Advertisement
tensor calculus problems and solutions: Tensor Calculus for Physics Dwight E. Neuenschwander, 2015 It is an ideal companion for courses such as mathematical methods of physics, classical mechanics, electricity and magnetism, and relativity.--Gary White, editor of The Physics Teacher American Journal of Physics |
tensor calculus problems and solutions: Introduction to Tensor Analysis and the Calculus of Moving Surfaces Pavel Grinfeld, 2013-09-24 This textbook is distinguished from other texts on the subject by the depth of the presentation and the discussion of the calculus of moving surfaces, which is an extension of tensor calculus to deforming manifolds. Designed for advanced undergraduate and graduate students, this text invites its audience to take a fresh look at previously learned material through the prism of tensor calculus. Once the framework is mastered, the student is introduced to new material which includes differential geometry on manifolds, shape optimization, boundary perturbation and dynamic fluid film equations. The language of tensors, originally championed by Einstein, is as fundamental as the languages of calculus and linear algebra and is one that every technical scientist ought to speak. The tensor technique, invented at the turn of the 20th century, is now considered classical. Yet, as the author shows, it remains remarkably vital and relevant. The author’s skilled lecturing capabilities are evident by the inclusion of insightful examples and a plethora of exercises. A great deal of material is devoted to the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation and the discussion of the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chapter 6 – when the reader is ready for it. While this text maintains a consistent level of rigor, it takes great care to avoid formalizing the subject. The last part of the textbook is devoted to the Calculus of Moving Surfaces. It is the first textbook exposition of this important technique and is one of the gems of this text. A number of exciting applications of the calculus are presented including shape optimization, boundary perturbation of boundary value problems and dynamic fluid film equations developed by the author in recent years. Furthermore, the moving surfaces framework is used to offer new derivations of classical results such as the geodesic equation and the celebrated Gauss-Bonnet theorem. |
tensor calculus problems and solutions: Tensor Calculus for Engineers and Physicists Emil de Souza Sánchez Filho, 2016-05-30 This textbook provides a rigorous approach to tensor manifolds in several aspects relevant for Engineers and Physicists working in industry or academia. With a thorough, comprehensive, and unified presentation, this book offers insights into several topics of tensor analysis, which covers all aspects of n-dimensional spaces. The main purpose of this book is to give a self-contained yet simple, correct and comprehensive mathematical explanation of tensor calculus for undergraduate and graduate students and for professionals. In addition to many worked problems, this book features a selection of examples, solved step by step. Although no emphasis is placed on special and particular problems of Engineering or Physics, the text covers the fundamentals of these fields of science. The book makes a brief introduction into the basic concept of the tensorial formalism so as to allow the reader to make a quick and easy review of the essential topics that enable having the grounds for the subsequent themes, without needing to resort to other bibliographical sources on tensors. Chapter 1 deals with Fundamental Concepts about tensors and chapter 2 is devoted to the study of covariant, absolute and contravariant derivatives. The chapters 3 and 4 are dedicated to the Integral Theorems and Differential Operators, respectively. Chapter 5 deals with Riemann Spaces, and finally the chapter 6 presents a concise study of the Parallelism of Vectors. It also shows how to solve various problems of several particular manifolds. |
tensor calculus problems and solutions: Tensor Calculus With Applications Vladislav V Goldberg, Maks A Akivis, 2003-09-29 This textbook presents the foundations of tensor calculus and the elements of tensor analysis. In addition, the authors consider numerous applications of tensors to geometry, mechanics and physics.While developing tensor calculus, the authors emphasize its relationship with linear algebra. Necessary notions and theorems of linear algebra are introduced and proved in connection with the construction of the apparatus of tensor calculus; prior knowledge is not assumed. For simplicity and to enable the reader to visualize concepts more clearly, all exposition is conducted in three-dimensional space. The principal feature of the book is that the authors use mainly orthogonal tensors, since such tensors are important in applications to physics and engineering.With regard to applications, the authors construct the general theory of second-degree surfaces, study the inertia tensor as well as the stress and strain tensors, and consider some problems of crystallophysics. The last chapter introduces the elements of tensor analysis.All notions introduced in the book, and also the obtained results, are illustrated with numerous examples discussed in the text. Each section of the book presents problems (a total over 300 problems are given). Examples and problems are intended to illustrate, reinforce and deepen the presented material. There are answers to most of the problems, as well as hints and solutions to selected problems at the end of the book. |
