Simplicial Objects In Algebraic Topology

Advertisement



  simplicial objects in algebraic topology: Simplicial Objects in Algebraic Topology J. P. May, 1992 Simplicial sets are discrete analogs of topological spaces. They have played a central role in algebraic topology ever since their introduction in the late 1940s, and they also play an important role in other areas such as geometric topology and algebraic geometry. On a formal level, the homotopy theory of simplicial sets is equivalent to the homotopy theory of topological spaces. In view of this equivalence, one can apply discrete, algebraic techniques to perform basic topological constructions. These techniques are particularly appropriate in the theory of localization and completion of topological spaces, which was developed in the early 1970s. Since it was first published in 1967, Simplicial Objects in Algebraic Topology has been the standard reference for the theory of simplicial sets and their relationship to the homotopy theory of topological spaces. J. Peter May gives a lucid account of the basic homotopy theory of simplicial sets, together with the equivalence of homotopy theories alluded to above. The central theme is the simplicial approach to the theory of fibrations and bundles, and especially the algebraization of fibration and bundle theory in terms of twisted Cartesian products. The Serre spectral sequence is described in terms of this algebraization. Other topics treated in detail include Eilenberg-MacLane complexes, Postnikov systems, simplicial groups, classifying complexes, simplicial Abelian groups, and acyclic models. Simplicial Objects in Algebraic Topology presents much of the elementary material of algebraic topology from the semi-simplicial viewpoint. It should prove very valuable to anyone wishing to learn semi-simplicial topology. [May] has included detailed proofs, and he has succeeded very well in the task of organizing a large body of previously scattered material.—Mathematical Review
  simplicial objects in algebraic topology: Simplicial Objects in Algebraic Topology Peter J. May, 1992
  simplicial objects in algebraic topology: Simplicial Objects in Algebraic Topology J. Peter May, 1982 Simplicial sets are discrete analogs of topological spaces. They have played a central role in algebraic topology ever since their introduction in the late 1940s, and they also play an important role in other areas such as geometric topology and algebraic geometry. On a formal level, the homotopy theory of simplicial sets is equivalent to the homotopy theory of topological spaces. In view of this equivalence, one can apply discrete, algebraic techniques to perform basic topological constructions. These techniques are particularly appropriate in the theory of localization and completion of topological spaces, which was developed in the early 1970s. Since it was first published in 1967, Simplicial Objects in Algebraic Topology has been the standard reference for the theory of simplicial sets and their relationship to the homotopy theory of topological spaces. J. Peter May gives a lucid account of the basic homotopy theory of simplicial sets, together with the equivalence of homotopy theories alluded to above. The central theme is the simplicial approach to the theory of fibrations and bundles, and especially the algebraization of fibration and bundle theory in terms of twisted Cartesian products. The Serre spectral sequence is described in terms of this algebraization. Other topics treated in detail include Eilenberg-MacLane complexes, Postnikov systems, simplicial groups, classifying complexes, simplicial Abelian groups, and acyclic models. nbsp; Simplicial Objects in Algebraic Topology presents much of the elementary material of algebraic topology from the semi-simplicial viewpoint. It should prove very valuable to anyone wishing to learn semi-simplicial topology. [May] has included detailed proofs, and he has succeeded very well in the task of organizing a large body of previously scattered material.--Mathematical Review
  simplicial objects in algebraic topology: Simplicial Objects in Algebraic Topology J. Peter May, 1965
  simplicial objects in algebraic topology: Simplicial Homotopy Theory Paul Gregory Goerss, J. F. Jardine, 1999 Since the beginning of the modern era of algebraic topology, simplicial methods have been used systematically and effectively for both computation and basic theory. With the development of Quillen's concept of a closed model category and, in particular, a simplicial model category, this collection of methods has become the primary way to describe non-abelian homological algebra and to address homotopy-theoretical issues in a variety of fields, including algebraic K-theory. This book supplies a modern exposition of these ideas, emphasizing model category theoretical techniques. Discussed here are the homotopy theory of simplicial sets, and other basic topics such as simplicial groups, Postnikov towers, and bisimplicial sets. The more advanced material includes homotopy limits and colimits, localization with respect to a map and with respect to a homology theory, cosimplicial spaces, and homotopy coherence. Interspersed throughout are many results and ideas well-known to experts, but uncollected in the literature. Intended for second-year graduate students and beyond, this book introduces many of the basic tools of modern homotopy theory. An extensive background in topology is not assumed.
