Advertisement
statistical genetics book: An Introduction to Statistical Genetic Data Analysis Melinda C. Mills, Nicola Barban, Felix C. Tropf, 2020-02-18 A comprehensive introduction to modern applied statistical genetic data analysis, accessible to those without a background in molecular biology or genetics. Human genetic research is now relevant beyond biology, epidemiology, and the medical sciences, with applications in such fields as psychology, psychiatry, statistics, demography, sociology, and economics. With advances in computing power, the availability of data, and new techniques, it is now possible to integrate large-scale molecular genetic information into research across a broad range of topics. This book offers the first comprehensive introduction to modern applied statistical genetic data analysis that covers theory, data preparation, and analysis of molecular genetic data, with hands-on computer exercises. It is accessible to students and researchers in any empirically oriented medical, biological, or social science discipline; a background in molecular biology or genetics is not required. The book first provides foundations for statistical genetic data analysis, including a survey of fundamental concepts, primers on statistics and human evolution, and an introduction to polygenic scores. It then covers the practicalities of working with genetic data, discussing such topics as analytical challenges and data management. Finally, the book presents applications and advanced topics, including polygenic score and gene-environment interaction applications, Mendelian Randomization and instrumental variables, and ethical issues. The software and data used in the book are freely available and can be found on the book's website. |
statistical genetics book: Handbook of Statistical Genetics David J. Balding, Martin Bishop, Chris Cannings, 2008-06-10 The Handbook for Statistical Genetics is widely regarded as the reference work in the field. However, the field has developed considerably over the past three years. In particular the modeling of genetic networks has advanced considerably via the evolution of microarray analysis. As a consequence the 3rd edition of the handbook contains a much expanded section on Network Modeling, including 5 new chapters covering metabolic networks, graphical modeling and inference and simulation of pedigrees and genealogies. Other chapters new to the 3rd edition include Human Population Genetics, Genome-wide Association Studies, Family-based Association Studies, Pharmacogenetics, Epigenetics, Ethic and Insurance. As with the second Edition, the Handbook includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between the chapters, tying the different areas together. With heavy use of up-to-date examples, real-life case studies and references to web-based resources, this continues to be must-have reference in a vital area of research. Edited by the leading international authorities in the field. David Balding - Department of Epidemiology & Public Health, Imperial College An advisor for our Probability & Statistics series, Professor Balding is also a previous Wiley author, having written Weight-of-Evidence for Forensic DNA Profiles, as well as having edited the two previous editions of HSG. With over 20 years teaching experience, he’s also had dozens of articles published in numerous international journals. Martin Bishop – Head of the Bioinformatics Division at the HGMP Resource Centre As well as the first two editions of HSG, Dr Bishop has edited a number of introductory books on the application of informatics to molecular biology and genetics. He is the Associate Editor of the journal Bioinformatics and Managing Editor of Briefings in Bioinformatics. Chris Cannings – Division of Genomic Medicine, University of Sheffield With over 40 years teaching in the area, Professor Cannings has published over 100 papers and is on the editorial board of many related journals. Co-editor of the two previous editions of HSG, he also authored a book on this topic. |
statistical genetics book: Statistical Genetics Benjamin Neale, Manuel Ferreira, Sarah Medland, Danielle Posthuma, 2007-11-30 Statistical Genetics is an advanced textbook focusing on conducting genome-wide linkage and association analysis in order to identify the genes responsible for complex behaviors and diseases. Starting with an introductory section on statistics and quantitative genetics, it covers both established and new methodologies, providing the genetic and statistical theory on which they are based. Each chapter is written by leading researchers, who give the reader the benefit of their experience with worked examples, study design, and sources of error. The text can be used in conjunction with an associated website (www.genemapping.org) that provides supplementary material and links to downloadable software. |
statistical genetics book: Introduction to Statistical Methods in Modern Genetics M.C. Yang, 2000-02-23 Although the basic statistical theory behind modern genetics is not very difficult, most statistical genetics papers are not easy to read for beginners in the field, and formulae quickly become very tedious to fit a particular area of application. Introduction to Statistical Methods in Modern Genetics distinguishes between the necessary and unnecessary complexity in a presentation designed for graduate-level statistics students. The author keeps derivations simple, but does so without losing the mathematical details. He also provides the required background in modern genetics for those looking forward to entering this arena. Along with some of the statistical tools important in genetics applications, students will learn: How a gene is found How scientists have separated the genetic and environmental aspects of a person's intelligence How genetics are used in agriculture to improve crops and domestic animals What a DNA fingerprint is and why there are controversies about it Although the author assumes students have a foundation in basic statistics, an appendix provides the necessary background beyond the elementary, including multinomial distributions, inference on frequency tables, and discriminant analysis. With clear explanations, a multitude of figures, and exercise sets in each chapter, this text forms an outstanding entrée into the rapidly expanding world of genetic data analysis. |