tensor calculus problems and solutions: Tensor Analysis on Manifolds Richard L. Bishop, Samuel I. Goldberg, 2012-04-26 DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div |
tensor calculus problems and solutions: A Student's Guide to Vectors and Tensors Daniel A. Fleisch, 2011-09-22 Vectors and tensors are among the most powerful problem-solving tools available, with applications ranging from mechanics and electromagnetics to general relativity. Understanding the nature and application of vectors and tensors is critically important to students of physics and engineering. Adopting the same approach used in his highly popular A Student's Guide to Maxwell's Equations, Fleisch explains vectors and tensors in plain language. Written for undergraduate and beginning graduate students, the book provides a thorough grounding in vectors and vector calculus before transitioning through contra and covariant components to tensors and their applications. Matrices and their algebra are reviewed on the book's supporting website, which also features interactive solutions to every problem in the text where students can work through a series of hints or choose to see the entire solution at once. Audio podcasts give students the opportunity to hear important concepts in the book explained by the author. |
tensor calculus problems and solutions: A Brief on Tensor Analysis James G. Simmonds, 2012-10-31 There are three changes in the second edition. First, with the help of readers and colleagues-thanks to all-I have corrected typographical errors and made minor changes in substance and style. Second, I have added a fewmore Exercises,especially at the end ofChapter4.Third, I have appended a section on Differential Geometry, the essential mathematical tool in the study of two-dimensional structural shells and four-dimensional general relativity. JAMES G. SIMMONDS vii Preface to the First Edition When I was an undergraduate, working as a co-op student at North Ameri can Aviation, I tried to learn something about tensors. In the Aeronautical Engineering Department at MIT, I had just finished an introductory course in classical mechanics that so impressed me that to this day I cannot watch a plane in flight-especially in a turn-without imaging it bristling with vec tors. Near the end of the course the professor showed that, if an airplane is treated as a rigid body, there arises a mysterious collection of rather simple looking integrals called the components of the moment of inertia tensor. |
tensor calculus problems and solutions: Tensor Spaces and Numerical Tensor Calculus Wolfgang Hackbusch, 2019-12-16 Special numerical techniques are already needed to deal with n × n matrices for large n. Tensor data are of size n × n ×...× n=nd, where nd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. This monograph describes the methods by which tensors can be practically treated and shows how numerical operations can be performed. Applications include problems from quantum chemistry, approximation of multivariate functions, solution of partial differential equations, for example with stochastic coefficients, and more. In addition to containing corrections of the unavoidable misprints, this revised second edition includes new parts ranging from single additional statements to new subchapters. The book is mainly addressed to numerical mathematicians and researchers working with high-dimensional data. It also touches problems related to Geometric Algebra. |
tensor calculus problems and solutions: Tensor Algebra and Tensor Analysis for Engineers Mikhail Itskov, 2007-05-04 There is a large gap between engineering courses in tensor algebra on one hand, and the treatment of linear transformations within classical linear algebra on the other. This book addresses primarily engineering students with some initial knowledge of matrix algebra. Thereby, mathematical formalism is applied as far as it is absolutely necessary. Numerous exercises provided in the book are accompanied by solutions enabling autonomous study. The last chapters deal with modern developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics and might therefore be of high interest for PhD-students and scientists working in this area. |
tensor calculus problems and solutions: Manifolds, Tensors and Forms Paul Renteln, 2014 Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences. |
tensor calculus problems and solutions: Textbook of Tensor Calculus and Differential Geometry Prasun Kumar Nayak, 2012 |
tensor calculus problems and solutions: Advanced Calculus Lynn H. Loomis, Shlomo Sternberg, 2014 An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades. This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis. The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives. In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds. |
