Serre Local Fields

Advertisement



  serre local fields: Local Fields Jean-Pierre Serre, 2013-06-29 The goal of this book is to present local class field theory from the cohomo logical point of view, following the method inaugurated by Hochschild and developed by Artin-Tate. This theory is about extensions-primarily abelian-of local (i.e., complete for a discrete valuation) fields with finite residue field. For example, such fields are obtained by completing an algebraic number field; that is one of the aspects of localisation. The chapters are grouped in parts. There are three preliminary parts: the first two on the general theory of local fields, the third on group coho mology. Local class field theory, strictly speaking, does not appear until the fourth part. Here is a more precise outline of the contents of these four parts: The first contains basic definitions and results on discrete valuation rings, Dedekind domains (which are their globalisation) and the completion process. The prerequisite for this part is a knowledge of elementary notions of algebra and topology, which may be found for instance in Bourbaki. The second part is concerned with ramification phenomena (different, discriminant, ramification groups, Artin representation). Just as in the first part, no assumptions are made here about the residue fields. It is in this setting that the norm map is studied; I have expressed the results in terms of additive polynomials and of multiplicative polynomials, since using the language of algebraic geometry would have led me too far astray.
  serre local fields: Local Fields Jean-Pierre Serre, 1995-07-27 The goal of this book is to present local class field theory from the cohomo logical point of view, following the method inaugurated by Hochschild and developed by Artin-Tate. This theory is about extensions-primarily abelian-of local (i.e., complete for a discrete valuation) fields with finite residue field. For example, such fields are obtained by completing an algebraic number field; that is one of the aspects of localisation. The chapters are grouped in parts. There are three preliminary parts: the first two on the general theory of local fields, the third on group coho mology. Local class field theory, strictly speaking, does not appear until the fourth part. Here is a more precise outline of the contents of these four parts: The first contains basic definitions and results on discrete valuation rings, Dedekind domains (which are their globalisation) and the completion process. The prerequisite for this part is a knowledge of elementary notions of algebra and topology, which may be found for instance in Bourbaki. The second part is concerned with ramification phenomena (different, discriminant, ramification groups, Artin representation). Just as in the first part, no assumptions are made here about the residue fields. It is in this setting that the norm map is studied; I have expressed the results in terms of additive polynomials and of multiplicative polynomials, since using the language of algebraic geometry would have led me too far astray.
  serre local fields: Local Algebra Jean-Pierre Serre, 2012-12-06 The present book is an English translation of Algebre Locale - Multiplicites published by Springer-Verlag as no. 11 of the Lecture Notes series. The original text was based on a set of lectures, given at the College de France in 1957-1958, and written up by Pierre Gabriel. Its aim was to give a short account of Commutative Algebra, with emphasis on the following topics: a) Modules (as opposed to Rings, which were thought to be the only subject of Commutative Algebra, before the emergence of sheaf theory in the 1950s); b) H omological methods, a la Cartan-Eilenberg; c) Intersection multiplicities, viewed as Euler-Poincare characteristics. The English translation, done with great care by Chee Whye Chin, differs from the original in the following aspects: - The terminology has been brought up to date (e.g. cohomological dimension has been replaced by the now customary depth). I have rewritten a few proofs and clarified (or so I hope) a few more. - A section on graded algebras has been added (App. III to Chap. IV). - New references have been given, especially to other books on Commu- tive Algebra: Bourbaki (whose Chap. X has now appeared, after a 40-year wait) , Eisenbud, Matsumura, Roberts, .... I hope that these changes will make the text easier to read, without changing its informal Lecture Notes character.