  simplicial objects in algebraic topology: Simplicial Methods for Operads and Algebraic Geometry Ieke Moerdijk, Bertrand Toën, 2010-12-01 This book is an introduction to two higher-categorical topics in algebraic topology and algebraic geometry relying on simplicial methods. It is based on lectures delivered at the Centre de Recerca Matemàtica in February 2008, as part of a special year on Homotopy Theory and Higher Categories--Foreword
  simplicial objects in algebraic topology: More Concise Algebraic Topology J. P. May, K. Ponto, 2012-02 With firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that treat fundamental topics beyond a first course, and many topics now essential to the field are not treated in any textbook. J. Peter May’s A Concise Course in Algebraic Topology addresses the standard first course material, such as fundamental groups, covering spaces, the basics of homotopy theory, and homology and cohomology. In this sequel, May and his coauthor, Kathleen Ponto, cover topics that are essential for algebraic topologists and others interested in algebraic topology, but that are not treated in standard texts. They focus on the localization and completion of topological spaces, model categories, and Hopf algebras. The first half of the book sets out the basic theory of localization and completion of nilpotent spaces, using the most elementary treatment the authors know of. It makes no use of simplicial techniques or model categories, and it provides full details of other necessary preliminaries. With these topics as motivation, most of the second half of the book sets out the theory of model categories, which is the central organizing framework for homotopical algebra in general. Examples from topology and homological algebra are treated in parallel. A short last part develops the basic theory of bialgebras and Hopf algebras.
  simplicial objects in algebraic topology: A Concise Course in Algebraic Topology J. Peter May, 2019
  simplicial objects in algebraic topology: Algebraic L-theory and Topological Manifolds Andrew Ranicki, 1992-12-10 Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds, in a unified algebraic framework.
  simplicial objects in algebraic topology: Lecture Notes in Algebraic Topology James Frederic Davis, Paul Kirk, 2001 The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic andgeometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, someknowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstructiontheory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to presentproofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the ``big picture'', teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, andhomological algebra. The exposition in the text is clear; special cases are presented over complex general statements.
  simplicial objects in algebraic topology: Combinatorial Algebraic Topology Dimitry Kozlov, 2007-12-29 This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.
  simplicial objects in algebraic topology: Algebraic Topology: An Intuitive Approach Hajime Satō, 1999 Develops an introduction to algebraic topology mainly through simple examples built on cell complexes. Topics covers include homeomorphisms, topological spaces and cell complexes, homotopy, homology, cohomology, the universal coefficient theorem, fiber bundles and vector bundles, and spectral sequences. Includes chapter summaries, exercises, and answers. Includes an appendix of definitions in sets, topology, and groups. Originally published in Japanese by Iwanami Shoten, Publishers, Tokyo, 1996. Annotation copyrighted by Book News, Inc., Portland, OR
  simplicial objects in algebraic topology: Homotopy Theory: An Introduction to Algebraic Topology , 1975-11-12 Homotopy Theory: An Introduction to Algebraic Topology
  simplicial objects in algebraic topology: Braids A. Jon Berrick, 2010 Tutorial on the braid groups / Dale Rolfsen -- Simplicial objects and homotopy groups / Jie Wu -- Introduction to configuration spaces and their applications / Frederick R. Cohen -- Configuration spaces, braids, and robotics / Robert Ghrist -- Braids and magnetic fields / Mitchell A. Berger -- Braid group cryptography / David Garber
  simplicial objects in algebraic topology: Foundations of Algebraic Topology Samuel Eilenberg, Norman Steenrod, 2015-12-08 The need for an axiomatic treatment of homology and cohomology theory has long been felt by topologists. Professors Eilenberg and Steenrod present here for the first time an axiomatization of the complete transition from topology to algebra. Originally published in 1952. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
