Advertisement
symmetry methods for differential equations: Symmetry Methods for Differential Equations Peter E. Hydon, 2000-02-13 A good working knowledge of symmetry methods is very valuable for those working with mathematical models. This book is a straightforward introduction to the subject for applied mathematicians, physicists, and engineers. The informal presentation uses many worked examples to illustrate the major symmetry methods. Written at a level suitable for postgraduates and advanced undergraduates, the text will enable readers to master the main techniques quickly and easily. The book contains some methods not previously published in a text, including those methods for obtaining discrete symmetries and integrating factors. |
symmetry methods for differential equations: Applications of Symmetry Methods to Partial Differential Equations George W. Bluman, Alexei F. Cheviakov, Stephen Anco, 2009-10-30 This is an acessible book on the advanced symmetry methods for differential equations, including such subjects as conservation laws, Lie-Bäcklund symmetries, contact transformations, adjoint symmetries, Nöther's Theorem, mappings with some modification, potential symmetries, nonlocal symmetries, nonlocal mappings, and non-classical method. Of use to graduate students and researchers in mathematics and physics. |
symmetry methods for differential equations: Symmetry and Integration Methods for Differential Equations George Bluman, Stephen C. Anco, 2002-07-10 This text discusses Lie groups of transformations and basic symmetry methods for solving ordinary and partial differential equations. It places emphasis on explicit computational algorithms to discover symmetries admitted by differential equations and to construct solutions resulting from symmetries. This new edition covers contact transformations, Lie-B cklund transformations, and adjoints and integrating factors for ODEs of arbitrary order. |
symmetry methods for differential equations: Applications of Lie Groups to Differential Equations Peter J. Olver, 2012-12-06 This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas. |
symmetry methods for differential equations: Symmetry Analysis of Differential Equations with Mathematica® Gerd Baumann, 2000-04-20 The first book to explicitly use Mathematica so as to allow researchers and students to more easily compute and solve almost any kind of differential equation using Lie's theory. Previously time-consuming and cumbersome calculations are now much more easily and quickly performed using the Mathematica computer algebra software. The material in this book, and on the accompanying CD-ROM, will be of interest to a broad group of scientists, mathematicians and engineers involved in dealing with symmetry analysis of differential equations. Each section of the book starts with a theoretical discussion of the material, then shows the application in connection with Mathematica. The cross-platform CD-ROM contains Mathematica (version 3.0) notebooks which allow users to directly interact with the code presented within the book. In addition, the author's proprietary MathLie software is included, so users can readily learn to use this powerful tool in regard to performing algebraic computations. |
symmetry methods for differential equations: Symmetry Methods for Differential Equations Peter Ellsworth Hydon, 2000-01-28 This book is a straightforward introduction to the subject of symmetry methods for solving differential equations, and is aimed at applied mathematicians, physicists, and engineers. The presentation is informal, using many worked examples to illustrate the main symmetry methods. It is written at a level suitable for postgraduates and advanced undergraduates, and is designed to enable the reader to master the main techniques quickly and easily.The book contains some methods that have not previously appeared in a text. These include methods for obtaining discrete symmetries and integrating factors. |
symmetry methods for differential equations: Symmetry Analysis of Differential Equations Daniel J. Arrigo, 2015-01-07 A self-contained introduction to the methods and techniques of symmetry analysis used to solve ODEs and PDEs Symmetry Analysis of Differential Equations: An Introduction presents an accessible approach to the uses of symmetry methods in solving both ordinary differential equations (ODEs) and partial differential equations (PDEs). Providing comprehensive coverage, the book fills a gap in the literature by discussing elementary symmetry concepts and invariance, including methods for reducing the complexity of ODEs and PDEs in an effort to solve the associated problems. Thoroughly class-tested, the author presents classical methods in a systematic, logical, and well-balanced manner. As the book progresses, the chapters graduate from elementary symmetries and the invariance of algebraic equations, to ODEs and PDEs, followed