Time Series Theory And Methods

Advertisement



  time series theory and methods: Time Series: Theory and Methods Peter J. Brockwell, Richard A. Davis, 2009-05-13 This edition contains a large number of additions and corrections scattered throughout the text, including the incorporation of a new chapter on state-space models. The companion diskette for the IBM PC has expanded into the software package ITSM: An Interactive Time Series Modelling Package for the PC, which includes a manual and can be ordered from Springer-Verlag. * We are indebted to many readers who have used the book and programs and made suggestions for improvements. Unfortunately there is not enough space to acknowledge all who have contributed in this way; however, special mention must be made of our prize-winning fault-finders, Sid Resnick and F. Pukelsheim. Special mention should also be made of Anthony Brockwell, whose advice and support on computing matters was invaluable in the preparation of the new diskettes. We have been fortunate to work on the new edition in the excellent environments provided by the University of Melbourne and Colorado State University. We thank Duane Boes particularly for his support and encouragement throughout, and the Australian Research Council and National Science Foundation for their support of research related to the new material. We are also indebted to Springer-Verlag for their constant support and assistance in preparing the second edition. Fort Collins, Colorado P. J. BROCKWELL November, 1990 R. A. DAVIS * /TSM: An Interactive Time Series Modelling Package for the PC by P. J. Brockwell and R. A. Davis. ISBN: 0-387-97482-2; 1991.
  time series theory and methods: Time Series: Theory and Methods Peter J. Brockwell, Richard A. Davis, 1991-02-22 Here is a systematic account of linear time series models and their application to the modeling and prediction of data collected sequentially in time. It details techniques for handling data and offers a thorough understanding of their mathematical basis.
  time series theory and methods: Nonlinear Time Series Randal Douc, Eric Moulines, David Stoffer, 2014-01-06 Designed for researchers and students, Nonlinear Times Series: Theory, Methods and Applications with R Examples familiarizes readers with the principles behind nonlinear time series models—without overwhelming them with difficult mathematical developments. By focusing on basic principles and theory, the authors give readers the background required to craft their own stochastic models, numerical methods, and software. They will also be able to assess the advantages and disadvantages of different approaches, and thus be able to choose the right methods for their purposes. The first part can be seen as a crash course on classical time series, with a special emphasis on linear state space models and detailed coverage of random coefficient autoregressions, both ARCH and GARCH models. The second part introduces Markov chains, discussing stability, the existence of a stationary distribution, ergodicity, limit theorems, and statistical inference. The book concludes with a self-contained account on nonlinear state space and sequential Monte Carlo methods. An elementary introduction to nonlinear state space modeling and sequential Monte Carlo, this section touches on current topics, from the theory of statistical inference to advanced computational methods. The book can be used as a support to an advanced course on these methods, or an introduction to this field before studying more specialized texts. Several chapters highlight recent developments such as explicit rate of convergence of Markov chains and sequential Monte Carlo techniques. And while the chapters are organized in a logical progression, the three parts can be studied independently. Statistics is not a spectator sport, so the book contains more than 200 exercises to challenge readers. These problems strengthen intellectual muscles strained by the introduction of new theory and go on to extend the theory in significant ways. The book helps readers hone their skills in nonlinear time series analysis and their applications.
  time series theory and methods: Forecasting: principles and practice Rob J Hyndman, George Athanasopoulos, 2018-05-08 Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
  time series theory and methods: State-Space Methods for Time Series Analysis Jose Casals, Alfredo Garcia-Hiernaux, Miguel Jerez, Sonia Sotoca, A. Alexandre Trindade, 2018-09-03 The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors’ E4 MATLAB® toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work.
  time series theory and methods: Introduction to Time Series and Forecasting Peter J. Brockwell, Richard A. Davis, 2013-03-14 Some of the key mathematical results are stated without proof in order to make the underlying theory acccessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introducitons are also given to cointegration and to non-linear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis.
  time series theory and methods: Analyzing Neural Time Series Data Mike X Cohen, 2014-01-17 A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings. This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists. Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button. The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches.