tensor calculus problems and solutions: Vector and Tensor Analysis with Applications A. I. Borisenko, I. E. Tarapov, 2012-08-28 Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition. |
tensor calculus problems and solutions: A First Course in General Relativity Bernard Schutz, 2009-05-14 Second edition of a widely-used textbook providing the first step into general relativity for undergraduate students with minimal mathematical background. |
tensor calculus problems and solutions: Problems And Solutions In Introductory And Advanced Matrix Calculus (Second Edition) Yorick Hardy, Willi-hans Steeb, 2016-07-14 This book provides an extensive collection of problems with detailed solutions in introductory and advanced matrix calculus. Supplementary problems in each chapter will challenge and excite the reader, ideal for both graduate and undergraduate mathematics and theoretical physics students. The coverage includes systems of linear equations, linear differential equations, integration and matrices, Kronecker product and vec-operation as well as functions of matrices. Furthermore, specialized topics such as spectral theorem, nonnormal matrices and mutually unbiased bases are included. Many of the problems are related to applications for group theory, Lie algebra theory, wavelets, graph theory and matrix-valued differential forms, benefitting physics and engineering students and researchers alike. It also branches out to problems with tensors and the hyperdeterminant. Computer algebra programs in Maxima and SymbolicC++ have also been provided. |
tensor calculus problems and solutions: A First Course in Calculus Serge Lang, 2012-09-17 The purpose of a first course in calculus is to teach the student the basic notions of derivative and integral, and the basic techniques and applica tions which accompany them. The very talented students, with an ob vious aptitude for mathematics, will rapidly require a course in functions of one real variable, more or less as it is understood by professional is not primarily addressed to them (although mathematicians. This book I hope they will be able to acquire from it a good introduction at an early age). I have not written this course in the style I would use for an advanced monograph, on sophisticated topics. One writes an advanced monograph for oneself, because one wants to give permanent form to one's vision of some beautiful part of mathematics, not otherwise ac cessible, somewhat in the manner of a composer setting down his sym phony in musical notation. This book is written for the students to give them an immediate, and pleasant, access to the subject. I hope that I have struck a proper com promise, between dwelling too much on special details and not giving enough technical exercises, necessary to acquire the desired familiarity with the subject. In any case, certain routine habits of sophisticated mathematicians are unsuitable for a first course. Rigor. This does not mean that so-called rigor has to be abandoned. |
tensor calculus problems and solutions: Tensor Calculus Made Simple Taha Sochi, 2016-12-09 This book is about tensor analysis. It consists of 169 pages. The language and method used in presenting the ideas and techniques of tensors make it very suitable as a textbook or as a reference for an introductory course on tensor algebra and calculus or as a guide for self-studying and learning. |
tensor calculus problems and solutions: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site. |
tensor calculus problems and solutions: The Einstein Theory of Relativity Lillian R. Lieber, 2015-08-08 This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant. |
tensor calculus problems and solutions: Mathematical Techniques for Engineers and Scientists Larry C. Andrews, Ronald L. Phillips, 2003 This self-study text for practicing engineers and scientists explains the mathematical tools that are required for advanced technological applications, but are often not covered in undergraduate school. The authors (University of Central Florida) describe special functions, matrix methods, vector operations, the transformation laws of tensors, the analytic functions of a complex variable, integral transforms, partial differential equations, probability theory, and random processes. The book could also serve as a supplemental graduate text.--Memento. |
tensor calculus problems and solutions: Fluid Mechanics Joseph H. Spurk, Nuri Aksel, 2019-12-02 This successful textbook emphasizes the unified nature of all the disciplines of Fluid Mechanics as they emerge from the general principles of continuum mechanics. The different branches of Fluid Mechanics, always originating from simplifying assumptions, are developed according to the basic rule: from the general to the specific. The first part of the book contains a concise but readable introduction into kinematics and the formulation of the laws of mechanics and thermodynamics. The second part consists of the methodical application of these principles to technology. In addition, sections about thin-film flow and flow through porous media are included. |