by coverage of the nonclassical method and compatibility. Symmetry Analysis of Differential Equations: An Introduction also features: Detailed, step-by-step examples to guide readers through the methods of symmetry analysis End-of-chapter exercises, varying from elementary to advanced, with select solutions to aid in the calculation of the presented algorithmic methods Symmetry Analysis of Differential Equations: An Introduction is an ideal textbook for upper-undergraduate and graduate-level courses in symmetry methods and applied mathematics. The book is also a useful reference for professionals in science, physics, and engineering, as well as anyone wishing to learn about the use of symmetry methods in solving differential equations. |
symmetry methods for differential equations: Symmetries, Differential Equations and Applications Victor G. Kac, Peter J. Olver, Pavel Winternitz, Teoman Özer, 2018-11-04 Based on the third International Conference on Symmetries, Differential Equations and Applications (SDEA-III), this proceedings volume highlights recent important advances and trends in the applications of Lie groups, including a broad area of topics in interdisciplinary studies, ranging from mathematical physics to financial mathematics. The selected and peer-reviewed contributions gathered here cover Lie theory and symmetry methods in differential equations, Lie algebras and Lie pseudogroups, super-symmetry and super-integrability, representation theory of Lie algebras, classification problems, conservation laws, and geometrical methods. The SDEA III, held in honour of the Centenary of Noether’s Theorem, proven by the prominent German mathematician Emmy Noether, at Istanbul Technical University in August 2017 provided a productive forum for academic researchers, both junior and senior, and students to discuss and share the latest developments in the theory and applications of Lie symmetry groups. This work has an interdisciplinary appeal and will be a valuable read for researchers in mathematics, mechanics, physics, engineering, medicine and finance. |
symmetry methods for differential equations: Introduction to Symmetry Analysis Paperback with CD-ROM Brian Cantwell, 2002-09-23 An introduction to symmetry analysis for graduate students in science, engineering and applied mathematics. |
symmetry methods for differential equations: Symmetries and Conservation Laws for Differential Equations of Mathematical Physics , 1999 This book presents developments in the geometric approach to nonlinear partial differential equations (PDEs). The expositions discuss the main features of the approach, and the theory of symmetries and the conservation laws based on it. The book combines rigorous mathematics with concrete examples. Nontraditional topics, such as the theory of nonlocal symmetries and cohomological theory of conservation laws, are also included. The volume is largely self-contained and includes detailed motivations, extensive examples and exercises, and careful proofs of all results. Readers interested in learni. |
symmetry methods for differential equations: Symmetries and Applications of Differential Equations Albert C. J. Luo, Rafail K. Gazizov, 2021-12-14 This book is about Lie group analysis of differential equations for physical and engineering problems. The topics include: -- Approximate symmetry in nonlinear physical problems -- Complex methods for Lie symmetry analysis -- Lie group classification, Symmetry analysis, and conservation laws -- Conservative difference schemes -- Hamiltonian structure and conservation laws of three-dimensional linear elasticity -- Involutive systems of partial differential equations This collection of works is written in memory of Professor Nail H. Ibragimov (1939–2018). It could be used as a reference book in differential equations in mathematics, mechanical, and electrical engineering. |
symmetry methods for differential equations: Symmetries and Differential Equations George Bluman, Sukeyuki Kumei, 1996-04-25 A major portion of this book discusses work which has appeared since the publication of the book Similarity Methods for Differential Equations, Springer-Verlag, 1974, by the first author and J.D. Cole. The present book also includes a thorough and comprehensive treatment of Lie groups of tranformations and their various uses for solving ordinary and partial differential equations. No knowledge of group theory is assumed. Emphasis is placed on explicit computational algorithms to discover symmetries admitted by differential equations and to construct solutions resulting from symmetries. This book should be particularly suitable for physicists, applied mathematicians, and engineers. Almost all of the examples are taken from physical and engineering problems including those concerned with heat conduction, wave propagation, and fluid flows. A preliminary version was used as lecture notes for a two-semester course taught by the first author at the University of British Columbia in 1987-88 to graduate and senior undergraduate students in applied mathematics and physics. Chapters 1 to 4 encompass basic material. More specialized topics are covered in Chapters 5 to 7. |
