Advertisement
sas enterprise guide data mining: Data Mining Using SAS Enterprise Miner Randall Matignon, 2007-08-03 The most thorough and up-to-date introduction to data mining techniques using SAS Enterprise Miner. The Sample, Explore, Modify, Model, and Assess (SEMMA) methodology of SAS Enterprise Miner is an extremely valuable analytical tool for making critical business and marketing decisions. Until now, there has been no single, authoritative book that explores every node relationship and pattern that is a part of the Enterprise Miner software with regard to SEMMA design and data mining analysis. Data Mining Using SAS Enterprise Miner introduces readers to a wide variety of data mining techniques and explains the purpose of-and reasoning behind-every node that is a part of the Enterprise Miner software. Each chapter begins with a short introduction to the assortment of statistics that is generated from the various nodes in SAS Enterprise Miner v4.3, followed by detailed explanations of configuration settings that are located within each node. Features of the book include: The exploration of node relationships and patterns using data from an assortment of computations, charts, and graphs commonly used in SAS procedures A step-by-step approach to each node discussion, along with an assortment of illustrations that acquaint the reader with the SAS Enterprise Miner working environment Descriptive detail of the powerful Score node and associated SAS code, which showcases the important of managing, editing, executing, and creating custom-designed Score code for the benefit of fair and comprehensive business decision-making Complete coverage of the wide variety of statistical techniques that can be performed using the SEMMA nodes An accompanying Web site that provides downloadable Score code, training code, and data sets for further implementation, manipulation, and interpretation as well as SAS/IML software programming code This book is a well-crafted study guide on the various methods employed to randomly sample, partition, graph, transform, filter, impute, replace, cluster, and process data as well as interactively group and iteratively process data while performing a wide variety of modeling techniques within the process flow of the SAS Enterprise Miner software. Data Mining Using SAS Enterprise Miner is suitable as a supplemental text for advanced undergraduate and graduate students of statistics and computer science and is also an invaluable, all-encompassing guide to data mining for novice statisticians and experts alike. |
sas enterprise guide data mining: Data Mining Using SAS Enterprise Miner Randall Matignon, 2007-08-13 The most thorough and up-to-date introduction to data mining techniques using SAS Enterprise Miner. The Sample, Explore, Modify, Model, and Assess (SEMMA) methodology of SAS Enterprise Miner is an extremely valuable analytical tool for making critical business and marketing decisions. Until now, there has been no single, authoritative book that explores every node relationship and pattern that is a part of the Enterprise Miner software with regard to SEMMA design and data mining analysis. Data Mining Using SAS Enterprise Miner introduces readers to a wide variety of data mining techniques and explains the purpose of-and reasoning behind-every node that is a part of the Enterprise Miner software. Each chapter begins with a short introduction to the assortment of statistics that is generated from the various nodes in SAS Enterprise Miner v4.3, followed by detailed explanations of configuration settings that are located within each node. Features of the book include: The exploration of node relationships and patterns using data from an assortment of computations, charts, and graphs commonly used in SAS procedures A step-by-step approach to each node discussion, along with an assortment of illustrations that acquaint the reader with the SAS Enterprise Miner working environment Descriptive detail of the powerful Score node and associated SAS code, which showcases the important of managing, editing, executing, and creating custom-designed Score code for the benefit of fair and comprehensive business decision-making Complete coverage of the wide variety of statistical techniques that can be performed using the SEMMA nodes An accompanying Web site that provides downloadable Score code, training code, and data sets for further implementation, manipulation, and interpretation as well as SAS/IML software programming code This book is a well-crafted study guide on the various methods employed to randomly sample, partition, graph, transform, filter, impute, replace, cluster, and process data as well as interactively group and iteratively process data while performing a wide variety of modeling techniques within the process flow of the SAS Enterprise Miner software. Data Mining Using SAS Enterprise Miner is suitable as a supplemental text for advanced undergraduate and graduate students of statistics and computer science and is also an invaluable, all-encompassing guide to data mining for novice statisticians and experts alike. |