  serre local fields: Local Fields and Their Extensions: Second Edition Ivan B. Fesenko, S. V. Vostokov, 2002-07-17 This book offers a modern exposition of the arithmetical properties of local fields using explicit and constructive tools and methods. It has been ten years since the publication of the first edition, and, according to Mathematical Reviews, 1,000 papers on local fields have been published during that period. This edition incorporates improvements to the first edition, with 60 additional pages reflecting several aspects of the developments in local number theory. The volume consists of four parts: elementary properties of local fields, class field theory for various types of local fields and generalizations, explicit formulas for the Hilbert pairing, and Milnor -groups of fields and of local fields. The first three parts essentially simplify, revise, and update the first edition. The book includes the following recent topics: Fontaine-Wintenberger theory of arithmetically profinite extensions and fields of norms, explicit noncohomological approach to the reciprocity map with a review of all other approaches to local class field theory, Fesenko's -class field theory for local fields with perfect residue field, simplified updated presentation of Vostokov's explicit formulas for the Hilbert norm residue symbol, and Milnor -groups of local fields. Numerous exercises introduce the reader to other important recent results in local number theory, and an extensive bibliography provides a guide to related areas.
  serre local fields: Algebraic Groups and Class Fields Jean-Pierre Serre, 2012-12-06 Translation of the French Edition
  serre local fields: A Course in Arithmetic J-P. Serre, 2012-12-06 This book is divided into two parts. The first one is purely algebraic. Its objective is the classification of quadratic forms over the field of rational numbers (Hasse-Minkowski theorem). It is achieved in Chapter IV. The first three chapters contain some preliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols. Chapter V applies the preceding results to integral quadratic forms of discriminant ± I. These forms occur in various questions: modular functions, differential topology, finite groups. The second part (Chapters VI and VII) uses analytic methods (holomor phic functions). Chapter VI gives the proof of the theorem on arithmetic progressions due to Dirichlet; this theorem is used at a critical point in the first part (Chapter Ill, no. 2.2). Chapter VII deals with modular forms, and in particular, with theta functions. Some of the quadratic forms of Chapter V reappear here. The two parts correspond to lectures given in 1962 and 1964 to second year students atthe Ecole Normale Superieure. A redaction of these lectures in the form of duplicated notes, was made by J.-J. Sansuc (Chapters I-IV) and J.-P. Ramis and G. Ruget (Chapters VI-VII). They were very useful to me; I extend here my gratitude to their authors.
  serre local fields: Proceedings of a Conference on Local Fields T. A. Springer, 2013-06-29 From July 25-August 6, 1966 a Summer School on Local Fields was held in Driebergen (the Netherlands), organized by the Netherlands Universities Foundation for International Cooperation (NUFFIC) with financial support from NATO. The scientific organizing Committl!e consisted ofF. VANDER BLIJ, A.H.M. LEVELT, A.F. MaNNA, J.P. MuRRE and T.A. SPRINGER. The Summer School was attended by approximately 80 mathematicians from various countries. The contributions collected in the present book are all based on the talks given at the Summer School. It is hoped that the book will serve the same purpose as the Summer School: to provide an introduction to current research in Local Fields and related topics. July 1967 T.A. SPRINGER Contents ARnN, M. and B. MAZUR: Homotopy of Varieties in the Etale Topology 1 BAss, H: The Congruence Subgroup Problem 16 BRUHAT, F. et J. TITs: Groupes algebriques simples sur un corps local . 23 CASSELS, J.W.S. : Elliptic Curves over Local Fields 37 DwoRK, B. : On the Rationality of Zeta Functions and L-Series 40 MaNNA, A.F. : Linear Topological Spaces over Non-Archimedean Valued Fields . 56 NERON, A. : Modeles minimaux des espaces principaux homo genes sur les courbes elliptiques 66 RAYNAUD, M. : Passage au quotient par une relation d'equivalence plate . 78 REMMERT, R. : Algebraische Aspekte in der nichtarchimedischen Analysis . 86 SERRE, J.-P. : Sur les groupes de Galois attaches aux groupes p-divisibles . 118 SWINNERTON-DYER, P. : The Conjectures of Birch and Swinnerton- Dyer, and of Tate . 132 TATE, J.T.
  serre local fields: Abelian l-Adic Representations and Elliptic Curves Jean-Pierre Serre, 1997-11-15 This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one
  serre local fields: A Gentle Course in Local Class Field Theory Pierre Guillot, 2018-11 A self-contained exposition of local class field theory for students in advanced algebra.
  serre local fields: Arithmetic Duality Theorems J. S. Milne, 1986 Here, published for the first time, are the complete proofs of the fundamental arithmetic duality theorems that have come to play an increasingly important role in number theory and arithmetic geometry. The text covers these theorems in Galois cohomology, ,tale cohomology, and flat cohomology and addresses applications in the above areas. The writing is expository and the book will serve as an invaluable reference text as well as an excellent introduction to the subject.
  serre local fields: Cohomology of Number Fields Jürgen Neukirch, Alexander Schmidt, Kay Wingberg, 2013-09-26 This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.