  time series theory and methods: Hydrologic Time Series Analysis Deepesh Machiwal, Madan Kumar Jha, 2012-03-05 There is a dearth of relevant books dealing with both theory and application of time series analysis techniques, particularly in the field of water resources engineering. Therefore, many hydrologists and hydrogeologists face difficulties in adopting time series analysis as one of the tools for their research. This book fills this gap by providing a proper blend of theoretical and practical aspects of time sereies analysis. It deals with a comprehensive overview of time series characteristics in hydrology/water resources engineering, various tools and techniques for analyzing time series data, theoretical details of 31 available statistical tests along with detailed procedures for applying them to real-world time series data, theory and methodology of stochastic modelling, and current status of time series analysis in hydrological sciences. In adition, it demonstrates the application of most time series tests through a case study as well as presents a comparative performance evaluation of various time series tests, together with four invited case studies from India and abroad. This book will not only serve as a textbook for the students and teachers in water resources engineering but will also serve as the most comprehensive reference to educate researchers/scientists about the theory and practice of time series analysis in hydrological sciences. This book will be very useful to the students, researchers, teachers and professionals involved in water resources, hydrology, ecology, climate change, earth science, and environmental studies.
  time series theory and methods: Time Series Analysis Univariate and Multivariate Methods William W. S. Wei, 2018-03-14 With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field.
  time series theory and methods: Time Series Analysis and Its Applications Robert H. Shumway, David S. Stoffer, 2013-03-14 The goals of this book are to develop an appreciation for the richness and versatility of modern time series analysis as a tool for analyzing data, and still maintain a commitment to theoretical integrity, as exemplified by the seminal works of Brillinger (1981) and Hannan (1970) and the texts by Brockwell and Davis (1991) and Fuller (1995). The advent of more powerful computing, es pecially in the last three years, has provided both real data and new software that can take one considerably beyond the fitting of·simple time domain mod els, such as have been elegantly described in the landmark work of Box and Jenkins (1970). The present book is designed to be useful as a text for courses in time series on several different levels and as a reference work for practition ers facing the analysis of time-correlated data in the physical, biological, and social sciences. We believe the book will be useful as a text at both the undergraduate and graduate levels. An undergraduate course can be accessible to students with a background in regression analysis and might include Sections 1. 1-1. 8, 2. 1-2. 9, and 3. 1-3. 8. Similar courses have been taught at the University of California (Berkeley and Davis) in the past using the earlier book on applied time series analysis by Shumway (1988). Such a course is taken by undergraduate students in mathematics, economics, and statistics and attracts graduate students from the agricultural, biological, and environmental sciences.
  time series theory and methods: The Analysis of Time Series: Theory and Practice Christopher Chatfield, 2013-12-01 Time-series analysis is an area of statistics which is of particular interest at the present time. Time series arise in many different areas, ranging from marketing to oceanography, and the analysis of such series raises many problems of both a theoretical and practical nature. I first became interested in the subject as a postgraduate student at Imperial College, when I attended a stimulating course of lectures on time-series given by Dr. (now Professor) G. M. Jenkins. The subject has fascinated me ever since. Several books have been written on theoretical aspects of time-series analysis. The aim of this book is to provide an introduction to the subject which bridges the gap between theory and practice. The book has also been written to make what is rather a difficult subject as understandable as possible. Enough theory is given to introduce the concepts of time-series analysis and to make the book mathematically interesting. In addition, practical problems are considered so as to help the reader tackle the analysis of real data. The book assumes a knowledge of basic probability theory and elementary statistical inference (see Appendix III). The book can be used as a text for an undergraduate or postgraduate course in time-series, or it can be used for self tuition by research workers. Throughout the book, references are usually given to recent readily accessible books and journals rather than to the original attributive references. Wold's (1965) bibliography contains many time series references published before 1959.
  time series theory and methods: Nonlinear Time Series Jianqing Fan, Qiwei Yao, 2008-09-11 This is the first book that integrates useful parametric and nonparametric techniques with time series modeling and prediction, the two important goals of time series analysis. Such a book will benefit researchers and practitioners in various fields such as econometricians, meteorologists, biologists, among others who wish to learn useful time series methods within a short period of time. The book also intends to serve as a reference or text book for graduate students in statistics and econometrics.
  time series theory and methods: Nonlinear Time Series Analysis Ruey S. Tsay, Rong Chen, 2018-09-14 A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.
  time series theory and methods: Mathematical Foundations of Time Series Analysis Jan Beran, 2018-03-23 This book provides a concise introduction to the mathematical foundations of time series analysis, with an emphasis on mathematical clarity. The text is reduced to the essential logical core, mostly using the symbolic language of mathematics, thus enabling readers to very quickly grasp the essential reasoning behind time series analysis. It appeals to anybody wanting to understand time series in a precise, mathematical manner. It is suitable for graduate courses in time series analysis but is equally useful as a reference work for students and researchers alike.