sas enterprise guide data mining: Data Mining Using SAS Enterprise Miner SAS Institute, 2003 |
sas enterprise guide data mining: Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner Olivia Parr-Rud, 2014-10-01 This tutorial for data analysts new to SAS Enterprise Guide and SAS Enterprise Miner provides valuable experience using powerful statistical software to complete the kinds of business analytics common to most industries. Today’s businesses increasingly use data to drive decisions that keep them competitive. Especially with the influx of big data, the importance of data analysis to improve every dimension of business cannot be overstated. Data analysts are therefore in demand; however, many hires and prospective hires, although talented with respect to business and statistics, lack the know-how to perform business analytics with advanced statistical software. Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner is a beginner’s guide with clear, illustrated, step-by-step instructions that will lead you through examples based on business case studies. You will formulate the business objective, manage the data, and perform analyses that you can use to optimize marketing, risk, and customer relationship management, as well as business processes and human resources. Topics include descriptive analysis, predictive modeling and analytics, customer segmentation, market analysis, share-of-wallet analysis, penetration analysis, and business intelligence. This book is part of the SAS Press program. |
sas enterprise guide data mining: Customer Segmentation and Clustering Using SAS Enterprise Miner, Third Edition Randall S. Collica, 2017-03-23 Résumé : A working guide that uses real-world data, this step-by-step resource will show you how to segment customers more intelligently and achieve the one-to-one customer relationship that your business needs. -- |
sas enterprise guide data mining: Applied Data Mining for Forecasting Using SAS Tim Rey , Arthur Kordon, Chip Wells, 2012-07-02 Applied Data Mining for Forecasting Using SAS, by Tim Rey, Arthur Kordon, and Chip Wells, introduces and describes approaches for mining large time series data sets. Written for forecasting practitioners, engineers, statisticians, and economists, the book details how to select useful candidate input variables for time series regression models in environments when the number of candidates is large, and identifies the correlation structure between selected candidate inputs and the forecast variable. This book is essential for forecasting practitioners who need to understand the practical issues involved in applied forecasting in a business setting. Through numerous real-world examples, the authors demonstrate how to effectively use SAS software to meet their industrial forecasting needs. This book is part of the SAS Press program. |
sas enterprise guide data mining: Decision Trees for Business Intelligence and Data Mining Barry De Ville, 2006 This example-driven guide illustrates the application and operation of decision trees in data mining, business intelligence, business analytics, prediction, and knowledge discovery. It explains in detail the use of decision trees as a data mining technique and how this technique complements and supplements other business intelligence applications. |
sas enterprise guide data mining: Text Mining and Analysis Dr. Goutam Chakraborty, Murali Pagolu, Satish Garla, 2014-11-22 Big data: It's unstructured, it's coming at you fast, and there's lots of it. In fact, the majority of big data is text-oriented, thanks to the proliferation of online sources such as blogs, emails, and social media. However, having big data means little if you can't leverage it with analytics. Now you can explore the large volumes of unstructured text data that your organization has collected with Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS. This hands-on guide to text analytics using SAS provides detailed, step-by-step instructions and explanations on how to mine your text data for valuable insight. Through its comprehensive approach, you'll learn not just how to analyze your data, but how to collect, cleanse, organize, categorize, explore, and interpret it as well. Text Mining and Analysis also features an extensive set of case studies, so you can see examples of how the applications work with real-world data from a variety of industries. Text analytics enables you to gain insights about your customers' behaviors and sentiments. Leverage your organization's text data, and use those insights for making better business decisions with Text Mining and Analysis. This book is part of the SAS Press program. |