symmetry methods for differential equations: Applications of Lie Groups to Difference Equations Vladimir Dorodnitsyn, 2010-12-01 Intended for researchers, numerical analysts, and graduate students in various fields of applied mathematics, physics, mechanics, and engineering sciences, Applications of Lie Groups to Difference Equations is the first book to provide a systematic construction of invariant difference schemes for nonlinear differential equations. A guide to methods |
symmetry methods for differential equations: Differential Equations Hans Stephani, 1989 In many branches of physics, mathematics, and engineering, solving a problem means solving a set of ordinary or partial differential equations. Nearly all methods of constructing closed form solutions rely on symmetries. The emphasis in this text is on how to find and use the symmetries; this is supported by many examples and more than 100 exercises. This book will form an introduction accessible to beginning graduate students in physics, applied mathematics, and engineering. Advanced graduate students and researchers in these disciplines will find the book a valuable reference. |
symmetry methods for differential equations: Group Analysis of Differential Equations L. V. Ovsiannikov, 2014-05-10 Group Analysis of Differential Equations provides a systematic exposition of the theory of Lie groups and Lie algebras and its application to creating algorithms for solving the problems of the group analysis of differential equations. This text is organized into eight chapters. Chapters I to III describe the one-parameter group with its tangential field of vectors. The nonstandard treatment of the Banach Lie groups is reviewed in Chapter IV, including a discussion of the complete theory of Lie group transformations. Chapters V and VI cover the construction of partial solution classes for the given differential equation with a known admitted group. The theory of differential invariants that is developed on an infinitesimal basis is elaborated in Chapter VII. The last chapter outlines the ways in which the methods of group analysis are used in special issues involving differential equations. This publication is a good source for students and specialists concerned with areas in which ordinary and partial differential equations play an important role. |
symmetry methods for differential equations: Nonlinear Symmetries and Nonlinear Equations G. Gaeta, 2012-12-06 The study of (nonlinear) difterential equations was S. Lie's motivation when he created what is now known as Lie groups and Lie algebras; nevertheless, although Lie group and algebra theory flourished and was applied to a number of difterent physical situations -up to the point that a lot, if not most, of current fun damental elementary particles physics is actually (physical interpretation of) group theory -the application of symmetry methods to difterential equations remained a sleeping beauty for many, many years. The main reason for this lies probably in a fact that is quite clear to any beginner in the field. Namely, the formidable comple:rity ofthe (algebraic, not numerical!) computations involved in Lie method. I think this does not account completely for this oblivion: in other fields of Physics very hard analytical computations have been worked through; anyway, one easily understands that systems of dOlens of coupled PDEs do not seem very attractive, nor a very practical computational tool. |
symmetry methods for differential equations: Difference Equations by Differential Equation Methods Peter E. Hydon, 2014-08-07 Straightforward introduction for non-specialists and experts alike. Explains how to derive solutions, first integrals and conservation laws of difference equations. |
symmetry methods for differential equations: Theory Of Difference Equations Numerical Methods And Applications V. Lakshmikantham, V. Trigiante, 2002-06-12 Provides a clear and comprehensive overview of the fundamental theories, numerical methods, and iterative processes encountered in difference calculus. Explores classical problems such as orthological polynomials, the Euclidean algorithm, roots of polynomials, and well-conditioning. |