  serre local fields: Fields and Rings Irving Kaplansky, 1972 This book combines in one volume Irving Kaplansky's lecture notes on the theory of fields, ring theory, and homological dimensions of rings and modules. In all three parts of this book the author lives up to his reputation as a first-rate mathematical stylist. Throughout the work the clarity and precision of the presentation is not only a source of constant pleasure but will enable the neophyte to master the material here presented with dispatch and ease.—A. Rosenberg, Mathematical Reviews
  serre local fields: Quaternion Algebras John Voight, 2021-06-28 This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.
  serre local fields: Galois Theory of p-Extensions Helmut Koch, 2002-08-06 Helmut Koch's classic is now available in English. Competently translated by Franz Lemmermeyer, it introduces the theory of pro-p groups and their cohomology. The book contains a postscript on the recent development of the field written by H. Koch and F. Lemmermeyer, along with many additional recent references.
  serre local fields: Grothendieck-Serre Correspondence Alexandre Grothendieck, Pierre Colmez, 2004 The letters presented in the book were mainly written between 1955 and 1965. During this period, algebraic geometry went through a remarkable transformation, and Grothendieck and Serre were among central figures in this process. The reader can follow the creation of some of the most important notions of modern mathematics, like sheaf cohomology, schernes, Riemann-Roch type theorems, algebraic fundamental group, motives. The letters also reflect the mathematical and political atmosphere of this period (Bourbaki, Paris, Harvard, Princeton, war in Algeria, etc.) Also included are a few letters written between 1984 and 1987. The letters are supplemented by J.-P. Serre's notes, which give explanations, corrections, and references further results. The book should be useful to specialists in algebraic geometry, in history of mathematics, and to all mathematicians who want to understand how great mathematics is created.--BOOK JACKET.
  serre local fields: Topics in Galois Theory, Second Edition Jean-Pierre Serre, 2008 This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt construction for p-groups, p != 2, as well as Hilbert's irreducibility theorem and the large sieve inequality, are presented. The second half is devoted to rationality and rigidity criteria and their application in realizing certain groups as Galois groups of regular extensions of Q(T). While proofs are not carried out in full detail, the book contains a number of examples, exercises, and open problems.
  serre local fields: Algebraic Number Theory Serge Lang, 2013-06-29 The present book gives an exposition of the classical basic algebraic and analytic number theory and supersedes my Algebraic Numbers, including much more material, e. g. the class field theory on which 1 make further comments at the appropriate place later. For different points of view, the reader is encouraged to read the collec tion of papers from the Brighton Symposium (edited by Cassels-Frohlich), the Artin-Tate notes on class field theory, Weil's book on Basic Number Theory, Borevich-Shafarevich's Number Theory, and also older books like those of W eber, Hasse, Hecke, and Hilbert's Zahlbericht. It seems that over the years, everything that has been done has proved useful, theo retically or as examples, for the further development of the theory. Old, and seemingly isolated special cases have continuously acquired renewed significance, often after half a century or more. The point of view taken here is principally global, and we deal with local fields only incidentally. For a more complete treatment of these, cf. Serre's book Corps Locaux. There is much to be said for a direct global approach to number fields. Stylistically, 1 have intermingled the ideal and idelic approaches without prejudice for either. 1 also include two proofs of the functional equation for the zeta function, to acquaint the reader with different techniques (in some sense equivalent, but in another sense, suggestive of very different moods).
  serre local fields: Integral Closure of Ideals, Rings, and Modules Craig Huneke, Irena Swanson, 2006-10-12 Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.
  serre local fields: Trees Jean-Pierre Serre, 2013-03-07 From the reviews: Serre's notes on groups acting on trees have appeared in various forms (all in French) over the past ten years and they have had a profound influence on the development of many areas, for example, the theory of ends of discrete groups. This fine translation is very welcome and I strongly recommend it as an introduction to an important subject. In Chapter I, which is self-contained, the pace is fairly gentle. The author proves the fundamental theorem for the special cases of free groups and tree products before dealing with the (rather difficult) proof of the general case. (A.W. Mason in Proceedings of the Edinburgh Mathematical Society 1982)
