It is a must-have for anyone studying time series analysis and is also relevant for students in economics, biostatistics, and engineering. |
time series theory and methods free download: Modelling Financial Time Series Stephen J. Taylor, 2008 This book contains several innovative models for the prices of financial assets. First published in 1986, it is a classic text in the area of financial econometrics. It presents ARCH and stochastic volatility models that are often used and cited in academic research and are applied by quantitative analysts in many banks. Another often-cited contribution of the first edition is the documentation of statistical characteristics of financial returns, which are referred to as stylized facts. This second edition takes into account the remarkable progress made by empirical researchers during the past two decades from 1986 to 2006. In the new Preface, the author summarizes this progress in two key areas: firstly, measuring, modelling and forecasting volatility; and secondly, detecting and exploiting price trends. Sample Chapter(s). Chapter 1: Introduction (1,134 KB). Contents: Features of Financial Returns; Modelling Price Volatility; Forecasting Standard Deviations; The Accuracy of Autocorrelation Estimates; Testing the Random Walk Hypothesis; Forecasting Trends in Prices; Evidence Against the Efficiency of Futures Markets; Valuing Options; Appendix: A Computer Program for Modelling Financial Time Series. Readership: Academic researchers in finance & economics; quantitative analysts. |
time series theory and methods free download: Recursive Estimation and Time-Series Analysis Peter C. Young, 2011-08-04 This is a revised version of the 1984 book of the same name but considerably modified and enlarged to accommodate the developments in recursive estimation and time series analysis that have occurred over the last quarter century. Also over this time, the CAPTAIN Toolbox for recursive estimation and time series analysis has been developed at Lancaster, for use in the MatlabTM software environment (see Appendix G). Consequently, the present version of the book is able to exploit the many computational routines that are contained in this widely available Toolbox, as well as some of the other routines in MatlabTM and its other toolboxes. The book is an introductory one on the topic of recursive estimation and it demonstrates how this approach to estimation, in its various forms, can be an impressive aid to the modelling of stochastic, dynamic systems. It is intended for undergraduate or Masters students who wish to obtain a grounding in this subject; or for practitioners in industry who may have heard of topics dealt with in this book and, while they want to know more about them, may have been deterred by the rather esoteric nature of some books in this challenging area of study. |
time series theory and methods free download: Long-Memory Processes Jan Beran, Yuanhua Feng, Sucharita Ghosh, Rafal Kulik, 2013-05-14 Long-memory processes are known to play an important part in many areas of science and technology, including physics, geophysics, hydrology, telecommunications, economics, finance, climatology, and network engineering. In the last 20 years enormous progress has been made in understanding the probabilistic foundations and statistical principles of such processes. This book provides a timely and comprehensive review, including a thorough discussion of mathematical and probabilistic foundations and statistical methods, emphasizing their practical motivation and mathematical justification. Proofs of the main theorems are provided and data examples illustrate practical aspects. This book will be a valuable resource for researchers and graduate students in statistics, mathematics, econometrics and other quantitative areas, as well as for practitioners and applied researchers who need to analyze data in which long memory, power laws, self-similar scaling or fractal properties are relevant. |
time series theory and methods free download: Applied Financial Econometrics Moinak Maiti, 2021-08-31 This textbook gives students an approachable, down to earth resource for the study of financial econometrics. While the subject can be intimidating, primarily due to the mathematics and modelling involved, it is rewarding for students of finance and can be taught and learned in a straightforward way. This book, going from basics to high level concepts, offers knowledge of econometrics that is intended to be used with confidence in the real world. This book will be beneficial for both students and tutors who are associated with econometrics subjects at any level. |
time series theory and methods free download: Time Series Raquel Prado, Mike West, 2010-05-21 Focusing on Bayesian approaches and computations using simulation-based methods for inference, Time Series: Modeling, Computation, and Inference integrates mainstream approaches for time series modeling with significant recent developments in methodology and applications of time series analysis. It encompasses a graduate-level account of Bayesian time series modeling and analysis, a broad range of references to state-of-the-art approaches to univariate and multivariate time series analysis, and emerging topics at research frontiers. The book presents overviews of several classes of models and related methodology for inference, statistical computation for model fitting and assessment, and forecasting. The authors also explore the connections between time- and frequency-domain approaches and develop various models and analyses using Bayesian tools, such as Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods. They illustrate the models and methods with examples and case studies from a variety of fields, including signal processing, biomedicine, and finance. Data sets, R and MATLAB® code, and other material are available on the authors’ websites. Along with core models and methods, this text offers sophisticated tools for analyzing challenging time series problems. It also demonstrates the growth of time series analysis into new application areas. |