  simplicial objects in algebraic topology: Handbook of Algebraic Topology I.M. James, 1995-07-18 Algebraic topology (also known as homotopy theory) is a flourishing branch of modern mathematics. It is very much an international subject and this is reflected in the background of the 36 leading experts who have contributed to the Handbook. Written for the reader who already has a grounding in the subject, the volume consists of 27 expository surveys covering the most active areas of research. They provide the researcher with an up-to-date overview of this exciting branch of mathematics.
  simplicial objects in algebraic topology: Homotopical Algebra Daniel G. Quillen, 2006-11-14
  simplicial objects in algebraic topology: Topology Through Inquiry Michael Starbird, Francis Su, 2020-09-10 Topology Through Inquiry is a comprehensive introduction to point-set, algebraic, and geometric topology, designed to support inquiry-based learning (IBL) courses for upper-division undergraduate or beginning graduate students. The book presents an enormous amount of topology, allowing an instructor to choose which topics to treat. The point-set material contains many interesting topics well beyond the basic core, including continua and metrizability. Geometric and algebraic topology topics include the classification of 2-manifolds, the fundamental group, covering spaces, and homology (simplicial and singular). A unique feature of the introduction to homology is to convey a clear geometric motivation by starting with mod 2 coefficients. The authors are acknowledged masters of IBL-style teaching. This book gives students joy-filled, manageable challenges that incrementally develop their knowledge and skills. The exposition includes insightful framing of fruitful points of view as well as advice on effective thinking and learning. The text presumes only a modest level of mathematical maturity to begin, but students who work their way through this text will grow from mathematics students into mathematicians. Michael Starbird is a University of Texas Distinguished Teaching Professor of Mathematics. Among his works are two other co-authored books in the Mathematical Association of America's (MAA) Textbook series. Francis Su is the Benediktsson-Karwa Professor of Mathematics at Harvey Mudd College and a past president of the MAA. Both authors are award-winning teachers, including each having received the MAA's Haimo Award for distinguished teaching. Starbird and Su are, jointly and individually, on lifelong missions to make learning—of mathematics and beyond—joyful, effective, and available to everyone. This book invites topology students and teachers to join in the adventure.
  simplicial objects in algebraic topology: A Combinatorial Introduction to Topology Michael Henle, 1994-01-01 Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.
  simplicial objects in algebraic topology: Effective Algebraic Topology Rolf Schön, 1991-01-01 Regret none available.
  simplicial objects in algebraic topology: Topology of Surfaces L.Christine Kinsey, 2012-12-06 . . . that famous pedagogical method whereby one begins with the general and proceeds to the particular only after the student is too confused to understand even that anymore. Michael Spivak This text was written as an antidote to topology courses such as Spivak It is meant to provide the student with an experience in geomet describes. ric topology. Traditionally, the only topology an undergraduate might see is point-set topology at a fairly abstract level. The next course the average stu dent would take would be a graduate course in algebraic topology, and such courses are commonly very homological in nature, providing quick access to current research, but not developing any intuition or geometric sense. I have tried in this text to provide the undergraduate with a pragmatic introduction to the field, including a sampling from point-set, geometric, and algebraic topology, and trying not to include anything that the student cannot immediately experience. The exercises are to be considered as an in tegral part of the text and, ideally, should be addressed when they are met, rather than at the end of a block of material. Many of them are quite easy and are intended to give the student practice working with the definitions and digesting the current topic before proceeding. The appendix provides a brief survey of the group theory needed.
  simplicial objects in algebraic topology: Abstract Homotopy and Simple Homotopy Theory Klaus Heiner Kamps, Timothy Porter, 1997 This book provides a thorough and well-written guide to abstract homotopy theory. It could well serve as a graduate text in this topic, or could be studied independently by someone with a background in basic algebra, topology, and category theory.