  serre local fields: Field Arithmetic Michael D. Fried, Moshe Jarden, 2005 Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?
  serre local fields: Étale Cohomology James S. Milne, 2025-04-08 An authoritative introduction to the essential features of étale cohomology A. Grothendieck’s work on algebraic geometry is one of the most important mathematical achievements of the twentieth century. In the early 1960s, he and M. Artin introduced étale cohomology to extend the methods of sheaf-theoretic cohomology from complex varieties to more general schemes. This work found many applications, not only in algebraic geometry but also in several different branches of number theory and in the representation theory of finite and p-adic groups. In this classic book, James Milne provides an invaluable introduction to étale cohomology, covering the essential features of the theory. Milne begins with a review of the basic properties of flat and étale morphisms and the algebraic fundamental group. He then turns to the basic theory of étale sheaves and elementary étale cohomology, followed by an application of the cohomology to the study of the Brauer group. After a detailed analysis of the cohomology of curves and surfaces, Milne proves the fundamental theorems in étale cohomology—those of base change, purity, Poincaré duality, and the Lefschetz trace formula—and applies these theorems to show the rationality of some very general L-series.
  serre local fields: Galois Cohomology and Class Field Theory David Harari, 2020-06-24 This graduate textbook offers an introduction to modern methods in number theory. It gives a complete account of the main results of class field theory as well as the Poitou-Tate duality theorems, considered crowning achievements of modern number theory. Assuming a first graduate course in algebra and number theory, the book begins with an introduction to group and Galois cohomology. Local fields and local class field theory, including Lubin-Tate formal group laws, are covered next, followed by global class field theory and the description of abelian extensions of global fields. The final part of the book gives an accessible yet complete exposition of the Poitou-Tate duality theorems. Two appendices cover the necessary background in homological algebra and the analytic theory of Dirichlet L-series, including the Čebotarev density theorem. Based on several advanced courses given by the author, this textbook has been written for graduate students. Including complete proofs and numerous exercises, the book will also appeal to more experienced mathematicians, either as a text to learn the subject or as a reference.
  serre local fields: Galois Cohomology Jean-Pierre Serre, 2013-12-01 This volume is an English translation of Cohomologie Galoisienne . The original edition (Springer LN5, 1964) was based on the notes, written with the help of Michel Raynaud, of a course I gave at the College de France in 1962-1963. In the present edition there are numerous additions and one suppression: Verdier's text on the duality of profinite groups. The most important addition is the photographic reproduction of R. Steinberg's Regular elements of semisimple algebraic groups, Publ. Math. LH.E.S., 1965. I am very grateful to him, and to LH.E.S., for having authorized this reproduction. Other additions include: - A proof of the Golod-Shafarevich inequality (Chap. I, App. 2). - The resume de cours of my 1991-1992 lectures at the College de France on Galois cohomology of k(T) (Chap. II, App.). - The resume de cours of my 1990-1991 lectures at the College de France on Galois cohomology of semisimple groups, and its relation with abelian cohomology, especially in dimension 3 (Chap. III, App. 2). The bibliography has been extended, open questions have been updated (as far as possible) and several exercises have been added. In order to facilitate references, the numbering of propositions, lemmas and theorems has been kept as in the original 1964 text. Jean-Pierre Serre Harvard, Fall 1996 Table of Contents Foreword ........................................................ V Chapter I. Cohomology of profinite groups §1. Profinite groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . .
  serre local fields: Rational Points on Varieties Bjorn Poonen, 2023-08-10 This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere. The origins of arithmetic (or Diophantine) geometry can be traced back to antiquity, and it remains a lively and wide research domain up to our days. The book by Bjorn Poonen, a leading expert in the field, opens doors to this vast field for many readers with different experiences and backgrounds. It leads through various algebraic geometric constructions towards its central subject: obstructions to existence of rational points. —Yuri Manin, Max-Planck-Institute, Bonn It is clear that my mathematical life would have been very different if a book like this had been around at the time I was a student. —Hendrik Lenstra, University Leiden Understanding rational points on arbitrary algebraic varieties is the ultimate challenge. We have conjectures but few results. Poonen's book, with its mixture of basic constructions and openings into current research, will attract new generations to the Queen of Mathematics. —Jean-Louis Colliot-Thélène, Université Paris-Sud A beautiful subject, handled by a master. —Joseph Silverman, Brown University