tensor calculus problems and solutions: Calculus Howard Anton, Irl C. Bivens, Stephen Davis, 2021-12-03 In Calculus: Multivariable, 12th Edition, an expert team of mathematicians delivers a rigorous and intuitive exploration of calculus, introducing concepts like derivatives and integrals of multivariable functions. Using the Rule of Four, the authors present mathematical concepts from verbal, algebraic, visual, and numerical points of view. The book includes numerous exercises, applications, and examples that help readers learn and retain the concepts discussed within. |
tensor calculus problems and solutions: Vector and Tensor Analysis George E. Hay, 1953-01-01 Remarkably comprehensive, concise and clear. — Industrial Laboratories Considered as a condensed text in the classical manner, the book can well be recommended. — Nature Here is a clear introduction to classic vector and tensor analysis for students of engineering and mathematical physics. Chapters range from elementary operations and applications of geometry, to application of vectors to mechanics, partial differentiation, integration, and tensor analysis. More than 200 problems are included throughout the book. |
tensor calculus problems and solutions: Tensor Categories Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, Victor Ostrik, 2016-08-05 Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter. |
tensor calculus problems and solutions: A Primer in Tensor Analysis and Relativity Ilya L. Shapiro, 2019-08-30 This undergraduate textbook provides a simple, concise introduction to tensor algebra and analysis, as well as special and general relativity. With a plethora of examples, explanations, and exercises, it forms a well-rounded didactic text that will be useful for any related course. The book is divided into three main parts, all based on lecture notes that have been refined for classroom teaching over the past two decades. Part I provides students with a comprehensive overview of tensors. Part II links the very introductory first part and the relatively advanced third part, demonstrating the important intermediate-level applications of tensor analysis. Part III contains an extended discussion of general relativity, and includes material useful for students interested primarily in quantum field theory and quantum gravity. Tailored to the undergraduate, this textbook offers explanations of technical material not easily found or detailed elsewhere, including an understandable description of Riemann normal coordinates and conformal transformations. Future theoretical and experimental physicists, as well as mathematicians, will thus find it a wonderful first read on the subject. |
tensor calculus problems and solutions: Tensor Calculus with Applications Maks A?zikovich Akivis, Vladislav V. Goldberg, 2003 This textbook presents the foundations of tensor calculus and the elements of tensor analysis, in addition to considering numerous applications of tensors to geometry, mechanics and physics. While developing tensor calculus, the authors emphasize its relationship with linear algebra. Necessary notions and theorems of linear algebra are introduced and proved in connection with the construction of the apparatus of tensor calculus; prior knowledge is not assumed. For simplicity and to enable the reader to visualize concepts more clearly, all exposition is conducted in three-dimensional space. The principal feature of the book is that the authors use mainly orthogonal tensors, since such tensors are important in applications to physics and engineering. All notions introduced in the book, and also the obtained results, are illustrated with numerous examples discussed in the text. Each section of the book presents problems (a total over 300 problems are given). Examples and problems are intended to illustrate, reinforce textbook presents the foundations of tensor calculus and the elements of tensor analysis, in addition to considering numerous applications of tensors to geometry, mechanics and physics. While developing tensor calculus, the authors emphasize its relationship with linear algebra. Necessary notions and theorems of linear algebra are introduced and proved in connection with the construction of the apparatus of tensor calculus; prior knowledge is not assumed. For simplicity and to enable the reader to visualize concepts more clearly, all exposition is conducted in three-dimensional space. The principal feature of the book is that the authors use mainly orthogonal tensors, sincesuch tensors are important in applications to physics and engineering. All notions introduced in the book, and also the obtained results, are illustrated with numerous examples discussed in the text. Each section of the book p |