symmetry methods for differential equations: Lie Symmetry Analysis of Fractional Differential Equations Mir Sajjad Hashemi, Dumitru Baleanu, 2020-07-09 The trajectory of fractional calculus has undergone several periods of intensive development, both in pure and applied sciences. During the last few decades fractional calculus has also been associated with the power law effects and its various applications. It is a natural to ask if fractional calculus, as a nonlocal calculus, can produce new results within the well-established field of Lie symmetries and their applications. In Lie Symmetry Analysis of Fractional Differential Equations the authors try to answer this vital question by analyzing different aspects of fractional Lie symmetries and related conservation laws. Finding the exact solutions of a given fractional partial differential equation is not an easy task, but is one that the authors seek to grapple with here. The book also includes generalization of Lie symmetries for fractional integro differential equations. Features Provides a solid basis for understanding fractional calculus, before going on to explore in detail Lie Symmetries and their applications Useful for PhD and postdoc graduates, as well as for all mathematicians and applied researchers who use the powerful concept of Lie symmetries Filled with various examples to aid understanding of the topics |
symmetry methods for differential equations: Equivalence, Invariants and Symmetry Peter J. Olver, 2009-02-05 This book presents an innovative synthesis of methods used to study the problems of equivalence and symmetry that arise in a variety of mathematical fields and physical applications. It draws on a wide range of disciplines, including geometry, analysis, applied mathematics, and algebra. Dr. Olver develops systematic and constructive methods for solving equivalence problems and calculating symmetries, and applies them to a variety of mathematical systems, including differential equations, variational problems, manifolds, Riemannian metrics, polynomials, and differential operators. He emphasizes the construction and classification of invariants and reductions of complicated objects to simple canonical forms. This book will be a valuable resource for students and researchers in geometry, analysis, algebra, mathematical physics and related fields. |
symmetry methods for differential equations: Dynamical Symmetry Carl Wulfman, 2011 Whenever systems are governed by continuous chains of causes and effects, their behavior exhibits the consequences of dynamical symmetries, many of them far from obvious. Dynamical Symmetry introduces the reader to Sophus Lie's discoveries of the connections between differential equations and continuous groups that underlie this observation. It develops and applies the mathematical relations between dynamics and geometry that result. Systematic methods for uncovering dynamical symmetries are described, and put to use. Much material in the book is new and some has only recently appeared in research journals. Though Lie groups play a key role in elementary particle physics, their connection with differential equations is more often exploited in applied mathematics and engineering. Dynamical Symmetry bridges this gap in a novel manner designed to help readers establish new connections in their own areas of interest. Emphasis is placed on applications to physics and chemistry. Applications to many of the other sciences illustrate both general principles and the ubiquitousness of dynamical symmetries. |
symmetry methods for differential equations: Separation of Variables and Exact Solutions to Nonlinear PDEs Andrei D. Polyanin, Alexei I. Zhurov, 2021-09-20 Separation of Variables and Exact Solutions to Nonlinear PDEs is devoted to describing and applying methods of generalized and functional separation of variables used to find exact solutions of nonlinear partial differential equations (PDEs). It also presents the direct method of symmetry reductions and its more general version. In addition, the authors describe the differential constraint method, which generalizes many other exact methods. The presentation involves numerous examples of utilizing the methods to find exact solutions to specific nonlinear equations of mathematical physics. The equations of heat and mass transfer, wave theory, hydrodynamics, nonlinear optics, combustion theory, chemical technology, biology, and other disciplines are studied. Particular attention is paid to nonlinear equations of a reasonably general form that depend on one or several arbitrary functions. Such equations are the most difficult to analyze. Their exact solutions are of significant practical interest, as they are suitable to assess the accuracy of various approximate analytical and numerical methods. The book contains new material previously unpublished in monographs. It is intended for a broad audience of scientists, engineers, instructors, and students specializing in applied and computational mathematics, theoretical physics, mechanics, control theory, chemical engineering science, and other disciplines. Individual sections of the book and examples are suitable for lecture courses on partial differential equations, equations of mathematical physics, and methods of mathematical physics, for delivering special courses and for practical training. |