  serre local fields: Commutative Algebra David Eisenbud, 2013-12-01 Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algebraic geometry. To help beginners, the essential ideals from algebraic geometry are treated from scratch. Appendices on homological algebra, multilinear algebra and several other useful topics help to make the book relatively self- contained. Novel results and presentations are scattered throughout the text.
  serre local fields: Lectures on N_x(p) Jean-Pierre Serre, 2024-10-14 This book presents several basic techniques in algebraic geometry, group representations, number theory, l-adic and standard cohomology, and modular forms. It explores how NX(p) varies with p when the family (X) of polynomial equations is fixed. The text examines the size and congruence properties of
  serre local fields: Complex Semisimple Lie Algebras Jean-Pierre Serre, 2013-03-14 These notes are a record of a course given in Algiers from lOth to 21st May, 1965. Their contents are as follows. The first two chapters are a summary, without proofs, of the general properties of nilpotent, solvable, and semisimple Lie algebras. These are well-known results, for which the reader can refer to, for example, Chapter I of Bourbaki or my Harvard notes. The theory of complex semisimple algebras occupies Chapters III and IV. The proofs of the main theorems are essentially complete; however, I have also found it useful to mention some complementary results without proof. These are indicated by an asterisk, and the proofs can be found in Bourbaki, Groupes et Algebres de Lie, Paris, Hermann, 1960-1975, Chapters IV-VIII. A final chapter shows, without proof, how to pass from Lie algebras to Lie groups (complex-and also compact). It is just an introduction, aimed at guiding the reader towards the topology of Lie groups and the theory of algebraic groups. I am happy to thank MM. Pierre Gigord and Daniel Lehmann, who wrote up a first draft of these notes, and also Mlle. Franr,:oise Pecha who was responsible for the typing of the manuscript.
  serre local fields: The Geometry of Schemes David Eisenbud, Joe Harris, 2006-04-06 Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.
  serre local fields: Lectures on the Mordell-Weil Theorem Jean Pierre Serre, 2013-07-02
  serre local fields: Lectures on K3 Surfaces Daniel Huybrechts, 2016-09-26 K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.
  serre local fields: Lie Algebras and Lie Groups Jean-Pierre Serre, 2009-02-07 This book reproduces J-P. Serre's 1964 Harvard lectures. The aim is to introduce the reader to the Lie dictionary: Lie algebras and Lie groups. Special features of the presentation are its emphasis on formal groups (in the Lie group part) and the use of analytic manifolds on p-adic fields. Some knowledge of algebra and calculus is required of the reader, but the text is easily accessible to graduate students, and to mathematicians at large.
  serre local fields: A Brief Guide to Algebraic Number Theory H. P. F. Swinnerton-Dyer, 2001-02-22 Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.
  serre local fields: Algebraic Geometry And Its Applications: Dedicated To Gilles Lachaud On His 60th Birthday - Proceedings Of The First Saga Conference Robert Rolland, James Hirschfeld, Jean Chaumine, 2008-04-17 This volume covers many topics, including number theory, Boolean functions, combinatorial geometry, and algorithms over finite fields. It contains many new, theoretical and applicable results, as well as surveys that were presented by the top specialists in these areas. New results include an answer to one of Serre's questions, posted in a letter to Top; cryptographic applications of the discrete logarithm problem related to elliptic curves and hyperelliptic curves; construction of function field towers; construction of new classes of Boolean cryptographic functions; and algorithmic applications of algebraic geometry.
  serre local fields: Compactifications of Symmetric Spaces Yves Guivarc'h, Lizhen Ji, John C. Taylor, 2012-12-06 The concept of symmetric space is of central importance in many branches of mathematics. Compactifications of these spaces have been studied from the points of view of representation theory, geometry, and random walks. This work is devoted to the study of the interrelationships among these various compactifications and, in particular, focuses on the martin compactifications. It is the first exposition to treat compactifications of symmetric spaces systematically and to uniformized the various points of view. The work is largely self-contained, with comprehensive references to the literature. It is an excellent resource for both researchers and graduate students.