  time series theory and methods: Computational Intelligence in Time Series Forecasting Ajoy K. Palit, Dobrivoje Popovic, 2006-01-04 Foresight in an engineering enterprise can make the difference between success and failure, and can be vital to the effective control of industrial systems. Applying time series analysis in the on-line milieu of most industrial plants has been problematic owing to the time and computational effort required. The advent of soft computing tools offers a solution. The authors harness the power of intelligent technologies individually and in combination. Examples of the particular systems and processes susceptible to each technique are investigated, cultivating a comprehensive exposition of the improvements on offer in quality, model building and predictive control and the selection of appropriate tools from the plethora available. Application-oriented engineers in process control, manufacturing, production industry and research centres will find much to interest them in this book. It is suitable for industrial training purposes, as well as serving as valuable reference material for experimental researchers.
  time series theory and methods: Long-Memory Time Series Wilfredo Palma, 2007-04-27 A self-contained, contemporary treatment of the analysis of long-range dependent data Long-Memory Time Series: Theory and Methods provides an overview of the theory and methods developed to deal with long-range dependent data and describes the applications of these methodologies to real-life time series. Systematically organized, it begins with the foundational essentials, proceeds to the analysis of methodological aspects (Estimation Methods, Asymptotic Theory, Heteroskedastic Models, Transformations, Bayesian Methods, and Prediction), and then extends these techniques to more complex data structures. To facilitate understanding, the book: Assumes a basic knowledge of calculus and linear algebra and explains the more advanced statistical and mathematical concepts Features numerous examples that accelerate understanding and illustrate various consequences of the theoretical results Proves all theoretical results (theorems, lemmas, corollaries, etc.) or refers readers to resources with further demonstration Includes detailed analyses of computational aspects related to the implementation of the methodologies described, including algorithm efficiency, arithmetic complexity, CPU times, and more Includes proposed problems at the end of each chapter to help readers solidify their understanding and practice their skills A valuable real-world reference for researchers and practitioners in time series analysis, economerics, finance, and related fields, this book is also excellent for a beginning graduate-level course in long-memory processes or as a supplemental textbook for those studying advanced statistics, mathematics, economics, finance, engineering, or physics. A companion Web site is available for readers to access the S-Plus and R data sets used within the text.
  time series theory and methods: Time Series Raquel Prado, Mike West, 2010-05-21 Focusing on Bayesian approaches and computations using simulation-based methods for inference, Time Series: Modeling, Computation, and Inference integrates mainstream approaches for time series modeling with significant recent developments in methodology and applications of time series analysis. It encompasses a graduate-level account of Bayesian time series modeling and analysis, a broad range of references to state-of-the-art approaches to univariate and multivariate time series analysis, and emerging topics at research frontiers. The book presents overviews of several classes of models and related methodology for inference, statistical computation for model fitting and assessment, and forecasting. The authors also explore the connections between time- and frequency-domain approaches and develop various models and analyses using Bayesian tools, such as Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods. They illustrate the models and methods with examples and case studies from a variety of fields, including signal processing, biomedicine, and finance. Data sets, R and MATLAB® code, and other material are available on the authors’ websites. Along with core models and methods, this text offers sophisticated tools for analyzing challenging time series problems. It also demonstrates the growth of time series analysis into new application areas.
  time series theory and methods: Applied Economic Forecasting Using Time Series Methods Eric Ghysels, Massimiliano Marcellino, 2018 Economic forecasting is a key ingredient of decision making in the public and private sectors. This book provides the necessary tools to solve real-world forecasting problems using time-series methods. It targets undergraduate and graduate students as well as researchers in public and private institutions interested in applied economic forecasting.
  time series theory and methods: Climate Time Series Analysis Manfred Mudelsee, 2010-08-26 Climate is a paradigm of a complex system. Analysing climate data is an exciting challenge, which is increased by non-normal distributional shape, serial dependence, uneven spacing and timescale uncertainties. This book presents bootstrap resampling as a computing-intensive method able to meet the challenge. It shows the bootstrap to perform reliably in the most important statistical estimation techniques: regression, spectral analysis, extreme values and correlation. This book is written for climatologists and applied statisticians. It explains step by step the bootstrap algorithms (including novel adaptions) and methods for confidence interval construction. It tests the accuracy of the algorithms by means of Monte Carlo experiments. It analyses a large array of climate time series, giving a detailed account on the data and the associated climatological questions. This makes the book self-contained for graduate students and researchers.