statistical genetics book: Mathematical and Statistical Methods for Genetic Analysis Kenneth Lange, 2012-12-06 During the past decade, geneticists have cloned scores of Mendelian disease genes and constructed a rough draft of the entire human genome. The unprecedented insights into human disease and evolution offered by mapping, cloning, and sequencing will transform medicine and agriculture. This revolution depends vitally on the contributions of applied mathematicians, statisticians, and computer scientists. Mathematical and Statistical Methods for Genetic Analysis is written to equip students in the mathematical sciences to understand and model the epidemiological and experimental data encountered in genetics research. Mathematical, statistical, and computational principles relevant to this task are developed hand in hand with applications to population genetics, gene mapping, risk prediction, testing of epidemiological hypotheses, molecular evolution, and DNA sequence analysis. Many specialized topics are covered that are currently accessible only in journal articles. This second edition expands the original edition by over 100 pages and includes new material on DNA sequence analysis, diffusion processes, binding domain identification, Bayesian estimation of haplotype frequencies, case-control association studies, the gamete competition model, QTL mapping and factor analysis, the Lander-Green-Kruglyak algorithm of pedigree analysis, and codon and rate variation models in molecular phylogeny. Sprinkled throughout the chapters are many new problems. |
statistical genetics book: Heterogeneity in Statistical Genetics Derek Gordon, Stephen J. Finch, Wonkuk Kim, 2020-12-16 Heterogeneity, or mixtures, are ubiquitous in genetics. Even for data as simple as mono-genic diseases, populations are a mixture of affected and unaffected individuals. Still, most statistical genetic association analyses, designed to map genes for diseases and other genetic traits, ignore this phenomenon. In this book, we document methods that incorporate heterogeneity into the design and analysis of genetic and genomic association data. Among the key qualities of our developed statistics is that they include mixture parameters as part of the statistic, a unique component for tests of association. A critical feature of this work is the inclusion of at least one heterogeneity parameter when performing statistical power and sample size calculations for tests of genetic association. We anticipate that this book will be useful to researchers who want to estimate heterogeneity in their data, develop or apply genetic association statistics where heterogeneity exists, and accurately evaluate statistical power and sample size for genetic association through the application of robust experimental design. |
statistical genetics book: Applied Statistical Genetics with R Andrea S. Foulkes, 2009-04-17 Statistical genetics has become a core course in many graduate programs in public health and medicine. This book presents fundamental concepts and principles in this emerging field at a level that is accessible to students and researchers with a first course in biostatistics. Extensive examples are provided using publicly available data and the open source, statistical computing environment, R. |
statistical genetics book: Handbook of Statistical Genomics David J. Balding, Ida Moltke, John Marioni, 2019-07-09 A timely update of a highly popular handbook on statistical genomics This new, two-volume edition of a classic text provides a thorough introduction to statistical genomics, a vital resource for advanced graduate students, early-career researchers and new entrants to the field. It introduces new and updated information on developments that have occurred since the 3rd edition. Widely regarded as the reference work in the field, it features new chapters focusing on statistical aspects of data generated by new sequencing technologies, including sequence-based functional assays. It expands on previous coverage of the many processes between genotype and phenotype, including gene expression and epigenetics, as well as metabolomics. It also examines population genetics and evolutionary models and inference, with new chapters on the multi-species coalescent, admixture and ancient DNA, as well as genetic association studies including causal analyses and variant interpretation. The Handbook of Statistical Genomics focuses on explaining the main ideas, analysis methods and algorithms, citing key recent and historic literature for further details and references. It also includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between chapters, tying the different areas together. With heavy use of up-to-date examples and references to web-based resources, this continues to be a must-have reference in a vital area of research. Provides much-needed, timely coverage of new developments in this expanding area of study Numerous, brand new chapters, for example covering bacterial genomics, microbiome and metagenomics Detailed coverage of application areas, with chapters on plant breeding, conservation and forensic genetics Extensive coverage of human genetic epidemiology, including ethical aspects Edited by one of the leading experts in the field along with rising stars as his co-editors Chapter authors are world-renowned experts in the field, and newly emerging leaders. The Handbook of Statistical Genomics is an excellent introductory text for advanced graduate students and early-career researchers involved in statistical genetics. |
statistical genetics book: Statistical Methods in Genetic Epidemiology Duncan C. Thomas, 2004-01-29 This balanced and well-integrated text gives a lucid overview of the entire process of genetic epidemiology, from familial aggregation through segregation, likage, and association studies. It is illustrated throughout with examples from the literature on cancer genetics. Statistical concepts are developed in depth, but with a focus on applications. Introductory chapters on molecular biology, Mendelian genetics, epidemiology, statistics, and population genetics are included. Oriented to graduate students in biostatistics, epidemiology, and human genetics, the book will also be a useful reference for researchers. It gives equal emphasis to study designs and data analysis. |