  serre local fields: Linear Representations of Finite Groups Jean Pierre Serre, 1996
  serre local fields: Number Fields Daniel A. Marcus, 2018-07-05 Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.
  serre local fields: Central Simple Algebras and Galois Cohomology Philippe Gille, Tamás Szamuely, 2017-08-10 The first comprehensive, modern introduction to the theory of central simple algebras over arbitrary fields, this book starts from the basics and reaches such advanced results as the Merkurjev–Suslin theorem, a culmination of work initiated by Brauer, Noether, Hasse and Albert, and the starting point of current research in motivic cohomology theory by Voevodsky, Suslin, Rost and others. Assuming only a solid background in algebra, the text covers the basic theory of central simple algebras, methods of Galois descent and Galois cohomology, Severi–Brauer varieties, and techniques in Milnor K-theory and K-cohomology, leading to a full proof of the Merkurjev–Suslin theorem and its application to the characterization of reduced norms. The final chapter rounds off the theory by presenting the results in positive characteristic, including the theorems of Bloch–Gabber–Kato and Izhboldin. This second edition has been carefully revised and updated, and contains important additional topics.
  serre local fields: Class Field Theory J. Neukirch, 2012-12-06 Class field theory, which is so immediately compelling in its main assertions, has, ever since its invention, suffered from the fact that its proofs have required a complicated and, by comparison with the results, rather imper spicuous system of arguments which have tended to jump around all over the place. My earlier presentation of the theory [41] has strengthened me in the belief that a highly elaborate mechanism, such as, for example, cohomol ogy, might not be adequate for a number-theoretical law admitting a very direct formulation, and that the truth of such a law must be susceptible to a far more immediate insight. I was determined to write the present, new account of class field theory by the discovery that, in fact, both the local and the global reciprocity laws may be subsumed under a purely group theoretical principle, admitting an entirely elementary description. This de scription makes possible a new foundation for the entire theory. The rapid advance to the main theorems of class field theory which results from this approach has made it possible to include in this volume the most important consequences and elaborations, and further related theories, with the excep tion of the cohomology version which I have this time excluded. This remains a significant variant, rich in application, but its principal results should be directly obtained from the material treated here.
  serre local fields: Riemannian Manifolds John M. Lee, 2006-04-06 This book is designed as a textbook for a one-quarter or one-semester graduate course on Riemannian geometry, for students who are familiar with topological and differentiable manifolds. It focuses on developing an intimate acquaintance with the geometric meaning of curvature. In so doing, it introduces and demonstrates the uses of all the main technical tools needed for a careful study of Riemannian manifolds. The author has selected a set of topics that can reasonably be covered in ten to fifteen weeks, instead of making any attempt to provide an encyclopedic treatment of the subject. The book begins with a careful treatment of the machinery of metrics, connections, and geodesics,without which one cannot claim to be doing Riemannian geometry. It then introduces the Riemann curvature tensor, and quickly moves on to submanifold theory in order to give the curvature tensor a concrete quantitative interpretation. From then on, all efforts are bent toward proving the four most fundamental theorems relating curvature and topology: the Gauss–Bonnet theorem (expressing the total curvature of a surface in term so fits topological type), the Cartan–Hadamard theorem (restricting the topology of manifolds of nonpositive curvature), Bonnet’s theorem (giving analogous restrictions on manifolds of strictly positive curvature), and a special case of the Cartan–Ambrose–Hicks theorem (characterizing manifolds of constant curvature). Many other results and techniques might reasonably claim a place in an introductory Riemannian geometry course, but could not be included due to time constraints.
  serre local fields: Groups, Rings and Group Rings A. Giambruno, César Polcino Milies, Sudarshan K. Sehgal, 2009 Represents the proceedings of the conference on Groups, Rings and Group Rings, held July 28 - August 2, 2008, in Ubatuba, Brazil. This title contains results in active research areas in the theory of groups, group rings and algebras (including noncommutative rings), polynomial identities, Lie algebras and superalgebras.
Serre de jardin - Leroy Merlin
Serre en verre, serre en polycarbonate, serre tunnel… Leroy Merlin vous propose un large choix de serres de jardin, adaptées à la taille de votre potager et à vos besoins. Les serres de jardin …