symmetry methods for differential equations: Partial Differential Equations Victor Henner, Tatyana Belozerova, Alexander Nepomnyashchy, 2019-11-20 Partial Differential Equations: Analytical Methods and Applications covers all the basic topics of a Partial Differential Equations (PDE) course for undergraduate students or a beginners’ course for graduate students. It provides qualitative physical explanation of mathematical results while maintaining the expected level of it rigor. This text introduces and promotes practice of necessary problem-solving skills. The presentation is concise and friendly to the reader. The teaching-by-examples approach provides numerous carefully chosen examples that guide step-by-step learning of concepts and techniques. Fourier series, Sturm-Liouville problem, Fourier transform, and Laplace transform are included. The book’s level of presentation and structure is well suited for use in engineering, physics and applied mathematics courses. Highlights: Offers a complete first course on PDEs The text’s flexible structure promotes varied syllabi for courses Written with a teach-by-example approach which offers numerous examples and applications Includes additional topics such as the Sturm-Liouville problem, Fourier and Laplace transforms, and special functions The text’s graphical material makes excellent use of modern software packages Features numerous examples and applications which are suitable for readers studying the subject remotely or independently |
symmetry methods for differential equations: Elementary Lie Group Analysis and Ordinary Differential Equations Nailʹ Khaĭrullovich Ibragimov, 1999 |
symmetry methods for differential equations: Numerical Analysis or Numerical Method in Symmetry Clemente Cesarano, 2020-02-21 This Special Issue focuses mainly on techniques and the relative formalism typical of numerical methods and therefore of numerical analysis, more generally. These fields of study of mathematics represent an important field of investigation both in the field of applied mathematics and even more exquisitely in the pure research of the theory of approximation and the study of polynomial relations as well as in the analysis of the solutions of the differential equations both ordinary and partial derivatives. Therefore, a substantial part of research on the topic of numerical analysis cannot exclude the fundamental role played by approximation theory and some of the tools used to develop this research. In this Special Issue, we want to draw attention to the mathematical methods used in numerical analysis, such as special functions, orthogonal polynomials, and their theoretical tools, such as Lie algebra, to study the concepts and properties of some special and advanced methods, which are useful in the description of solutions of linear and nonlinear differential equations. A further field of investigation is dedicated to the theory and related properties of fractional calculus with its adequate application to numerical methods. |
symmetry methods for differential equations: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site. |
symmetry methods for differential equations: Scaling of Differential Equations Hans Petter Langtangen, Geir K. Pedersen, 2016-06-15 The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and example-driven. The first part on ODEs fits even a lower undergraduate level, while the most advanced multiphysics fluid mechanics examples target the graduate level. The scientific literature is full of scaled models, but in most of the cases, the scales are just stated without thorough mathematical reasoning. This book explains how the scales are found mathematically. This book will be a valuable read for anyone doing numerical simulations based on ordinary or partial differential equations. |
symmetry methods for differential equations: An Introduction to Partial Differential Equations Daniel J. Arrigo, 2017-12-18 This book is an introduction to methods for solving partial differential equations (PDEs). After the introduction of the main four PDEs that could be considered the cornerstone of Applied Mathematics, the reader is introduced to a variety of PDEs that come from a variety of fields in the Natural Sciences and Engineering and is a springboard into this wonderful subject. The chapters include the following topics: First-order PDEs, Second-order PDEs, Fourier Series, Separation of Variables, and the Fourier Transform. The reader is guided through these chapters where techniques for solving first- and second-order PDEs are introduced. Each chapter ends with a series of exercises illustrating the material presented in each chapter. The book can be used as a textbook for any introductory course in PDEs typically found in both science and engineering programs and has been used at the University of Central Arkansas for over ten years. |