tensor calculus problems and solutions: Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers Hung Nguyen-Schäfer, Jan-Philip Schmidt, 2016-08-16 This book presents tensors and differential geometry in a comprehensive and approachable manner, providing a bridge from the place where physics and engineering mathematics end, and the place where tensor analysis begins. Among the topics examined are tensor analysis, elementary differential geometry of moving surfaces, and k-differential forms. The book includes numerous examples with solutions and concrete calculations, which guide readers through these complex topics step by step. Mindful of the practical needs of engineers and physicists, book favors simplicity over a more rigorous, formal approach. The book shows readers how to work with tensors and differential geometry and how to apply them to modeling the physical and engineering world. The authors provide chapter-length treatment of topics at the intersection of advanced mathematics, and physics and engineering: • General Basis and Bra-Ket Notation • Tensor Analysis • Elementary Differential Geometry • Differential Forms • Applications of Tensors and Differential Geometry • Tensors and Bra-Ket Notation in Quantum Mechanics The text reviews methods and applications in computational fluid dynamics; continuum mechanics; electrodynamics in special relativity; cosmology in the Minkowski four-dimensional space time; and relativistic and non-relativistic quantum mechanics. Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers benefits research scientists and practicing engineers in a variety of fields, who use tensor analysis and differential geometry in the context of applied physics, and electrical and mechanical engineering. It will also interest graduate students in applied physics and engineering. |
tensor calculus problems and solutions: Vector and Tensor Analysis Eutiquio C. Young, 2017-12-19 Revised and updated throughout, this book presents the fundamental concepts of vector and tensor analysis with their corresponding physical and geometric applications - emphasizing the development of computational skills and basic procedures, and exploring highly complex and technical topics in simplified settings.;This text: incorporates transformation of rectangular cartesian coordinate systems and the invariance of the gradient, divergence and the curl into the discussion of tensors; combines the test for independence of path and the path independence sections; offers new examples and figures that demonstrate computational methods, as well as carify concepts; introduces subtitles in each section to highlight the appearance of new topics; provides definitions and theorems in boldface type for easy identification. It also contains numerical exercises of varying levels of difficulty and many problems solved. |
tensor calculus problems and solutions: Tensor Analysis Ivan Stephen Sokolnikoff, 1990 |
tensor calculus problems and solutions: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
tensor calculus problems and solutions: Handbook of Variational Methods for Nonlinear Geometric Data Philipp Grohs, Martin Holler, Andreas Weinmann, 2020-04-03 This book covers different, current research directions in the context of variational methods for non-linear geometric data. Each chapter is authored by leading experts in the respective discipline and provides an introduction, an overview and a description of the current state of the art. Non-linear geometric data arises in various applications in science and engineering. Examples of nonlinear data spaces are diverse and include, for instance, nonlinear spaces of matrices, spaces of curves, shapes as well as manifolds of probability measures. Applications can be found in biology, medicine, product engineering, geography and computer vision for instance. Variational methods on the other hand have evolved to being amongst the most powerful tools for applied mathematics. They involve techniques from various branches of mathematics such as statistics, modeling, optimization, numerical mathematics and analysis. The vast majority of research on variational methods, however, is focused on data in linear spaces. Variational methods for non-linear data is currently an emerging research topic. As a result, and since such methods involve various branches of mathematics, there is a plethora of different, recent approaches dealing with different aspects of variational methods for nonlinear geometric data. Research results are rather scattered and appear in journals of different mathematical communities. The main purpose of the book is to account for that by providing, for the first time, a comprehensive collection of different research directions and existing approaches in this context. It is organized in a way that leading researchers from the different fields provide an introductory overview of recent research directions in their respective discipline. As such, the book is a unique reference work for both newcomers in the field of variational methods for non-linear geometric data, as well as for established experts that aim at to exploit new research directions or collaborations. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com. |