sas enterprise guide data mining: Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner Olivia Parr-Rud, 2014-10 This tutorial for data analysts new to SAS Enterprise Guide and SAS Enterprise Miner provides valuable experience using powerful statistical software to complete the kinds of business analytics common to most industries. This beginnner's guide with clear, illustrated, step-by-step instructions will lead you through examples based on business case studies. You will formulate the business objective, manage the data, and perform analyses that you can use to optimize marketing, risk, and customer relationship management, as well as business processes and human resources. Topics include descriptive analysis, predictive modeling and analytics, customer segmentation, market analysis, share-of-wallet analysis, penetration analysis, and business intelligence. -- |
sas enterprise guide data mining: CRM Segmentation and Clustering Using SAS Enterprise Miner Randall S. Collica, 2007 Understanding the customer is critical to your company's success. In this instructive guide, Randy Collica employs SAS Enterprise Miner and the most commonly available techniques for customer relationship management (CRM). You will learn how to segment customers more intelligently and to achieve, or at least get closer to, the one-to-one customer relationship that today's businesses want. Step-by-step examples and exercises clearly illustrate the concepts of segmentation and clustering in the context of CRM. The book, with a foreword by Michael J. A. Berry, is sectioned into three parts. Part 1 reviews the basics of segmentation and clustering at an introductory level, providing examples from a variety of industries. Part 2 offers an in-depth treatment of segmentation with practical topics such as when and how to update your models and clustering with many attributes. Part 3 goes beyond traditional segmentation practices to introduce recommended strategies for clustering product affinities, handling missing data, and incorporating textual records into your predictive model with SAS Text Miner software.This straight-forward guide will appeal to anyone who seeks to better understand customers or prospective customers. Additionally, professors and students will find the book well suited for a business data mining analytics course in an MBA program or related course of study. You should understand basic statistics, but no prior knowledge of data mining or SAS Enterprise Miner is required. Included on your bonus CD-ROM are the following: example SAS code, data sets, macros, and Enterprise Miner templates. |
sas enterprise guide data mining: Practical Business Analytics Using SAS Shailendra Kadre, Venkat Reddy Konasani, 2015-02-07 Practical Business Analytics Using SAS: A Hands-on Guide shows SAS users and businesspeople how to analyze data effectively in real-life business scenarios. The book begins with an introduction to analytics, analytical tools, and SAS programming. The authors—both SAS, statistics, analytics, and big data experts—first show how SAS is used in business, and then how to get started programming in SAS by importing data and learning how to manipulate it. Besides illustrating SAS basic functions, you will see how each function can be used to get the information you need to improve business performance. Each chapter offers hands-on exercises drawn from real business situations. The book then provides an overview of statistics, as well as instruction on exploring data, preparing it for analysis, and testing hypotheses. You will learn how to use SAS to perform analytics and model using both basic and advanced techniques like multiple regression, logistic regression, and time series analysis, among other topics. The book concludes with a chapter on analyzing big data. Illustrations from banking and other industries make the principles and methods come to life. Readers will find just enough theory to understand the practical examples and case studies, which cover all industries. Written for a corporate IT and programming audience that wants to upgrade skills or enter the analytics field, this book includes: More than 200 examples and exercises, including code and datasets for practice. Relevant examples for all industries. Case studies that show how to use SAS analytics to identify opportunities, solve complicated problems, and chart a course. Practical Business Analytics Using SAS: A Hands-on Guide gives you the tools you need to gain insight into the data at your fingertips, predict business conditions for better planning, and make excellent decisions. Whether you are in retail, finance, healthcare, manufacturing, government, or any other industry, this book will help your organization increase revenue, drive down costs, improve marketing, and satisfy customers better than ever before. |