statistical genetics book: Statistical Genomics Ben Hui Liu, 2017-11-22 Genomics, the mapping of the entire genetic complement of an organism, is the new frontier in biology. This handbook on the statistical issues of genomics covers current methods and the tried-and-true classical approaches. |
statistical genetics book: Statistical Genetics of Quantitative Traits Rongling Wu, Changxing Ma, George Casella, 2007-07-17 Most traits in nature and of importance to agriculture are quantitatively inherited. These traits are di?cult to study due to the complex nature of their inheritance. However, recent developments of genomic technologies provide a revolutionary means for unraveling the secrets of genetic variation in quantitative traits. Genomic te- nologies allow the molecular characterization of polymorphic markers throughout the entire genome that are then used to identify and map the genes or quantitative trait loci (QTLs) underlying a quantitative trait based on linkage analysis. Statistical analysis is a crucial tool for analyzing genome data, which are now becoming increasingly available for a variety of species, and for giving precise exp- nations regarding genetic variation in quantitative traits occurring among species, populations, families, and individuals. In 1989, Lander and Botstein published a ha- mark methodological paper for interval mapping that enables geneticists to detect and estimate individual QTL that control the phenotype of a trait. Today, interval mappingisanimportantstatisticaltoolforstudyingthegeneticsofquantitativetraits at the molecular level, and has led to the discovery of thousands of QTLs responsible for a variety of traits in plants, animals, and humans. In a recent study published in Science, Li, Zhou, and Sang (2006, 311, 1936–1939) were able to characterize the molecular basis of the reduction of grain shattering – a fundamental selection process for rice domestication – at the detected QTL by interval mapping. |
statistical genetics book: A Statistical Approach to Genetic Epidemiology Andreas Ziegler, Inke R. Kônig, Friedrich Pahlke, 2010-06-14 Diese zweite Auflage des sehr erfolgreichen Lehrbuchs der Statistik in der genetischen Epidemiologie wurde sorgfältig durchgesehen, aktualisiert und an vielen Stellen erweitert. Wie gewohnt mit vielen Aufgaben und Lösungen, dazu jetzt auch Farbabbildungen und auf Wunsch gekoppelt mit einem maßgeschneiderten E-Learning-Kurs. |
statistical genetics book: Principles of Statistical Genomics Shizhong Xu, 2012-09-13 Statistical genomics is a rapidly developing field, with more and more people involved in this area. However, a lack of synthetic reference books and textbooks in statistical genomics has become a major hurdle on the development of the field. Although many books have been published recently in bioinformatics, most of them emphasize DNA sequence analysis under a deterministic approach. Principles of Statistical Genomics synthesizes the state-of-the-art statistical methodologies (stochastic approaches) applied to genome study. It facilitates understanding of the statistical models and methods behind the major bioinformatics software packages, which will help researchers choose the optimal algorithm to analyze their data and better interpret the results of their analyses. Understanding existing statistical models and algorithms assists researchers to develop improved statistical methods to extract maximum information from their data. Resourceful and easy to use, Principles of Statistical Genomics is a comprehensive reference for researchers and graduate students studying statistical genomics. |
statistical genetics book: Statistics in Human Genetics Pak Sham, 1997-12-08 Rigorous statistical analysis methods for human genetics application Statistics in Human Genetics explores the statistical analysis methods that are critical to good science. Beginning with a brief review of genes, gene structure, variation, and terminology, the book moves into analysis of segregation, genetic linkage, allelic associations, and continuity for a wide range of conditions. From the classic Hardy-Weinberg equation to advanced modeling, algorithms and more, this book provides authoritative guidance toward methods, analysis, and applications for anyone performing quantitative analysis of human genetics. |
statistical genetics book: Molecular-Genetic and Statistical Techniques for Behavioral and Neural Research Robert T. Gerlai, 2018-04-24 Molecular-Genetic and Statistical Techniques for Behavioral and Neural Research presents the most exciting molecular and recombinant DNA techniques used in the analysis of brain function and behavior, a critical piece of the puzzle for clinicians, scientists, course instructors and advanced undergraduate and graduate students. Chapters examine neuroinformatics, genetic and neurobehavioral databases and data mining, also providing an analysis of natural genetic variation and principles and applications of forward (mutagenesis) and reverse genetics (gene targeting). In addition, the book discusses gene expression and its role in brain function and behavior, along with ethical issues in the use of animals in genetics testing. Written and edited by leading international experts, this book provides a clear presentation of the frontiers of basic research as well as translationally relevant techniques that are used by neurobehavioral geneticists. - Focuses on new techniques, including electrocorticography, functional mapping, stereo EEG, motor evoked potentials, optical coherence tomography, magnetoencephalography, laser evoked potentials, transmagnetic stimulation, and motor evoked potentials - Presents the most exciting molecular and recombinant DNA techniques used in the analysis of brain function and behavior - Written and edited by leading international experts |