time series theory and methods free download: An Introduction to Statistical Learning Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Jonathan Taylor, 2023-06-30 An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users. |
time series theory and methods free download: Analysis of Financial Time Series Ruey S. Tsay, 2010-08-30 This book provides a broad, mature, and systematic introduction to current financial econometric models and their applications to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: Analysis and application of univariate financial time series The return series of multiple assets Bayesian inference in finance methods Key features of the new edition include additional coverage of modern day topics such as arbitrage, pair trading, realized volatility, and credit risk modeling; a smooth transition from S-Plus to R; and expanded empirical financial data sets. The overall objective of the book is to provide some knowledge of financial time series, introduce some statistical tools useful for analyzing these series and gain experience in financial applications of various econometric methods. |
time series theory and methods free download: Time Series Peter Diggle, 1990 Time-series analysis is one of several branches of statistics whose practical importance has increased with the availability of powerful computing tools. Methodology originally developed for specialized applications, for example in business forecasting or geophysical signal processing, is now widely available in general statistical packages. These computing developments have helped to bring the subject closer to the mainstream of applied statistics. This book is an introductory account of time-series analysis, written from the perspective of an applied statitician with a particular interest in biological applications. Throughout, analyses of data-sets drawn from the biological and medical sciences are integrated with the methodological development. The book is unique in its emphasis on biological and medical applications of time-series analysis. Nevertheless, its methodological content is more widely applicable. It should be useful to both students and practitioners of applied statistics whatever their field of application, and to biologists whose work involves the analysis of time-series data. Book jacket. |
time series theory and methods free download: Seasonal Adjustment Methods and Real Time Trend-Cycle Estimation Estela Bee Dagum, Silvia Bianconcini, 2016-06-20 This book explores widely used seasonal adjustment methods and recent developments in real time trend-cycle estimation. It discusses in detail the properties and limitations of X12ARIMA, TRAMO-SEATS and STAMP - the main seasonal adjustment methods used by statistical agencies. Several real-world cases illustrate each method and real data examples can be followed throughout the text. The trend-cycle estimation is presented using nonparametric techniques based on moving averages, linear filters and reproducing kernel Hilbert spaces, taking recent advances into account. The book provides a systematical treatment of results that to date have been scattered throughout the literature. Seasonal adjustment and real time trend-cycle prediction play an essential part at all levels of activity in modern economies. They are used by governments to counteract cyclical recessions, by central banks to control inflation, by decision makers for better modeling and planning and by hospitals, manufacturers, builders, transportation, and consumers in general to decide on appropriate action. This book appeals to practitioners in government institutions, finance and business, macroeconomists, and other professionals who use economic data as well as academic researchers in time series analysis, seasonal adjustment methods, filtering and signal extraction. It is also useful for graduate and final-year undergraduate courses in econometrics and time series with a good understanding of linear regression and matrix algebra, as well as ARIMA modelling. |
time series theory and methods free download: All of Statistics Larry Wasserman, 2004-09-17 This book is for people who want to learn probability and statistics quickly. It brings together many of the main ideas in modern statistics in one place. The book is suitable for students and researchers in statistics, computer science, data mining and machine learning. This book covers a much wider range of topics than a typical introductory text on mathematical statistics. It includes modern topics like nonparametric curve estimation, bootstrapping and classification, topics that are usually relegated to follow-up courses. The reader is assumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. The text can be used at the advanced undergraduate and graduate level. Larry Wasserman is Professor of Statistics at Carnegie Mellon University. He is also a member of the Center for Automated Learning and Discovery in the School of Computer Science. His research areas include nonparametric inference, asymptotic theory, causality, and applications to astrophysics, bioinformatics, and genetics. He is the 1999 winner of the Committee of Presidents of Statistical Societies Presidents' Award and the 2002 winner of the Centre de recherches mathematiques de Montreal–Statistical Society of Canada Prize in Statistics. He is Associate Editor of The Journal of the American Statistical Association and The Annals of Statistics. He is a fellow of the American Statistical Association and of the Institute of Mathematical Statistics. |