  simplicial objects in algebraic topology: Homology, Cohomology, and Sheaf Cohomology for Algebraic Topology, Algebraic Geometry, and Differential Geometry Jean H. Gallier, Jocelyn Quaintance, 2022 Homology and cohomology -- De Rham cohomology -- Singular homology and cohomology -- Simplicial homology and cohomology -- Homology and cohomology of CW complexes -- Poincaré duality -- Presheaves and sheaves; Basics -- Cech cohomology with values in a presheaf -- Presheaves and sheaves; A deeper look -- Derived functors, [delta]-functors, and [del]-functors -- Universal coefficient theorems -- Cohomology of sheaves -- Alexander and Alexander-Lefschetz duality -- Spectral sequences.
  simplicial objects in algebraic topology: Higher Topos Theory Jacob Lurie, 2009-07-06 Higher category theory is generally regarded as technical and forbidding, but part of it is considerably more tractable: the theory of infinity-categories, higher categories in which all higher morphisms are assumed to be invertible. In Higher Topos Theory, Jacob Lurie presents the foundations of this theory, using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language. The result is a powerful theory with applications in many areas of mathematics. The book's first five chapters give an exposition of the theory of infinity-categories that emphasizes their role as a generalization of ordinary categories. Many of the fundamental ideas from classical category theory are generalized to the infinity-categorical setting, such as limits and colimits, adjoint functors, ind-objects and pro-objects, locally accessible and presentable categories, Grothendieck fibrations, presheaves, and Yoneda's lemma. A sixth chapter presents an infinity-categorical version of the theory of Grothendieck topoi, introducing the notion of an infinity-topos, an infinity-category that resembles the infinity-category of topological spaces in the sense that it satisfies certain axioms that codify some of the basic principles of algebraic topology. A seventh and final chapter presents applications that illustrate connections between the theory of higher topoi and ideas from classical topology.
  simplicial objects in algebraic topology: Categorical Decomposition Techniques in Algebraic Topology Gregory Arone, John Hubbuck, Ran Levi, Michael Weiss, 2012-12-06 The book consists of articles at the frontier of current research in Algebraic Topology. It presents recent results by top notch experts, and is intended primarily for researchers and graduate students working in the field of algebraic topology. Included is an important article by Cohen, Johnes and Yan on the homology of the space of smooth loops on a manifold M, endowed with the Chas-Sullivan intersection product, as well as an article by Goerss, Henn and Mahowald on stable homotopy groups of spheres, which uses the cutting edge technology of topological modular forms.
  simplicial objects in algebraic topology: Basic Algebraic Topology Anant R. Shastri, 2013-10-23 Building on rudimentary knowledge of real analysis, point-set topology, and basic algebra, Basic Algebraic Topology provides plenty of material for a two-semester course in algebraic topology. The book first introduces the necessary fundamental concepts, such as relative homotopy, fibrations and cofibrations, category theory, cell complexes, and simplicial complexes. It then focuses on the fundamental group, covering spaces and elementary aspects of homology theory. It presents the central objects of study in topology visualization: manifolds. After developing the homology theory with coefficients, homology of the products, and cohomology algebra, the book returns to the study of manifolds, discussing Poincaré duality and the De Rham theorem. A brief introduction to cohomology of sheaves and Čech cohomology follows. The core of the text covers higher homotopy groups, Hurewicz’s isomorphism theorem, obstruction theory, Eilenberg-Mac Lane spaces, and Moore-Postnikov decomposition. The author then relates the homology of the total space of a fibration to that of the base and the fiber, with applications to characteristic classes and vector bundles. The book concludes with the basic theory of spectral sequences and several applications, including Serre’s seminal work on higher homotopy groups. Thoroughly classroom-tested, this self-contained text takes students all the way to becoming algebraic topologists. Historical remarks throughout the text make the subject more meaningful to students. Also suitable for researchers, the book provides references for further reading, presents full proofs of all results, and includes numerous exercises of varying levels.