symmetry methods for differential equations: Introduction to Partial Differential Equations Peter J. Olver, 2013-11-08 This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements. |
symmetry methods for differential equations: Exploring ODEs Lloyd N.Trefethen, Asgeir Birkisson, Tobin A. Driscoll, 2017-12-21 Exploring ODEs is a textbook of ordinary differential equations for advanced undergraduates, graduate students, scientists, and engineers. It is unlike other books in this field in that each concept is illustrated numerically via a few lines of Chebfun code. There are about 400 computer-generated figures in all, and Appendix B presents 100 more examples as templates for further exploration. |
symmetry methods for differential equations: Symmetry and Separation of Variables Willard Miller, 2012-03-29 Originally published in 1977, this volume is concerned with the relationship between symmetries of a linear second-order partial differential equation of mathematical physics, the coordinate systems in which the equation admits solutions via separation of variables, and the properties of the special functions that arise in this manner. Some group-theoretic twists in the ancient method of separation of variables that can be used to provide a foundation for much of special function theory are shown. In particular, it is shown explicitly that all special functions that arise via separation of variables in the equations of mathematical physics can be studied using group theory. |
symmetry methods for differential equations: Nonlinear Reaction-Diffusion-Convection Equations Roman Cherniha, Mykola Serov, Oleksii Pliukhin, 2017-11-02 It is well known that symmetry-based methods are very powerful tools for investigating nonlinear partial differential equations (PDEs), notably for their reduction to those of lower dimensionality (e.g. to ODEs) and constructing exact solutions. This book is devoted to (1) search Lie and conditional (non-classical) symmetries of nonlinear RDC equations, (2) constructing exact solutions using the symmetries obtained, and (3) their applications for solving some biologically and physically motivated problems. The book summarises the results derived by the authors during the last 10 years and those obtained by some other authors. |
symmetry methods for differential equations: Symmetry Methods in Differential Equations Stanly Steinberg, University of New Mexico. Department of Mathematics and Statistics, 1979 |
symmetry methods for differential equations: Bifurcation Theory of Functional Differential Equations Shangjiang Guo, Jianhong Wu, 2013-07-30 This book provides a crash course on various methods from the bifurcation theory of Functional Differential Equations (FDEs). FDEs arise very naturally in economics, life sciences and engineering and the study of FDEs has been a major source of inspiration for advancement in nonlinear analysis and infinite dimensional dynamical systems. The book summarizes some practical and general approaches and frameworks for the investigation of bifurcation phenomena of FDEs depending on parameters with chap. This well illustrated book aims to be self contained so the readers will find in this book all relevant materials in bifurcation, dynamical systems with symmetry, functional differential equations, normal forms and center manifold reduction. This material was used in graduate courses on functional differential equations at Hunan University (China) and York University (Canada). |
symmetry methods for differential equations: Continuous Symmetries, Lie Algebras, Differential Equations And Computer Algebra (2nd Edition) Willi-hans Steeb, 2007-07-26 This textbook comprehensively introduces students and researchers to the application of continuous symmetries and their Lie algebras to ordinary and partial differential equations. Covering all the modern techniques in detail, it relates applications to cutting-edge research fields such as Yang-Mills theory and string theory.Aimed at readers in applied mathematics and physics rather than pure mathematics, the material is ideally suited to students and researchers whose main interest lies in finding solutions to differential equations and invariants of maps.A large number of worked examples and challenging exercises help readers to work independently of teachers, and by including SymbolicC++ implementations of the techniques in each chapter, the book takes full advantage of the advancements in algebraic computation.Twelve new sections have been added in this edition, including: Haar measure, Sato's theory and sigma functions, universal algebra, anti-self dual Yang-Mills equation, and discrete Painlevé equations. |
symmetry methods for differential equations: Ordinary Differential Equations and Dynamical Systems Gerald Teschl, 2024-01-12 This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations. |