tensor calculus problems and solutions: A Short Course in General Relativity James A. Foster, J. David Nightingale, 2010-04-30 Suitable for a one-semester course in general relativity for senior undergraduates or beginning graduate students, this text clarifies the mathematical aspects of Einstein's theory of relativity without sacrificing physical understanding. The text begins with an exposition of those aspects of tensor calculus and differential geometry needed for a proper treatment of the subject. The discussion then turns to the spacetime of general relativity and to geodesic motion. A brief consideration of the field equations is followed by a discussion of physics in the vicinity of massive objects, including an elementary treatment of black holes and rotating objects. The main text concludes with introductory chapters on gravitational radiation and cosmology. This new third edition has been updated to take account of fresh observational evidence and experiments. It includes new sections on the Kerr solution (in Chapter 4) and cosmological speeds of recession (in Chapter 6). A more mathematical treatment of tensors and manifolds, included in the 1st edition, but omitted in the 2nd edition, has been restored in an appendix. Also included are two additional appendixes – Special Relativity Review and The Chinese Connection - and outline solutions to all exercises and problems, making it especially suitable for private study. |
tensor calculus problems and solutions: Cartesian Tensors George Frederick James Temple, 2004-09-01 An introduction to the theory of Cartesian tensors, this text notes the importance of the analysis of the structure of tensors in terms of spectral sets of projection operators as part of the very substance of quantum theory. Covers isotropic tensors and spinor analysis within the confines of Euclidean space; and tensors in orthogonal curvilinear coordinates. Examples. 1960 edition. |
tensor calculus problems and solutions: Analysis On Manifolds James R. Munkres, 1997-07-07 A readable introduction to the subject of calculus on arbitrary surfaces or manifolds. Accessible to readers with knowledge of basic calculus and linear algebra. Sections include series of problems to reinforce concepts. |
tensor calculus problems and solutions: Introduction to Calculus and Analysis I Richard Courant, Fritz John, 1998-12-03 From the Preface: (...) The book is addressed to students on various levels, to mathematicians, scientists, engineers. It does not pretend to make the subject easy by glossing over difficulties, but rather tries to help the genuinely interested reader by throwing light on the interconnections and purposes of the whole. Instead of obstructing the access to the wealth of facts by lengthy discussions of a fundamental nature we have sometimes postponed such discussions to appendices in the various chapters. Numerous examples and problems are given at the end of various chapters. Some are challenging, some are even difficult; most of them supplement the material in the text. |
tensor calculus problems and solutions: Schaum's Outline of Theory and Problems of Vector Analysis and an Introduction to Tensor Analysis Murray R. Spiegel, 1959 This book introduces students to vector analysis, a concise way of presenting certain kinds of equations and a natural aid for forming mental pictures of physical and geometrical ideas. Students of the physical sciences and of physics, mechanics, electromagnetic theory, aerodynamics and a number of other fields will find this a rewarding and practical treatment of vector analysis. Key points are made memorable with the hundreds of problems with step-by-step solutions, and many review questions with answers. |
tensor calculus problems and solutions: Tensor Analysis with Applications in Mechanics L. P. Lebedev, Michael J. Cloud, Victor A. Eremeyev, 2010 This book offers a clear, concise, self-contained treatment of tensors and tensor fields. It also covers applications to differential geometry and mechanical systems such as elastic bodies, plates, and shells. Each chapter of this new edition is supplied with exercises and problems - most with solutions, hints, or answers. A convenient summary of essential formulas is included as an appendix. --Book Jacket. |
tensor calculus problems and solutions: Vector Analysis and Cartesian Tensors Donald Edward Bourne, 1982 |
tensor calculus problems and solutions: Geometrical Methods of Mathematical Physics Bernard F. Schutz, 1980-01-28 For physicists and applied mathematicians working in the fields of relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This book provides an introduction to the concepts and techniques of modern differential theory, particularly Lie groups, Lie forms and differential forms. |
tensor calculus problems and solutions: Calculus On Manifolds Michael Spivak, 1971-01-22 This little book is especially concerned with those portions of ”advanced calculus” in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level. The approach taken here uses elementary versions of modern methods found in sophisticated mathematics. The formal prerequisites include only a term of linear algebra, a nodding acquaintance with the notation of set theory, and a respectable first-year calculus course (one which at least mentions the least upper bound (sup) and greatest lower bound (inf) of a set of real numbers). Beyond this a certain (perhaps latent) rapport with abstract mathematics will be found almost essential. |
Market-Make | Tensor
Get Started with Tensor's AMM; Market-Make. TensorSwap lets you automate "buy low, sell high" with 1-click!