  time series theory and methods: ITSM: An Interactive Time Series Modelling Package for the PC Peter J. Brockwell, Richard A. Davis, 2013-12-11 Designed for the analysis of linear time series and the practical modelling and prediction of data collected sequentially in time. It provides the reader with a practical understanding of the six programs contained in the ITSM software (PEST, SPEC, SMOOTH, TRANS, ARVEC, and ARAR). This IBM compatible software is included in the back of the book on two 5 1/4'' diskettes and on one 3 1/2 '' diskette. - Easy to use menu system - Accessible to those with little or no previous compu- tational experience - Valuable to students in statistics, mathematics, busi- ness, engineering, and the natural and social sciences. This package is intended as a supplement to the text by the same authors, Time Series: Theory and Methods. It can also be used in conjunction with most undergraduate and graduate texts on time series analysis.
  time series theory and methods: Time Series: Theory and Methods Peter J. Brockwell, Richard A. Davis, 1991 This paperback edition is a reprint of the 1991 edition. Time Series: Theory and Methods is a systematic account of linear time series models and their application to the modeling and prediction of data collected sequentially in time. The aim is to provide specific techniques for handling data and at the same time to provide a thorough understanding of the mathematical basis for the techniques. Both time and frequency domain methods are discussed, but the book is written in such a way that either approach could be emphasized. The book is intended to be a text for graduate students in statistics, mathematics, engineering, and the natural or social sciences. It contains substantial chapters on multivariate series and state-space models (including applications of the Kalman recursions to missing-value problems) and shorter accounts of special topics including long-range dependence, infinite variance processes, and nonlinear models. Most of the programs used in the book are available in the modeling package ITSM2000, the student version of which can be downloaded from http://www.stat.colostate.edu/~pjbrock/student06.
  time series theory and methods: The Analysis of Time Series Chris Chatfield, Haipeng Xing, 2019-04-25 This new edition of this classic title, now in its seventh edition, presents a balanced and comprehensive introduction to the theory, implementation, and practice of time series analysis. The book covers a wide range of topics, including ARIMA models, forecasting methods, spectral analysis, linear systems, state-space models, the Kalman filters, nonlinear models, volatility models, and multivariate models.
  time series theory and methods: Econometrics in Theory and Practice Panchanan Das, 2019-09-05 This book introduces econometric analysis of cross section, time series and panel data with the application of statistical software. It serves as a basic text for those who wish to learn and apply econometric analysis in empirical research. The level of presentation is as simple as possible to make it useful for undergraduates as well as graduate students. It contains several examples with real data and Stata programmes and interpretation of the results. While discussing the statistical tools needed to understand empirical economic research, the book attempts to provide a balance between theory and applied research. Various concepts and techniques of econometric analysis are supported by carefully developed examples with the use of statistical software package, Stata 15.1, and assumes that the reader is somewhat familiar with the Strata software. The topics covered in this book are divided into four parts. Part I discusses introductory econometric methods for data analysis that economists and other social scientists use to estimate the economic and social relationships, and to test hypotheses about them, using real-world data. There are five chapters in this part covering the data management issues, details of linear regression models, the related problems due to violation of the classical assumptions. Part II discusses some advanced topics used frequently in empirical research with cross section data. In its three chapters, this part includes some specific problems of regression analysis. Part III deals with time series econometric analysis. It covers intensively both the univariate and multivariate time series econometric models and their applications with software programming in six chapters. Part IV takes care of panel data analysis in four chapters. Different aspects of fixed effects and random effects are discussed here. Panel data analysis has been extended by taking dynamic panel data models which are most suitable for macroeconomic research. The book is invaluable for students and researchers of social sciences, business, management, operations research, engineering, and applied mathematics.
  time series theory and methods: Time Series Analysis Jonathan D. Cryer, Kung-Sik Chan, 2008-04-04 This book has been developed for a one-semester course usually attended by students in statistics, economics, business, engineering, and quantitative social sciences. A unique feature of this edition is its integration with the R computing environment. Basic applied statistics is assumed through multiple regression. Calculus is assumed only to the extent of minimizing sums of squares but a calculus-based introduction to statistics is necessary for a thorough understanding of some of the theory. Actual time series data drawn from various disciplines are used throughout the book to illustrate the methodology.