  simplicial objects in algebraic topology: Homotopical Algebraic Geometry II: Geometric Stacks and Applications Bertrand Toën, Gabriele Vezzosi, 2008 This is the second part of a series of papers called HAG, devoted to developing the foundations of homotopical algebraic geometry. The authors start by defining and studying generalizations of standard notions of linear algebra in an abstract monoidal model category, such as derivations, étale and smooth morphisms, flat and projective modules, etc. They then use their theory of stacks over model categories to define a general notion of geometric stack over a base symmetric monoidal model category $C$, and prove that this notion satisfies the expected properties.
  simplicial objects in algebraic topology: Algebraic Topology Allen Hatcher, 2002 In most mathematics departments at major universities one of the three or four basic first-year graduate courses is in the subject of algebraic topology. This introductory textbook in algebraic topology is suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises. The four main chapters present the basic material of the subject: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature of the book is the inclusion of many optional topics which are not usually part of a first course due to time constraints, and for which elementary expositions are sometimes hard to find. Among these are: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and a full exposition of Steenrod squares and powers. Researchers will also welcome this aspect of the book.
  simplicial objects in algebraic topology: Lectures on Algebraic Topology Albrecht Dold, 2012-12-06 Springer is reissuing a selected few highly successful books in a new, inexpensive softcover edition to make them easily accessible to younger generations of students and researchers. Springer-Verlag began publishing books in higher mathematics in 1920. This is a reprint of the Second Edition.
  simplicial objects in algebraic topology: Local Homotopy Theory John F. Jardine, 2015-05-27 This monograph on the homotopy theory of topologized diagrams of spaces and spectra gives an expert account of a subject at the foundation of motivic homotopy theory and the theory of topological modular forms in stable homotopy theory. Beginning with an introduction to the homotopy theory of simplicial sets and topos theory, the book covers core topics such as the unstable homotopy theory of simplicial presheaves and sheaves, localized theories, cocycles, descent theory, non-abelian cohomology, stacks, and local stable homotopy theory. A detailed treatment of the formalism of the subject is interwoven with explanations of the motivation, development, and nuances of ideas and results. The coherence of the abstract theory is elucidated through the use of widely applicable tools, such as Barr's theorem on Boolean localization, model structures on the category of simplicial presheaves on a site, and cocycle categories. A wealth of concrete examples convey the vitality and importance of the subject in topology, number theory, algebraic geometry, and algebraic K-theory. Assuming basic knowledge of algebraic geometry and homotopy theory, Local Homotopy Theory will appeal to researchers and advanced graduate students seeking to understand and advance the applications of homotopy theory in multiple areas of mathematics and the mathematical sciences.
  simplicial objects in algebraic topology: Calculus of Fractions and Homotopy Theory Peter Gabriel, M. Zisman, 2012-12-06 The main purpose of the present work is to present to the reader a particularly nice category for the study of homotopy, namely the homo topic category (IV). This category is, in fact, - according to Chapter VII and a well-known theorem of J. H. C. WHITEHEAD - equivalent to the category of CW-complexes modulo homotopy, i.e. the category whose objects are spaces of the homotopy type of a CW-complex and whose morphisms are homotopy classes of continuous mappings between such spaces. It is also equivalent (I, 1.3) to a category of fractions of the category of topological spaces modulo homotopy, and to the category of Kan complexes modulo homotopy (IV). In order to define our homotopic category, it appears useful to follow as closely as possible methods which have proved efficacious in homo logical algebra. Our category is thus the topological analogue of the derived category of an abelian category (VERDIER). The algebraic machinery upon which this work is essentially based includes the usual grounding in category theory - summarized in the Dictionary - and the theory of categories of fractions which forms the subject of the first chapter of the book. The merely topological machinery reduces to a few properties of Kelley spaces (Chapters I and III). The starting point of our study is the category ,10 Iff of simplicial sets (C.S.S. complexes or semi-simplicial sets in a former terminology).
  simplicial objects in algebraic topology: Computational Topology for Data Analysis Tamal Krishna Dey, Yusu Wang, 2022-03-10 Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.