statistical genetics book: Parametric Statistical Change Point Analysis Jie Chen, A.K. Gupta, 2013-11-11 Recently there has been a keen interest in the statistical analysis of change point detec tion and estimation. Mainly, it is because change point problems can be encountered in many disciplines such as economics, finance, medicine, psychology, geology, litera ture, etc. , and even in our daily lives. From the statistical point of view, a change point is a place or time point such that the observations follow one distribution up to that point and follow another distribution after that point. Multiple change points problem can also be defined similarly. So the change point(s) problem is two fold: one is to de cide if there is any change (often viewed as a hypothesis testing problem), another is to locate the change point when there is a change present (often viewed as an estimation problem). The earliest change point study can be traced back to the 1950s. During the fol lowing period of some forty years, numerous articles have been published in various journals and proceedings. Many of them cover the topic of single change point in the means of a sequence of independently normally distributed random variables. Another popularly covered topic is a change point in regression models such as linear regres sion and autoregression. The methods used are mainly likelihood ratio, nonparametric, and Bayesian. Few authors also considered the change point problem in other model settings such as the gamma and exponential. |
statistical genetics book: Statistical Population Genomics Julien Y Dutheil, 2020-10-08 This open access volume presents state-of-the-art inference methods in population genomics, focusing on data analysis based on rigorous statistical techniques. After introducing general concepts related to the biology of genomes and their evolution, the book covers state-of-the-art methods for the analysis of genomes in populations, including demography inference, population structure analysis and detection of selection, using both model-based inference and simulation procedures. Last but not least, it offers an overview of the current knowledge acquired by applying such methods to a large variety of eukaryotic organisms. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, pointers to the relevant literature, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Statistical Population Genomics aims to promote and ensure successful applications of population genomic methods to an increasing number of model systems and biological questions. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors. |
statistical genetics book: Probability Models and Statistical Methods in Genetics Regina C. Elandt-Johnson, 1971 |
statistical genetics book: Statistical Genetics Prem Narain, 1990-08-31 Describes the methodology of statistical genetics, especially with respect to plant and animal breeding. Introduces the principles of Mendelian genetics and discusses population and quantitative genetics. Emphasizes how statistical principles help in understanding the genetic gains expected by efficient methods of selection and breeding, as well as indicating the techniques of analysis of breeding data. Includes numerous tables of breeding data for quick reference. |
statistical genetics book: Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics Daniel Sorensen, Daniel Gianola, 2007-03-22 This book, suitable for numerate biologists and for applied statisticians, provides the foundations of likelihood, Bayesian and MCMC methods in the context of genetic analysis of quantitative traits. Although a number of excellent texts in these areas have become available in recent years, the basic ideas and tools are typically described in a technically demanding style and contain much more detail than necessary. Here, an effort has been made to relate biological to statistical parameters throughout, and the book includes extensive examples that illustrate the developing argument. |
statistical genetics book: Basic Biostatistics for Geneticists and Epidemiologists Robert C. Elston, William Johnson, 2008-11-20 Anyone who attempts to read genetics or epidemiology research literature needs to understand the essentials of biostatistics. This book, a revised new edition of the successful Essentials of Biostatistics has been written to provide such an understanding to those who have little or no statistical background and who need to keep abreast of new findings in this fast moving field. Unlike many other elementary books on biostatistics, the main focus of this book is to explain basic concepts needed to understand statistical procedures. This Book: Surveys basic statistical methods used in the genetics and epidemiology literature, including maximum likelihood and least squares. Introduces methods, such as permutation testing and bootstrapping, that are becoming more widely used in both genetic and epidemiological research. Is illustrated throughout with simple examples to clarify the statistical methodology. Explains Bayes’ theorem pictorially. Features exercises, with answers to alternate questions, enabling use as a course text. Written at an elementary mathematical level so that readers with high school mathematics will find the content accessible. Graduate students studying genetic epidemiology, researchers and practitioners from genetics, epidemiology, biology, medical research and statistics will find this an invaluable introduction to statistics. |
statistical genetics book: Handbook of Statistical Systems Biology Michael Stumpf, David J. Balding, Mark Girolami, 2011-09-09 Systems Biology is now entering a mature phase in which the key issues are characterising uncertainty and stochastic effects in mathematical models of biological systems. The area is moving towards a full statistical analysis and probabilistic reasoning over the inferences that can be made from mathematical models. This handbook presents a comprehensive guide to the discipline for practitioners and educators, in providing a full and detailed treatment of these important and emerging subjects. Leading experts in systems biology and statistics have come together to provide insight in to the major ideas in the field, and in particular methods of specifying and fitting models, and estimating the unknown parameters. This book: Provides a comprehensive account of inference techniques in systems biology. Introduces classical and Bayesian statistical methods for complex systems. Explores networks and graphical modeling as well as a wide range of statistical models for dynamical systems. Discusses various applications for statistical systems biology, such as gene regulation and signal transduction. Features statistical data analysis on numerous technologies, including metabolic and transcriptomic technologies. Presents an in-depth presentation of reverse engineering approaches. Provides colour illustrations to explain key concepts. This handbook will be a key resource for researchers practising systems biology, and those requiring a comprehensive overview of this important field. |