  time series theory and methods: Heavy-Tailed Time Series Rafal Kulik, Philippe Soulier, 2020-07-01 This book aims to present a comprehensive, self-contained, and concise overview of extreme value theory for time series, incorporating the latest research trends alongside classical methodology. Appropriate for graduate coursework or professional reference, the book requires a background in extreme value theory for i.i.d. data and basics of time series. Following a brief review of foundational concepts, it progresses linearly through topics in limit theorems and time series models while including historical insights at each chapter’s conclusion. Additionally, the book incorporates complete proofs and exercises with solutions as well as substantive reference lists and appendices, featuring a novel commentary on the theory of vague convergence.
  time series theory and methods: Analysis of Financial Time Series Ruey S. Tsay, 2010-08-30 This book provides a broad, mature, and systematic introduction to current financial econometric models and their applications to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: Analysis and application of univariate financial time series The return series of multiple assets Bayesian inference in finance methods Key features of the new edition include additional coverage of modern day topics such as arbitrage, pair trading, realized volatility, and credit risk modeling; a smooth transition from S-Plus to R; and expanded empirical financial data sets. The overall objective of the book is to provide some knowledge of financial time series, introduce some statistical tools useful for analyzing these series and gain experience in financial applications of various econometric methods.
  time series theory and methods: Time Series Analysis James D. Hamilton, 2020-09-01 An authoritative, self-contained overview of time series analysis for students and researchers The past decade has brought dramatic changes in the way that researchers analyze economic and financial time series. This textbook synthesizes these advances and makes them accessible to first-year graduate students. James Hamilton provides comprehensive treatments of important innovations such as vector autoregressions, generalized method of moments, the economic and statistical consequences of unit roots, time-varying variances, and nonlinear time series models. In addition, he presents basic tools for analyzing dynamic systems—including linear representations, autocovariance generating functions, spectral analysis, and the Kalman filter—in a way that integrates economic theory with the practical difficulties of analyzing and interpreting real-world data. Time Series Analysis fills an important need for a textbook that integrates economic theory, econometrics, and new results. This invaluable book starts from first principles and should be readily accessible to any beginning graduate student, while it is also intended to serve as a reference book for researchers.
  time series theory and methods: Robust Statistics Ricardo A. Maronna, R. Douglas Martin, Victor J. Yohai, Matías Salibián-Barrera, 2019-01-04 A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.
  time series theory and methods: Singular Spectrum Analysis for Time Series Nina Golyandina, Anatoly Zhigljavsky, 2013-01-19 Singular spectrum analysis (SSA) is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA seeks to decompose the original series into a sum of a small number of interpretable components such as trend, oscillatory components and noise. It is based on the singular value decomposition of a specific matrix constructed upon the time series. Neither a parametric model nor stationarity are assumed for the time series. This makes SSA a model-free method and hence enables SSA to have a very wide range of applicability. The present book is devoted to the methodology of SSA and shows how to use SSA both safely and with maximum effect. Potential readers of the book include: professional statisticians and econometricians, specialists in any discipline in which problems of time series analysis and forecasting occur, specialists in signal processing and those needed to extract signals from noisy data, and students taking courses on applied time series analysis.
  time series theory and methods: Regression Models for Time Series Analysis Benjamin Kedem, Konstantinos Fokianos, 2002-08-19 A thorough review of the most current regression methods in time series analysis Regression methods have been an integral part of time series analysis for over a century. Recently, new developments have made major strides in such areas as non-continuous data where a linear model is not appropriate. This book introduces the reader to newer developments and more diverse regression models and methods for time series analysis. Accessible to anyone who is familiar with the basic modern concepts of statistical inference, Regression Models for Time Series Analysis provides a much-needed examination of recent statistical developments. Primary among them is the important class of models known as generalized linear models (GLM) which provides, under some conditions, a unified regression theory suitable for continuous, categorical, and count data. The authors extend GLM methodology systematically to time series where the primary and covariate data are both random and stochastically dependent. They introduce readers to various regression models developed during the last thirty years or so and summarize classical and more recent results concerning state space models. To conclude, they present a Bayesian approach to prediction and interpolation in spatial data adapted to time series that may be short and/or observed irregularly. Real data applications and further results are presented throughout by means of chapter problems and complements. Notably, the book covers: * Important recent developments in Kalman filtering, dynamic GLMs, and state-space modeling * Associated computational issues such as Markov chain, Monte Carlo, and the EM-algorithm * Prediction and interpolation * Stationary processes