Serre-livre - Leroy Merlin
Serre-livre : Vous garantir le bon achat, on y travaille tous les jours. Retrouvez chez Leroy Merlin notre sélection de 315 produits, au prix le plus juste, sur un large choix de marques et de …

Serre de jardin 3x2 au meilleur prix - Leroy Merlin
Serre de jardin 3x2 : la sélection produits Leroy Merlin de ce mercredi au meilleur prix ! Retrouvez ci-après nos 80 offres, marques, références et promotions en stock prêtes à être livrées …

Jardiniere balcon au meilleur prix - Leroy Merlin
Jardiniere balcon . Jardiniere balcon : la sélection produits Leroy Merlin de ce mercredi au meilleur prix ! Retrouvez ci-après nos 633 offres, marques, références et promotions en stock …

Serre tunnel - Leroy Merlin
Serre tunnel : Vous garantir le bon achat, on y travaille tous les jours. Retrouvez chez Leroy Merlin notre sélection de 227 produits, au prix le plus juste, sur un large choix de marques et …

Bache de serre de jardin au meilleur prix | Leroy Merlin
bache de serre de jardin - Marques, Stock & Livraison rapide chez Leroy Merlin. Un grand choix de produits aux meilleurs prix.

Mini serre et serre de balcon - Leroy Merlin
Mini serre et serre de balcon : Vous garantir le bon achat, on y travaille tous les jours. Retrouvez chez Leroy Merlin notre sélection de 315 produits, au prix le plus juste, sur un large choix de …

Serre-joint - Leroy Merlin
Le serre-joint à pompe vous offrira la couple de serrage la plus puissant : 1200 kg de pression. Retrouvez nos serres-joints disponibles en livraison à domicile et en retrait 2h dans l’un de 130 …

Potager sur pieds - Leroy Merlin
Serre de jardin, carré potager et jardinière Carré potager, Potager sur pieds Potager sur pieds; Potager sur pieds . Potager sur pieds : Vous garantir le bon achat, on y travaille tous les jours. …

Jardinières en bois au meilleur prix | Leroy Merlin
Jardinières en bois . Jardinières en bois : la sélection produits Leroy Merlin de ce jeudi au meilleur prix ! Retrouvez ci-après nos 5764 offres, marques, références et promotions en stock prêtes …

Serre de jardin - Leroy Merlin
Serre en verre, serre en polycarbonate, serre tunnel… Leroy Merlin vous propose un large choix de serres de jardin, adaptées à la taille de votre potager et à vos besoins. Les serres de jardin …

Serre-livre - Leroy Merlin
Serre-livre : Vous garantir le bon achat, on y travaille tous les jours. Retrouvez chez Leroy Merlin notre sélection de 315 produits, au prix le plus juste, sur un large choix de marques et de …

Serre de jardin 3x2 au meilleur prix - Leroy Merlin
Serre de jardin 3x2 : la sélection produits Leroy Merlin de ce mercredi au meilleur prix ! Retrouvez ci-après nos 80 offres, marques, références et promotions en stock prêtes à être livrées …

Jardiniere balcon au meilleur prix - Leroy Merlin
Jardiniere balcon . Jardiniere balcon : la sélection produits Leroy Merlin de ce mercredi au meilleur prix ! Retrouvez ci-après nos 633 offres, marques, références et promotions en stock …

Serre tunnel - Leroy Merlin
Serre tunnel : Vous garantir le bon achat, on y travaille tous les jours. Retrouvez chez Leroy Merlin notre sélection de 227 produits, au prix le plus juste, sur un large choix de marques et …

Bache de serre de jardin au meilleur prix | Leroy Merlin
bache de serre de jardin - Marques, Stock & Livraison rapide chez Leroy Merlin. Un grand choix de produits aux meilleurs prix.

Mini serre et serre de balcon - Leroy Merlin
Mini serre et serre de balcon : Vous garantir le bon achat, on y travaille tous les jours. Retrouvez chez Leroy Merlin notre sélection de 315 produits, au prix le plus juste, sur un large choix de …

Serre-joint - Leroy Merlin
Le serre-joint à pompe vous offrira la couple de serrage la plus puissant : 1200 kg de pression. Retrouvez nos serres-joints disponibles en livraison à domicile et en retrait 2h dans l’un de …

Potager sur pieds - Leroy Merlin
Serre de jardin, carré potager et jardinière Carré potager, Potager sur pieds Potager sur pieds; Potager sur pieds . Potager sur pieds : Vous garantir le bon achat, on y travaille tous les jours. …

Jardinières en bois au meilleur prix | Leroy Merlin
Jardinières en bois . Jardinières en bois : la sélection produits Leroy Merlin de ce jeudi au meilleur prix ! Retrouvez ci-après nos 5764 offres, marques, références et promotions en stock prêtes …