statistical genetics book: Interpreting DNA Evidence Ian Evett, Bruce S. Weir, 1998-01-01 Interpretation of DNA profile matches depends on the use of statistical weights. This text provides the background information in statistics and genetics for the reader to arrive at these weights. |
statistical genetics book: Survival Analysis in Medicine and Genetics Jialiang Li, Shuangge Ma, 2013-06-04 Using real data sets throughout, this text introduces the latest methods for analyzing high-dimensional survival data. With an emphasis on the applications of survival analysis techniques in genetics, it presents a statistical framework for burgeoning research in this area and offers a set of established approaches for statistical analysis. The book reveals a new way of looking at how predictors are associated with censored survival time and extracts novel statistical genetic methods for censored survival time outcome from the vast amount of research results in genomics. |
statistical genetics book: Handbook of Statistical Genomics David J. Balding, Ida Moltke, John Marioni, 2019-07-02 A timely update of a highly popular handbook on statistical genomics This new, two-volume edition of a classic text provides a thorough introduction to statistical genomics, a vital resource for advanced graduate students, early-career researchers and new entrants to the field. It introduces new and updated information on developments that have occurred since the 3rd edition. Widely regarded as the reference work in the field, it features new chapters focusing on statistical aspects of data generated by new sequencing technologies, including sequence-based functional assays. It expands on previous coverage of the many processes between genotype and phenotype, including gene expression and epigenetics, as well as metabolomics. It also examines population genetics and evolutionary models and inference, with new chapters on the multi-species coalescent, admixture and ancient DNA, as well as genetic association studies including causal analyses and variant interpretation. The Handbook of Statistical Genomics focuses on explaining the main ideas, analysis methods and algorithms, citing key recent and historic literature for further details and references. It also includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between chapters, tying the different areas together. With heavy use of up-to-date examples and references to web-based resources, this continues to be a must-have reference in a vital area of research. Provides much-needed, timely coverage of new developments in this expanding area of study Numerous, brand new chapters, for example covering bacterial genomics, microbiome and metagenomics Detailed coverage of application areas, with chapters on plant breeding, conservation and forensic genetics Extensive coverage of human genetic epidemiology, including ethical aspects Edited by one of the leading experts in the field along with rising stars as his co-editors Chapter authors are world-renowned experts in the field, and newly emerging leaders. The Handbook of Statistical Genomics is an excellent introductory text for advanced graduate students and early-career researchers involved in statistical genetics. |
statistical genetics book: Statistical Problems in Genetics and Molecular Biology Norman R. Drinkwater, Carter Denniston, 2011-12-15 This book evolved from the notes for a course of the same title that we've taught for the last eighteen years at the University of Wisconsin to graduate students in cancer biology, genetics, molecular biology, and other biomedical programs. We concentrate on a class of statistical methods, so-called nonparametric statistics, which requires us to make very few assumptions regarding the model that gives rise to the data. These methods are also attractive because they are usually simple to apply and have considerable intuitive appeal. |
statistical genetics book: Phenotypes and Genotypes Florian Frommlet, Małgorzata Bogdan, David Ramsey, 2016-02-12 This timely text presents a comprehensive guide to genetic association, a new and rapidly expanding field that aims to elucidate how our genetic code (genotypes) influences the traits we possess (phenotypes). The book provides a detailed review of methods of gene mapping used in association with experimental crosses, as well as genome-wide association studies. Emphasis is placed on model selection procedures for analyzing data from large-scale genome scans based on specifically designed modifications of the Bayesian information criterion. Features: presents a thorough introduction to the theoretical background to studies of genetic association (both genetic and statistical); reviews the latest advances in the field; illustrates the properties of methods for mapping quantitative trait loci using computer simulations and the analysis of real data; discusses open challenges; includes an extensive statistical appendix as a reference for those who are not totally familiar with the fundamentals of statistics. |
statistical genetics book: Statistical Analysis of Gene Expression Microarray Data Terry Speed, 2003-03-26 Although less than a decade old, the field of microarray data analysis is now thriving and growing at a remarkable pace. Biologists, geneticists, and computer scientists as well as statisticians all need an accessible, systematic treatment of the techniques used for analyzing the vast amounts of data generated by large-scale gene expression studies |