  simplicial objects in algebraic topology: Algebraic Homotopy Hans J. Baues, 1989-02-16 This book gives a general outlook on homotopy theory; fundamental concepts, such as homotopy groups and spectral sequences, are developed from a few axioms and are thus available in a broad variety of contexts. Many examples and applications in topology and algebra are discussed, including an introduction to rational homotopy theory in terms of both differential Lie algebras and De Rham algebras. The author describes powerful tools for homotopy classification problems, particularly for the classification of homotopy types and for the computation of the group homotopy equivalences. Applications and examples of such computations are given, including when the fundamental group is non-trivial. Moreover, the deep connection between the homotopy classification problems and the cohomology theory of small categories is demonstrated. The prerequisites of the book are few: elementary topology and algebra. Consequently, this account will be valuable for non-specialists and experts alike. It is an important supplement to the standard presentations of algebraic topology, homotopy theory, category theory and homological algebra.
  simplicial objects in algebraic topology: Algebraic and Geometric Surgery Andrew Ranicki, 2002 This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, cobordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.
  simplicial objects in algebraic topology: Algebraic Topology of Finite Topological Spaces and Applications Jonathan A. Barmak, 2011-08-24 This volume deals with the theory of finite topological spaces and its relationship with the homotopy and simple homotopy theory of polyhedra. The interaction between their intrinsic combinatorial and topological structures makes finite spaces a useful tool for studying problems in Topology, Algebra and Geometry from a new perspective. In particular, the methods developed in this manuscript are used to study Quillen's conjecture on the poset of p-subgroups of a finite group and the Andrews-Curtis conjecture on the 3-deformability of contractible two-dimensional complexes. This self-contained work constitutes the first detailed exposition on the algebraic topology of finite spaces. It is intended for topologists and combinatorialists, but it is also recommended for advanced undergraduate students and graduate students with a modest knowledge of Algebraic Topology.
  simplicial objects in algebraic topology: Algebraic Topology Gunnar Carlsson, Ralph Cohen, Haynes R. Miller, Douglas C. Ravenel, 2006-11-14 These are proceedings of an International Conference on Algebraic Topology, held 28 July through 1 August, 1986, at Arcata, California. The conference served in part to mark the 25th anniversary of the journal Topology and 60th birthday of Edgar H. Brown. It preceded ICM 86 in Berkeley, and was conceived as a successor to the Aarhus conferences of 1978 and 1982. Some thirty papers are included in this volume, mostly at a research level. Subjects include cyclic homology, H-spaces, transformation groups, real and rational homotopy theory, acyclic manifolds, the homotopy theory of classifying spaces, instantons and loop spaces, and complex bordism.
  simplicial objects in algebraic topology: Algebraic Topology - Homotopy and Homology Robert M. Switzer, 2017-12-01 From the reviews: The author has attempted an ambitious and most commendable project. He assumes only a modest knowledge of algebraic topology on the part of the reader to start with, and he leads the reader systematically to the point at which he can begin to tackle problems in the current areas of research centered around generalized homology theories and their applications. ... The author has sought to make his treatment complete and he has succeeded. The book contains much material that has not previously appeared in this format. The writing is clean and clear and the exposition is well motivated. ... This book is, all in all, a very admirable work and a valuable addition to the literature... (S.Y. Husseini in Mathematical Reviews, 1976)
  simplicial objects in algebraic topology: Classical Topology and Combinatorial Group Theory John Stillwell, 2012-12-06 In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment undergraduate topology proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does nr~ understand the simplest topological facts, such as the rcason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical development where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recreations like the seven bridges; rather, it resulted from the l'isualization of problems from other parts of mathematics-complex analysis (Riemann), mechanics (Poincare), and group theory (Dehn). It is these connec tions to other parts of mathematics which make topology an important as well as a beautiful subject.
  simplicial objects in algebraic topology: Simplicial Topology Saunders Mac Lane, Joseph Zeu-tse Yao, 1959
Log in to My Account - Virgin Plus
If you're on a monthly plan and registered for My Account, you can log in with your Virgin Plus number or the username you created. Whichever is easier for you!