time series theory and methods free download: Multiple Time Series Edward James Hannan, 2009-09-25 The Wiley Series in Probability and Statistics is a collection of topics of current research interests in both pure and applied statistics and probability developments in the field and classical methods. This series provides essential and invaluable reading for all statisticians, whether in academia, industry, government, or research. |
time series theory and methods free download: Time Series Analysis James D. Hamilton, 2020-09-01 An authoritative, self-contained overview of time series analysis for students and researchers The past decade has brought dramatic changes in the way that researchers analyze economic and financial time series. This textbook synthesizes these advances and makes them accessible to first-year graduate students. James Hamilton provides comprehensive treatments of important innovations such as vector autoregressions, generalized method of moments, the economic and statistical consequences of unit roots, time-varying variances, and nonlinear time series models. In addition, he presents basic tools for analyzing dynamic systems—including linear representations, autocovariance generating functions, spectral analysis, and the Kalman filter—in a way that integrates economic theory with the practical difficulties of analyzing and interpreting real-world data. Time Series Analysis fills an important need for a textbook that integrates economic theory, econometrics, and new results. This invaluable book starts from first principles and should be readily accessible to any beginning graduate student, while it is also intended to serve as a reference book for researchers. |
time series theory and methods free download: An Introduction to State Space Time Series Analysis Jacques J.F. Commandeur, Siem Jan Koopman, 2007-07-19 This text provides an introduction to time series analysis using state space methodology to readers who are neither familiar with time series analysis, nor with state space methods. This is the first in a series of books designed to provide practitioners, researchers, and students with practical introductions to various topics in econometrics. |
time series theory and methods free download: Discrete Choice Methods with Simulation Kenneth Train, 2009-07-06 This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing. |
time series theory and methods free download: Bayesian Data Analysis, Third Edition Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin, 2013-11-01 Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page. |
Time.is - exact time, any time zone
2 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.
Time in United States now - Time.is
3 days ago · Exact time now, time zone, time difference, sunrise/sunset time and key facts for United States.
Time.is - 所有时区的精确时间
Time.is 以 58 种语言显示所有时区(涵盖超过 7,000,000 个地区)精确的官方原子钟时间。
Time.is - exact time, any time zone
5 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.
Time.is - Thời gian chính xác, bất kỳ múi giờ nào
Time.is hiển thị thời gian chính xác và chính thức của đồng hồ nguyên tử cho bất kì múi giờ nào (hơn 7 triệu vị trí) bằng 58 ngôn ngữ.
Time.is - Hora exacta, cualquier zona horaria
2 days ago · Time.is muestra la hora exacta de un reloj atómico oficial de cualquier zona horaria (más de 7 millones de lugares) en 58 idiomas.
เวลาใน ไทย ในขณะนี้ - Time.is
Time.is แสดงเวลาตามนาฬิกาจริงที่ถูกต้องอย่างละเอียดในโซนเวลาแต่ละโซน (กว่า 7 ล้านตำแหน่ง) ใน 58 ภาษา
Time in United Kingdom now
2 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.
Time in Visakhapatnam, Andhra Pradesh, India now
6 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.
Time in London, United Kingdom now
3 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.
Time.is - exact time, any time zone
2 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.
Time in United States now - Time.is
3 days ago · Exact time now, time zone, time difference, sunrise/sunset time and key facts for United States.
Time.is - 所有时区的精确时间
Time.is 以 58 种语言显示所有时区(涵盖超过 7,000,000 个地区)精确的官方原子钟时间。
Time.is - exact time, any time zone
5 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.
Time.is - Thời gian chính xác, bất kỳ múi giờ nào
Time.is hiển thị thời gian chính xác và chính thức của đồng hồ nguyên tử cho bất kì múi giờ nào (hơn 7 triệu vị trí) bằng 58 ngôn ngữ.
Time.is - Hora exacta, cualquier zona horaria
2 days ago · Time.is muestra la hora exacta de un reloj atómico oficial de cualquier zona horaria (más de 7 millones de lugares) en 58 idiomas.
เวลาใน ไทย ในขณะนี้ - Time.is
Time.is แสดงเวลาตามนาฬิกาจริงที่ถูกต้องอย่างละเอียดในโซนเวลาแต่ละโซน (กว่า 7 ล้านตำแหน่ง) ใน 58 ภาษา
Time in United Kingdom now
2 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.
Time in Visakhapatnam, Andhra Pradesh, India now
6 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.
Time in London, United Kingdom now
3 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.