statistical genetics book: Bioinformatics for Geneticists Michael R. Barnes, Ian C. Gray, 2003-04-09 Bioinformatics for Geneticists describes a step by step approach to key bioinformatics and genetic analysis procedures, based upon practical experience gained after many years of direct bioinformatics support for laboratory geneticists. It features detailed case studies of problems and analytical approaches that are specific to the needs of the genetics researcher. The book contains reviews of bioinformatics tools and genetic databases. Each chapter is written to capture the principles of analysis regardless of the tool used, thereby ensuring that the book stays relevant as new data and tools become available. As the first book specifically addressing the informatics requirements of geneticists, Bioinformatics for Geneticists is essential reading for all those engaged in genetic research and should prove indispensable for both the planning and analysis of such studies. * The book provides in-depth coverage of the underlying principles of both genetic and bioinformatic analysis which should make this book suitable for all students of genetics or bioinformatics. * The book takes a web-based approach to bioinformatics, suitable for both internet novices and more experienced web users. * The focus is on public software tools and databases freely available to all. * The editors and authors bring a broad range of experience from academic and industrial genetics research environments. * The book is accessible to individuals outside the immediate field of molecular genetics, e.g. statisticians, epidemiologists and physicians who wish to improve their knowledge of bioinformatics and genetics. * This is currently the only book specifically aimed at the bioinformatics needs and priorities of genetics researchers. |
statistical genetics book: Computational Genomics with R Altuna Akalin, 2020-12-16 Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015. |
statistical genetics book: The Statistics of Gene Mapping David Siegmund, Benjamin Yakir, 2010-11-23 This book details the statistical concepts used in gene mapping, first in the experimental context of crosses of inbred lines and then in outbred populations, primarily humans. It presents elementary principles of probability and statistics, which are implemented by computational tools based on the R programming language to simulate genetic experiments and evaluate statistical analyses. Each chapter contains exercises, both theoretical and computational, some routine and others that are more challenging. The R programming language is developed in the text. |
statistical genetics book: Genetics Meets Metabolomics Karsten Suhre, 2012-06-15 This book is written by leading researchers in the fields about the intersection of genetics and metabolomics which can lead to more comprehensive studies of inborn variation of metabolism. |
statistical genetics book: Biostatistics for Human Genetic Epidemiology Bertram K. C. Chan, 2018-10-24 The book illustrates how biostatistics may numerically summarize human genetic epidemiology using R, and may be used successfully to solve problems in quantitative Genetic Epidemiology Biostatistics for Human Genetic Epidemiology provides statistical methodologies and R recipes for human genetic epidemiologic problems. It begins by introducing all the necessary probabilistic and statistical foundations, before moving on to topics related human genetic epidemiology, with R codes illustrations for various examples. This clear and concise book covers human genetic epidemiology, using R in data analysis, including multivariate data analysis. It examines probabilistic and statistical theories for modeling human genetic epidemiology – leading the readers through an effective epidemiologic model, from simple to advanced levels. Classical mathematical, probabilistic, and statistical theory are thoroughly discussed and presented. This book also presents R as a calculator and using R in data analysis. Additionally, it covers Advanced Human Genetic Data Concepts, the Study of Human Genetic Variation, Manhattan Plots, as well as the Procedures for Multiple Comparison. Numerous Worked Examples are provided for illustrations of concepts and real-life applications. Biostatistics for Human Genetic Epidemiology is an ideal reference for professionals and students in Medicine (particularly in Preventive Medicine and Public Health Medical Practices), as well as in Genetics, Epidemiology, and Biostatistics. |
statistical genetics book: Statistical and Biometrical Techniques in Plant Breeding Jawahar R. Sharma, 2006 The Book Presents A Comprehensive Account Of The Concept And Genesis Of Diverse Biometrical/Statistical Models As Applied To Plant Breeding Experiments Under Different Situations. Generation And Statistical Treatment Of Data; Presentation, Interpretation And Inferences Of Results; Merits, Demerits And Situations Of Applicability Of Models Are All Explicated For Their Adequate And Appropriate Usage In Plant Breeding. The Whole Volume Comprising 25 Chapters Has Been Zipped Into Five Sections Elucidating; General Statistical/Biometrical Parameters And Field Designs (Chapters 1-4), Multivariate Analysis Of Genetic Divergence (Chapters 6-7), Genotype X Environment Interaction And Stability Parameters (Chapters 8-10), Analysis Of Nature Of Gene Action And Variance Components (Chapters 11 -23), And Lastly The Unique Analysis Of Statistical And Genetical Parameters Related To Selection And Mutation Experiments (Chapters 24-25) In Plant Breeding. Simplification Of The Bewildering Complexities Of Biometrical Notations And Procedures In A Language Which Could Easily Be Grasped By Biologists/Geneticists Having Little Or No Statistical Background Is The Hallmark Of The Treatise. Like A Ready-Reckoner, This Work Offers An Efficient Key To Plant Breeding Data-Management For Both Students And Professional Plant Breeders Alike In Pursuit Of Their Research Goals. |