Mobile Phones, Plans, Internet & More - Virgin Plus
Discover Virgin Plus's advantages: value-packed plans with tons of data, Member Benefits, hot phones, and the best customer service in Canada.

Ouvrir une session dans Mon Compte - Virgin Plus
Si vous avez un forfait mensuel et que vous êtes inscrit à Mon Compte, vous pouvez ouvrir une session avec votre numéro Virgin Plus ou le nom de télé que vous avez créé. À vous de choisir!

téléphones mobiles, forfaits, Internet et plus - Virgin Plus
Découvrez les avantages de Virgin Plus : des forfaits qui en valent la peine avec une tonne de données, des avantages de Membre, des téléphones

Bienvenue chez Virgin Mobile. Partez du bon pied.
Nouveau chez Virgin Mobile? Découvrez comment vous inscrire à Mon Compte pour suivre votre utilisation et payer votre facture en ligne, configurer votre téléphone et voir tous les avantages …

Cell Phone Plans - Virgin Plus
Find the right plan for you. Whether you need a new phone or bringing your own phone, we have a selection of value-packed plans with tons of data to choose from.

myAccount - Virgin Plus
Welcome to My Account 10-digit Virgin Plus number or username Use a different Virgin Plus number or username Password

Welcome to Virgin Mobile. Get set up. - Virgin Plus
New to Virgin Mobile? Learn how to register for My Account to track your usage and pay your bill online, set up your phone and check out all the Member Benefits you'll get from day one.

Contactez-nous - Virgin Plus
Joindre Virgin Mobile Canada. Nous sommes là pour vous aider. Communiquez avec nous par téléphone, courriel, facebook, Twitter ou en vous rendant dans une boutique Virgin Mobile.

Manage your Virgin Plus account.
How to access My Account: Head to virginplus.ca/myaccount and login. For your best experience, visit us on a desktop computer rather than a mobile device. Heads-up! You'll need to register …

iTunes - Apple
Visit the iTunes Store on iOS to buy and download your favorite songs, TV shows, movies, and podcasts. You can also download the latest macOS for an all-new entertainment experience …

iTunes - Apple (IT)
iTunes ha cambiato per sempre il modo di vivere la musica, i film e i podcast. Ora è il momento di una nuova rivoluzione: arrivano sul Mac tre nuove app – Musica, Apple TV e Podcast – …

iTunes - Apple (PL)
Zajrzyj do iTunes Store na urządzeniu iOS i kupuj oraz pobieraj ulubione piosenki, filmy i podcasty. Możesz też pobrać macOS Catalina na Maca i cieszyć się rozrywką na zupełnie …

Download iTunes for Windows - Apple Support
To access your music and video content from your iTunes library, use the Apple Music app and Apple TV app. To manage your iPhone or iPad, use the Apple Devices app.

iTunes 12.10.11 for Windows (Windows 64 bit) - Apple Support
Dec 10, 2011 · iTunes is the easiest way to enjoy your favorite music, movies, TV shows, and more on your PC. This update allows you to sync your iPhone, iPad, or iPod touch on …

Subscriptions and Billing - Official Apple Support
If you're unable to make purchases Learn what to do if your payment is declined, you're unable to make purchases in the App Store or iTunes Store, or you can’t download or update apps.

iTunes - Apple
iTunes Download the latest version for Windows. The latest entertainment apps now come installed with the latest macOS. Upgrade today to get your favorite music, movies, TV shows, …

iTunes - Apple (NL)
Ga naar de iTunes Store op iOS om je favoriete nummers, films en podcasts te downloaden. Je kunt ook macOS Catalina downloaden voor een heel nieuwe wereld aan entertainment op je …

iTunes – Apple (SE)
iTunes vände upp och ner på hur vi upplever musik, filmer och poddar. Nu förändras allt igen med tre helt nya appar – Apple Music, Apple TV och Apple Podcasts – var och en utformad från …

iTunes - Apple
Visita el iTunes Store en iOS para comprar y descargar tus canciones, películas y podcasts favoritos. También puedes descargar macOS Catalina para disfrutar de una experiencia de …