  time series theory and methods: Multidimensional Stationary Time Series Marianna Bolla, Tamás Szabados, 2021-04-29 This book gives a brief survey of the theory of multidimensional (multivariate), weakly stationary time series, with emphasis on dimension reduction and prediction. Understanding the covered material requires a certain mathematical maturity, a degree of knowledge in probability theory, linear algebra, and also in real, complex and functional analysis. For this, the cited literature and the Appendix contain all necessary material. The main tools of the book include harmonic analysis, some abstract algebra, and state space methods: linear time-invariant filters, factorization of rational spectral densities, and methods that reduce the rank of the spectral density matrix. Serves to find analogies between classical results (Cramer, Wold, Kolmogorov, Wiener, Kálmán, Rozanov) and up-to-date methods for dimension reduction in multidimensional time series Provides a unified treatment for time and frequency domain inferences by using machinery of complex and harmonic analysis, spectral and Smith--McMillan decompositions. Establishes analogies between the time and frequency domain notions and calculations Discusses the Wold's decomposition and the Kolmogorov's classification together, by distinguishing between different types of singularities. Understanding the remote past helps us to characterize the ideal situation where there is a regular part at present. Examples and constructions are also given Establishes a common outline structure for the state space models, prediction, and innovation algorithms with unified notions and principles, which is applicable to real-life high frequency time series It is an ideal companion for graduate students studying the theory of multivariate time series and researchers working in this field.
  time series theory and methods: Handbook of Discrete-Valued Time Series Richard A. Davis, Scott H. Holan, Robert Lund, Nalini Ravishanker, 2016-01-06 Model a Wide Range of Count Time Series Handbook of Discrete-Valued Time Series presents state-of-the-art methods for modeling time series of counts and incorporates frequentist and Bayesian approaches for discrete-valued spatio-temporal data and multivariate data. While the book focuses on time series of counts, some of the techniques discussed ca
  time series theory and methods: Time Series Analysis Wilfredo Palma, 2016-04-28 A modern and accessible guide to the analysis of introductory time series data Featuring an organized and self-contained guide, Time Series Analysis provides a broad introduction to the most fundamental methodologies and techniques of time series analysis. The book focuses on the treatment of univariate time series by illustrating a number of well-known models such as ARMA and ARIMA. Providing contemporary coverage, the book features several useful and newlydeveloped techniques such as weak and strong dependence, Bayesian methods, non-Gaussian data, local stationarity, missing values and outliers, and threshold models. Time Series Analysis includes practical applications of time series methods throughout, as well as: Real-world examples and exercise sets that allow readers to practice the presented methods and techniques Numerous detailed analyses of computational aspects related to the implementation of methodologies including algorithm efficiency, arithmetic complexity, and process time End-of-chapter proposed problems and bibliographical notes to deepen readers’ knowledge of the presented material Appendices that contain details on fundamental concepts and select solutions of the problems implemented throughout A companion website with additional data fi les and computer codes Time Series Analysis is an excellent textbook for undergraduate and beginning graduate-level courses in time series as well as a supplement for students in advanced statistics, mathematics, economics, finance, engineering, and physics. The book is also a useful reference for researchers and practitioners in time series analysis, econometrics, and finance. Wilfredo Palma, PhD, is Professor of Statistics in the Department of Statistics at Pontificia Universidad Católica de Chile. He has published several refereed articles and has received over a dozen academic honors and awards. His research interests include time series analysis, prediction theory, state space systems, linear models, and econometrics. He is the author of Long-Memory Time Series: Theory and Methods, also published by Wiley.
  time series theory and methods: Smoothness Priors Analysis of Time Series Genshiro Kitagawa, Will Gersch, 1996-08-01
  time series theory and methods: Applied Time Series Analysis Terence C. Mills, 2019-01-24 Written for those who need an introduction, Applied Time Series Analysis reviews applications of the popular econometric analysis technique across disciplines. Carefully balancing accessibility with rigor, it spans economics, finance, economic history, climatology, meteorology, and public health. Terence Mills provides a practical, step-by-step approach that emphasizes core theories and results without becoming bogged down by excessive technical details. Including univariate and multivariate techniques, Applied Time Series Analysis provides data sets and program files that support a broad range of multidisciplinary applications, distinguishing this book from others.