symmetry methods for differential equations: An Introduction to Neural Network Methods for Differential Equations Neha Yadav, Anupam Yadav, Manoj Kumar, 2015-03-23 This book introduces a variety of neural network methods for solving differential equations arising in science and engineering. The emphasis is placed on a deep understanding of the neural network techniques, which has been presented in a mostly heuristic and intuitive manner. This approach will enable the reader to understand the working, efficiency and shortcomings of each neural network technique for solving differential equations. The objective of this book is to provide the reader with a sound understanding of the foundations of neural networks and a comprehensive introduction to neural network methods for solving differential equations together with recent developments in the techniques and their applications. The book comprises four major sections. Section I consists of a brief overview of differential equations and the relevant physical problems arising in science and engineering. Section II illustrates the history of neural networks starting from their beginnings in the 1940s through to the renewed interest of the 1980s. A general introduction to neural networks and learning technologies is presented in Section III. This section also includes the description of the multilayer perceptron and its learning methods. In Section IV, the different neural network methods for solving differential equations are introduced, including discussion of the most recent developments in the field. Advanced students and researchers in mathematics, computer science and various disciplines in science and engineering will find this book a valuable reference source. |
symmetry methods for differential equations: Numerical Methods for Ordinary Differential Equations J. C. Butcher, 2004-08-20 This new book updates the exceptionally popular Numerical Analysis of Ordinary Differential Equations. This book is...an indispensible reference for any researcher.-American Mathematical Society on the First Edition. Features: * New exercises included in each chapter. * Author is widely regarded as the world expert on Runge-Kutta methods * Didactic aspects of the book have been enhanced by interspersing the text with exercises. * Updated Bibliography. |
Symmetry - Wikipedia
Symmetry (left) and asymmetry (right) A spherical symmetry group with octahedral symmetry.The yellow region shows the fundamental domain. A fractal-like shape that has reflectional …
Symmetry | An Open Access Journal from MDPI
Symmetry is an international, peer-reviewed, open access journal covering research on symmetry/asymmetry phenomena wherever they occur in all aspects of natural sciences. …
Symmetry - Definition, Types, Examples, and Diagrams - Math …
Aug 3, 2023 · A shape shows rotational symmetry when we rotate it around a central point at an angle other than 360°, and the outcome is the same as the shape’s original appearance. …
What is Symmetry? - Definition Facts and Examples - SplashLearn
The Horizontal Line of Symmetry. When a horizontal line divides an object into two identical halves, it is called a horizontal line of symmetry. That means the horizontal line of symmetry …
SYMMETRY Definition & Meaning - Merriam-Webster
The meaning of SYMMETRY is balanced proportions; also : beauty of form arising from balanced proportions. How to use symmetry in a sentence.
Symmetry - Reflection and Rotation - Math is Fun
The Line of Symmetry can be in any direction (not just up-down or left-right). To learn more, go to Reflection Symmetry.. Rotational Symmetry. With Rotational Symmetry, the image is rotated …
Symmetry - Wikipedia
Symmetry (left) and asymmetry (right) A spherical symmetry group with octahedral symmetry.The yellow region shows the fundamental domain. A fractal-like shape that has reflectional …
Symmetry | An Open Access Journal from MDPI
Symmetry is an international, peer-reviewed, open access journal covering research on symmetry/asymmetry phenomena wherever they occur in all aspects of natural sciences. …
Symmetry - Definition, Types, Examples, and Diagrams - Math …
Aug 3, 2023 · A shape shows rotational symmetry when we rotate it around a central point at an angle other than 360°, and the outcome is the same as the shape’s original appearance. …
What is Symmetry? - Definition Facts and Examples - SplashLearn
The Horizontal Line of Symmetry. When a horizontal line divides an object into two identical halves, it is called a horizontal line of symmetry. That means the horizontal line of symmetry …
SYMMETRY Definition & Meaning - Merriam-Webster
The meaning of SYMMETRY is balanced proportions; also : beauty of form arising from balanced proportions. How to use symmetry in a sentence.
Symmetry - Reflection and Rotation - Math is Fun
The Line of Symmetry can be in any direction (not just up-down or left-right). To learn more, go to Reflection Symmetry.. Rotational Symmetry. With Rotational Symmetry, the image is rotated …