Tensor | Solana's Leading NFT Marketplace
Tensor is the #1 NFT Marketplace on Solana. Backed by Placeholder VC, Solana Ventures, and Solana founders Toly and Raj.
Sell or List | Tensor
Get Started with Tensor's AMM; Sell or List. Sell NFTs immediately if there's an open collection-wide bid, or list on TensorSwap with max 2% taker fees.
Tensor | Substack
A blog about Tensor, the evolution of NFTs and Solana. Click to read Tensor, a Substack publication with hundreds of subscribers.
About | Tensor
As a creator you'll find on Tensor: A hub to manage your collection - add/remove mints, change name & description, etc A launchpad to launch all and any kinds of Solana NFTs (pNFTs, …
Season 3! | Tensor
Season 3 has officially started on Tensor. You can bid, list and market-make to earn points, just like you did in Season 2. You'll find a full description of how to earn the most points in the .
Buy or Bid | Tensor
Get Started with Tensor's AMM; Buy or Bid. Buy NFTs on TensorSwap like any other marketplace. You can also place collection-wide bids (limit orders) to buy any NFT from a …
Tensor Official Links
We value your privacy. We use cookies to improve your browsing experience, serve personalized ads or content, and analyze our traffic. By clicking "Accept All", you consent to our use of …
0.10 - PARTI | Tensor
Trade PARTI on Tensor ⚡️
Season 2! | Tensor
Those of you who've supported Tensor publicly and have the mod / OG / ambassador roles in discord have received extra goodies :) If you haven't received an airdrop, it's for one of 2 …
Market-Make | Tensor
Get Started with Tensor's AMM; Market-Make. TensorSwap lets you automate "buy low, sell high" with 1-click!
Tensor | Solana's Leading NFT Marketplace
Tensor is the #1 NFT Marketplace on Solana. Backed by Placeholder VC, Solana Ventures, and Solana founders Toly and Raj.
Sell or List | Tensor
Get Started with Tensor's AMM; Sell or List. Sell NFTs immediately if there's an open collection-wide bid, or list on TensorSwap with max 2% taker fees.
Tensor | Substack
A blog about Tensor, the evolution of NFTs and Solana. Click to read Tensor, a Substack publication with hundreds of subscribers.
About | Tensor
As a creator you'll find on Tensor: A hub to manage your collection - add/remove mints, change name & description, etc A launchpad to launch all and any kinds of Solana NFTs (pNFTs, …
Season 3! | Tensor
Season 3 has officially started on Tensor. You can bid, list and market-make to earn points, just like you did in Season 2. You'll find a full description of how to earn the most points in the .
Buy or Bid | Tensor
Get Started with Tensor's AMM; Buy or Bid. Buy NFTs on TensorSwap like any other marketplace. You can also place collection-wide bids (limit orders) to buy any NFT from a …
Tensor Official Links
We value your privacy. We use cookies to improve your browsing experience, serve personalized ads or content, and analyze our traffic. By clicking "Accept All", you consent to our use of …
0.10 - PARTI | Tensor
Trade PARTI on Tensor ⚡️
Season 2! | Tensor
Those of you who've supported Tensor publicly and have the mod / OG / ambassador roles in discord have received extra goodies :) If you haven't received an airdrop, it's for one of 2 …