  time series theory and methods: The Oxford Handbook of Quantitative Methods, Vol. 2: Statistical Analysis Todd D. Little, 2013-02-01 Research today demands the application of sophisticated and powerful research tools. Fulfilling this need, The Oxford Handbook of Quantitative Methods is the complete tool box to deliver the most valid and generalizable answers to todays complex research questions. It is a one-stop source for learning and reviewing current best-practices in quantitative methods as practiced in the social, behavioral, and educational sciences. Comprising two volumes, this handbook covers a wealth of topics related to quantitative research methods. It begins with essential philosophical and ethical issues related to science and quantitative research. It then addresses core measurement topics before delving into the design of studies. Principal issues related to modern estimation and mathematical modeling are also detailed. Topics in the handbook then segway into the realm of statistical inference and modeling with chapters dedicated to classical approaches as well as modern latent variable approaches. Numerous chapters associated with longitudinal data and more specialized techniques round out this broad selection of topics. Comprehensive, authoritative, and user-friendly, this two-volume set will be an indispensable resource for serious researchers across the social, behavioral, and educational sciences.
  time series theory and methods: Time Series Analysis and Inverse Theory for Geophysicists David Gubbins, 2004-03-18 This unique textbook provides the foundation for understanding and applying techniques commonly used in geophysics to process and interpret modern digital data. The geophysicist's toolkit contains a range of techniques which may be divided into two main groups: processing, which concerns time series analysis and is used to separate the signal of interest from background noise; and inversion, which involves generating some map or physical model from the data. These two groups of techniques are normally taught separately, but are here presented together as parts I and II of the book. Part III describes some real applications and includes case studies in seismology, geomagnetism, and gravity. This textbook gives students and practitioners the theoretical background and practical experience, through case studies, computer examples and exercises, to understand and apply new processing methods to modern geophysical datasets. Solutions to the exercises are available on a website at http://publishing.cambridge.org/resources/0521819652
  time series theory and methods: Applied Nonlinear Time Series Analysis Michael Small, 2005 A collection of photographs focusing on the fading traditions, heritage and culture in County Cork Ireland.
  time series theory and methods: Stochastic Models for Time Series Paul Doukhan, 2018-05-25 This book presents essential tools for modelling non-linear time series. The first part of the book describes the main standard tools of probability and statistics that directly apply to the time series context to obtain a wide range of modelling possibilities. Functional estimation and bootstrap are discussed, and stationarity is reviewed. The second part describes a number of tools from Gaussian chaos and proposes a tour of linear time series models. It goes on to address nonlinearity from polynomial or chaotic models for which explicit expansions are available, then turns to Markov and non-Markov linear models and discusses Bernoulli shifts time series models. Finally, the volume focuses on the limit theory, starting with the ergodic theorem, which is seen as the first step for statistics of time series. It defines the distributional range to obtain generic tools for limit theory under long or short-range dependences (LRD/SRD) and explains examples of LRD behaviours. More general techniques (central limit theorems) are described under SRD; mixing and weak dependence are also reviewed. In closing, it describes moment techniques together with their relations to cumulant sums as well as an application to kernel type estimation.The appendix reviews basic probability theory facts and discusses useful laws stemming from the Gaussian laws as well as the basic principles of probability, and is completed by R-scripts used for the figures. Richly illustrated with examples and simulations, the book is recommended for advanced master courses for mathematicians just entering the field of time series, and statisticians who want more mathematical insights into the background of non-linear time series.
  time series theory and methods: Introduction to Time Series Analysis and Forecasting Douglas C. Montgomery, Cheryl L. Jennings, Murat Kulahci, 2015-04-21 Praise for the First Edition ...[t]he book is great for readers who need to apply the methods and models presented but have little background in mathematics and statistics. -MAA Reviews Thoroughly updated throughout, Introduction to Time Series Analysis and Forecasting, Second Edition presents the underlying theories of time series analysis that are needed to analyze time-oriented data and construct real-world short- to medium-term statistical forecasts. Authored by highly-experienced academics and professionals in engineering statistics, the Second Edition features discussions on both popular and modern time series methodologies as well as an introduction to Bayesian methods in forecasting. Introduction to Time Series Analysis and Forecasting, Second Edition also includes: Over 300 exercises from diverse disciplines including health care, environmental studies, engineering, and finance More than 50 programming algorithms using JMP®, SAS®, and R that illustrate the theory and practicality of forecasting techniques in the context of time-oriented data New material on frequency domain and spatial temporal data analysis Expanded coverage of the variogram and spectrum with applications as well as transfer and intervention model functions A supplementary website featuring PowerPoint® slides, data sets, and select solutions to the problems Introduction to Time Series Analysis and Forecasting, Second Edition is an ideal textbook upper-undergraduate and graduate-levels courses in forecasting and time series. The book is also an excellent reference for practitioners and researchers who need to model and analyze time series data to generate forecasts.
Time.is - exact time, any time zone
2 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.