statistical genetics book: Statistical Human Genetics Robert C. Elston, Jaya M. Satagopan, Shuying Sun, 2012-02-04 Recent advances in genetics over the last quarter of a century, especially in molecular techniques, have dramatically reduced the cost of determining genetic markers and hence opened up a field of research that is increasingly helping to detect, prevent and/or cure many diseases that afflict humans. In Statistical Human Genetics: Methods and Protocols expert researchers in the field describe statistical methods and computer programs in the detail necessary to make them more easily accessible to the beginner analyzing data. Written in the highly successful Methods in Molecular BiologyTM series format, with examples of running the programs and interpreting the program outputs, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results from human genetic data collected in the laboratory. Thorough and as much as possible intuitive, Statistical Human Genetics: Methods and Protocols aids scientists in understanding the computer programs and analytical procedures they need to use. |
statistical genetics book: Geographical Genetics Bryan K. Epperson, 2003-08-11 Population genetics has made great strides in applying statistical analysis and mathematical modeling to understand how genes mutate and spread through populations over time. But real populations also live in space. Streams, mountains, and other geographic features often divide populations, limit migration, or otherwise influence gene flow. This book rigorously examines the processes that determine geographic patterns of genetic variation, providing a comprehensive guide to their study and interpretation. Geographical Genetics has a unique focus on the mathematical relationships of spatial statistical measures of patterns to stochastic processes. It also develops the probability and distribution theory of various spatial statistics for analysis of population genetic data, detailing exact methods for using various spatial features to make precise inferences about migration, natural selection, and other dynamic forces. The book also reviews the experimental literature on the types of spatial patterns of genetic variation found within and among populations. And it makes an unprecedented strong connection between observed measures of spatial patterns and those predicted theoretically. Along the way, it introduces readers to the mathematics of spatial statistics, applications to specific population genetic systems, and the relationship between the mathematics of space-time processes and the formal theory of geographical genetics. Written by a leading authority, this is the first comprehensive treatment of geographical genetics. It is a much-needed guide to the theory, techniques, and applications of a field that will play an increasingly important role in population biology and ecology. |
statistical genetics book: Simultaneous Statistical Inference Thorsten Dickhaus, 2014-01-23 This monograph will provide an in-depth mathematical treatment of modern multiple test procedures controlling the false discovery rate (FDR) and related error measures, particularly addressing applications to fields such as genetics, proteomics, neuroscience and general biology. The book will also include a detailed description how to implement these methods in practice. Moreover new developments focusing on non-standard assumptions are also included, especially multiple tests for discrete data. The book primarily addresses researchers and practitioners but will also be beneficial for graduate students. |
statistical genetics book: Relationship Inference with Familias and R Thore Egeland, Daniel Kling, Petter Mostad, 2015-12-24 Relationship Inference in Familias and R discusses the use of Familias and R software to understand genetic kinship of two or more DNA samples. This software is commonly used for forensic cases to establish paternity, identify victims or analyze genetic evidence at crime scenes when kinship is involved. The book explores utilizing Familias software and R packages for difficult situations including inbred families, mutations and missing data from degraded DNA. The book additionally addresses identification following mass disasters, familial searching, non-autosomal marker analysis and relationship inference using linked markers. The second part of the book focuses on more statistical issues such as estimation and uncertainty of model parameters. Although written for use with human DNA, the principles can be applied to non-human genetics for animal pedigrees and/or analysis of plants for agriculture purposes. The book contains necessary tools to evaluate any type of forensic case where kinship is an issue. - This volume focuses on the core material and omits most general background material on probability, statistics and forensic genetics - Each chapter includes exercises with available solutions - The web page familias.name contains supporting material |
statistical genetics book: All of Statistics Larry Wasserman, 2004-09-17 This book is for people who want to learn probability and statistics quickly. It brings together many of the main ideas in modern statistics in one place. The book is suitable for students and researchers in statistics, computer science, data mining and machine learning. This book covers a much wider range of topics than a typical introductory text on mathematical statistics. It includes modern topics like nonparametric curve estimation, bootstrapping and classification, topics that are usually relegated to follow-up courses. The reader is assumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. The text can be used at the advanced undergraduate and graduate level. Larry Wasserman is Professor of Statistics at Carnegie Mellon University. He is also a member of the Center for Automated Learning and Discovery in the School of Computer Science. His research areas include nonparametric inference, asymptotic theory, causality, and applications to astrophysics, bioinformatics, and genetics. He is the 1999 winner of the Committee of Presidents of Statistical Societies Presidents' Award and the 2002 winner of the Centre de recherches mathematiques de Montreal–Statistical Society of Canada Prize in Statistics. He is Associate Editor of The Journal of the American Statistical Association and The Annals of Statistics. He is a fellow of the American Statistical Association and of the Institute of Mathematical Statistics. |
STATISTICAL Definition & Meaning - Merriam-Webster
The meaning of STATISTICAL is of, relating to, based on, or employing the principles of statistics. How to use statistical in a sentence.