sas enterprise guide data mining: SAS For Dummies Stephen McDaniel, Chris Hemedinger, 2010-03-16 The fun and easy way to learn to use this leading business intelligence tool Written by an author team who is directly involved with SAS, this easy-to-follow guide is fully updated for the latest release of SAS and covers just what you need to put this popular software to work in your business. SAS allows any business or enterprise to improve data delivery, analysis, reporting, movement across a company, data mining, forecasting, statistical analysis, and more. SAS For Dummies, 2nd Edition gives you the necessary background on what SAS can do for you and explains how to use the Enterprise Guide. SAS provides statistical and data analysis tools to help you deal with all kinds of data: operational, financial, performance, and more Places special emphasis on Enterprise Guide and other analytical tools, covering all commonly used features Covers all commonly used features and shows you the practical applications you can put to work in your business Explores how to get various types of data into the software and how to work with databases Covers producing reports and Web reporting tools, analytics, macros, and working with your data In the easy-to-follow, no-nonsense For Dummies format, SAS For Dummies gives you the knowledge and the confidence to get SAS working for your organization. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file. |
sas enterprise guide data mining: Data Preparation for Analytics Using SAS Gerhard Svolba, 2006-11-27 Written for anyone involved in the data preparation process for analytics, Gerhard Svolba's Data Preparation for Analytics Using SAS offers practical advice in the form of SAS coding tips and tricks, and provides the reader with a conceptual background on data structures and considerations from a business point of view. The tasks addressed include viewing analytic data preparation in the context of its business environment, identifying the specifics of predictive modeling for data mart creation, understanding the concepts and considerations of data preparation for time series analysis, using various SAS procedures and SAS Enterprise Miner for scoring, creating meaningful derived variables for all data mart types, using powerful SAS macros to make changes among the various data mart structures, and more! |
sas enterprise guide data mining: Handbook of Statistical Analysis and Data Mining Applications Robert Nisbet, John Elder, Gary D. Miner, 2009-05-14 The Handbook of Statistical Analysis and Data Mining Applications is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers (both academic and industrial) through all stages of data analysis, model building and implementation. The Handbook helps one discern the technical and business problem, understand the strengths and weaknesses of modern data mining algorithms, and employ the right statistical methods for practical application. Use this book to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques, and discusses their application to real problems, in ways accessible and beneficial to practitioners across industries - from science and engineering, to medicine, academia and commerce. This handbook brings together, in a single resource, all the information a beginner will need to understand the tools and issues in data mining to build successful data mining solutions. - Written By Practitioners for Practitioners - Non-technical explanations build understanding without jargon and equations - Tutorials in numerous fields of study provide step-by-step instruction on how to use supplied tools to build models - Practical advice from successful real-world implementations - Includes extensive case studies, examples, MS PowerPoint slides and datasets - CD-DVD with valuable fully-working 90-day software included: Complete Data Miner - QC-Miner - Text Miner bound with book |
sas enterprise guide data mining: Simulating Data with SAS Rick Wicklin, 2013-04-22 Data simulation is a fundamental technique in statistical programming and research. Rick Wicklin's Simulating Data with SAS brings together the most useful algorithms and the best programming techniques for efficient data simulation in an accessible how-to book for practicing statisticians and statistical programmers. This book discusses in detail how to simulate data from common univariate and multivariate distributions, and how to use simulation to evaluate statistical techniques. It also covers simulating correlated data, data for regression models, spatial data, and data with given moments. It provides tips and techniques for beginning programmers, and offers libraries of functions for advanced practitioners. As the first book devoted to simulating data across a range of statistical applications, Simulating Data with SAS is an essential tool for programmers, analysts, researchers, and students who use SAS software. This book is part of the SAS Press program. |
sas enterprise guide data mining: Getting Started with SAS Enterprise Miner 5.2 SAS Institute, 2006 SAS Enterprise Miner 5.2 is the SAS data mining solution that addresses the entire data mining process using an intuitive Java point-and-click interface. This guide introduces you to the core functionality of SAS Enterprise Miner and shows you how to perform basic data mining tasks. You will learn how to use the graphical user interface (GUI) tools to create and manage process flow diagrams and projects, and to export mining results for reporting and integration with other SAS software. The data mining tasks you will learn include sampling, exploring, modifying, modeling, and assessing data in order to create and refine predictive models. Getting Started with Enterprise Miner 5.2 provides step-by-step examples that create a complete process flow diagram, including graphic results. This title is also available online. This title is intended for statisticians, quantitative analysts, and business technologists who want to learn to use the data mining capabilities of SAS Enterprise Miner. |