Time in United States now - Time.is
3 days ago · Exact time now, time zone, time difference, sunrise/sunset time and key facts for United States.

Time.is - 所有时区的精确时间
Time.is 以 58 种语言显示所有时区(涵盖超过 7,000,000 个地区)精确的官方原子钟时间。

Time.is - exact time, any time zone
5 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.

Time.is - Thời gian chính xác, bất kỳ múi giờ nào
Time.is hiển thị thời gian chính xác và chính thức của đồng hồ nguyên tử cho bất kì múi giờ nào (hơn 7 triệu vị trí) bằng 58 ngôn ngữ.

Time.is - Hora exacta, cualquier zona horaria
2 days ago · Time.is muestra la hora exacta de un reloj atómico oficial de cualquier zona horaria (más de 7 millones de lugares) en 58 idiomas.

เวลาใน ไทย ในขณะนี้ - Time.is
Time.is แสดงเวลาตามนาฬิกาจริงที่ถูกต้องอย่างละเอียดในโซนเวลาแต่ละโซน (กว่า 7 ล้านตำแหน่ง) ใน 58 ภาษา

Time in United Kingdom now
2 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.

Time in Visakhapatnam, Andhra Pradesh, India now
6 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.

Time in London, United Kingdom now
3 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.

Time.is - exact time, any time zone
2 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.

Time in United States now - Time.is
3 days ago · Exact time now, time zone, time difference, sunrise/sunset time and key facts for United States.

Time.is - 所有时区的精确时间
Time.is 以 58 种语言显示所有时区(涵盖超过 7,000,000 个地区)精确的官方原子钟时间。

Time.is - exact time, any time zone
5 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.

Time.is - Thời gian chính xác, bất kỳ múi giờ nào
Time.is hiển thị thời gian chính xác và chính thức của đồng hồ nguyên tử cho bất kì múi giờ nào (hơn 7 triệu vị trí) bằng 58 ngôn ngữ.

Time.is - Hora exacta, cualquier zona horaria
2 days ago · Time.is muestra la hora exacta de un reloj atómico oficial de cualquier zona horaria (más de 7 millones de lugares) en 58 idiomas.

เวลาใน ไทย ในขณะนี้ - Time.is
Time.is แสดงเวลาตามนาฬิกาจริงที่ถูกต้องอย่างละเอียดในโซนเวลาแต่ละโซน (กว่า 7 ล้านตำแหน่ง) ใน 58 ภาษา

Time in United Kingdom now
2 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.

Time in Visakhapatnam, Andhra Pradesh, India now
6 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.

Time in London, United Kingdom now
3 days ago · Time.is displays exact, official atomic clock time for any time zone (more than 7 million locations) in 58 languages.