STATISTICAL | English meaning - Cambridge Dictionary
There is very little statistical evidence. It was designed to facilitate the combination of qualitative methods with statistical analysis. The generalizations are advanced on the basis of statistical …
Statistics - Wikipedia
Statistics is the discipline that deals with data, facts and figures with which meaningful information is inferred. Data may represent a numerical value, in form of quantitative data, or a label, as with …
STATISTICAL Definition & Meaning | Dictionary.com
of, pertaining to, consisting of, or based on statistics. statistics. Examples have not been reviewed. In doing so, the judges said she could not point to “background circumstances” or statistical …
What is Statistical Analysis? - GeeksforGeeks
Apr 15, 2025 · Statistical Analysis means gathering, understanding, and showing data to find patterns and connections that can help us make decisions. It includes lots of different ways to …
Statistics | Definition, Types, & Importance | Britannica
May 20, 2025 · statistics, the science of collecting, analyzing, presenting, and interpreting data. Governmental needs for census data as well as information about a variety of economic activities …
Statistical - definition of statistical by The Free Dictionary
Define statistical. statistical synonyms, statistical pronunciation, statistical translation, English dictionary definition of statistical. adj. Of, relating to, or employing statistics or the principles of …
STATISTICAL definition and meaning | Collins English Dictionary
Statistical means relating to the use of statistics. The report contains a great deal of statistical information. Of or relating to statistics.... Click for English pronunciations, examples sentences, …
Introduction to Research Statistical Analysis: An Overview of the ...
This article covers many statistical ideas essential to research statistical analysis. Sample size is explained through the concepts of statistical significance level and power.
Statistics - Definition, Examples, Mathematical Statistics
Statistics is defined as the process of collection of data, classifying data, representing the data for easy interpretation, and further analysis of data. Statistics also is referred to as arriving at …
STATISTICAL Definition & Meaning - Merriam-Webster
The meaning of STATISTICAL is of, relating to, based on, or employing the principles of statistics. How to use statistical in a sentence.
STATISTICAL | English meaning - Cambridge Dictionary
There is very little statistical evidence. It was designed to facilitate the combination of qualitative methods with statistical analysis. The generalizations are advanced on the basis of statistical …
Statistics - Wikipedia
Statistics is the discipline that deals with data, facts and figures with which meaningful information is inferred. Data may represent a numerical value, in form of quantitative data, or a label, as …
STATISTICAL Definition & Meaning | Dictionary.com
of, pertaining to, consisting of, or based on statistics. statistics. Examples have not been reviewed. In doing so, the judges said she could not point to “background circumstances” or …
What is Statistical Analysis? - GeeksforGeeks
Apr 15, 2025 · Statistical Analysis means gathering, understanding, and showing data to find patterns and connections that can help us make decisions. It includes lots of different ways to …
Statistics | Definition, Types, & Importance | Britannica
May 20, 2025 · statistics, the science of collecting, analyzing, presenting, and interpreting data. Governmental needs for census data as well as information about a variety of economic …
Statistical - definition of statistical by The Free Dictionary
Define statistical. statistical synonyms, statistical pronunciation, statistical translation, English dictionary definition of statistical. adj. Of, relating to, or employing statistics or the principles of …
STATISTICAL definition and meaning | Collins English Dictionary
Statistical means relating to the use of statistics. The report contains a great deal of statistical information. Of or relating to statistics.... Click for English pronunciations, examples sentences, …
Introduction to Research Statistical Analysis: An Overview of the ...
This article covers many statistical ideas essential to research statistical analysis. Sample size is explained through the concepts of statistical significance level and power.
Statistics - Definition, Examples, Mathematical Statistics
Statistics is defined as the process of collection of data, classifying data, representing the data for easy interpretation, and further analysis of data. Statistics also is referred to as arriving at …