sas enterprise guide data mining: Mastering SAS Programming for Data Warehousing Monika Wahi, 2020-10-16 Build a strong foundation in SAS data warehousing by understanding data transformation code and policy, data stewardship and management, interconnectivity between SAS and other warehousing products, and print and web reporting Key Features Understand how to use SAS macros for standardizing extract, transform, and load (ETL) protocols Develop and use data curation files for effective warehouse management Learn how to develop and manage ETL, policies, and print and web reports that meet user needs Book DescriptionSAS is used for various functions in the development and maintenance of data warehouses, thanks to its reputation of being able to handle ’big data’. This book will help you learn the pros and cons of storing data in SAS. As you progress, you’ll understand how to document and design extract-transform-load (ETL) protocols for SAS processes. Later, you’ll focus on how the use of SAS arrays and macros can help standardize ETL. The book will also help you examine approaches for serving up data using SAS and explore how connecting SAS to other systems can enhance the data warehouse user’s experience. By the end of this data management book, you will have a fundamental understanding of the roles SAS can play in a warehouse environment, and be able to choose wisely when designing your data warehousing processes involving SAS.What you will learn Develop efficient ways to manage data input/output (I/O) in SAS Create and manage extract, transform, and load (ETL) code in SAS Standardize ETL through macro variables, macros, and arrays Identify data warehouse users and ensure their needs are met Design crosswalk and other variables to serve analyst needs Maintain data curation files to improve communication and management Use the output delivery system (ODS) for print and web reporting Connect other products to SAS to optimize storage and reporting Who this book is for This book is for data architects, managers leading data projects, and programmers or developers using SAS who want to effectively maintain a data lake, data mart, or data warehouse. |
sas enterprise guide data mining: Building Better Models with JMP Pro Jim Grayson, Sam Gardner, Mia Stephens, 2015-08-01 Building Better Models with JMP® Pro provides an example-based introduction to business analytics, with a proven process that guides you in the application of modeling tools and concepts. It gives you the what, why, and how of using JMP® Pro for building and applying analytic models. This book is designed for business analysts, managers, and practitioners who may not have a solid statistical background, but need to be able to readily apply analytic methods to solve business problems. In addition, this book will greatly benefit faculty members who teach any of the following subjects at the lower to upper graduate level: predictive modeling, data mining, and business analytics. Novice to advanced users in business statistics, business analytics, and predictive modeling will find that it provides a peek inside the black box of algorithms and the methods used. Topics include: regression, logistic regression, classification and regression trees, neural networks, model cross-validation, model comparison and selection, and data reduction techniques. Full of rich examples, Building Better Models with JMP Pro is an applied book on business analytics and modeling that introduces a simple methodology for managing and executing analytics projects. No prior experience with JMP is needed. Make more informed decisions from your data using this newest JMP book. |
sas enterprise guide data mining: Introduction to Data Mining Using SAS Enterprise Miner Patricia B. Cerrito, 2006 This manual provides a general, practical introduction to data mining using SAS Enterprise Miner and SAS Text Miner software--Preface. |
sas enterprise guide data mining: Learning SAS by Example Ron Cody, 2018-07-03 Learn to program SAS by example! Learning SAS by Example, A Programmer’s Guide, Second Edition, teaches SAS programming from very basic concepts to more advanced topics. Because most programmers prefer examples rather than reference-type syntax, this book uses short examples to explain each topic. The second edition has brought this classic book on SAS programming up to the latest SAS version, with new chapters that cover topics such as PROC SGPLOT and Perl regular expressions. This book belongs on the shelf (or e-book reader) of anyone who programs in SAS, from those with little programming experience who want to learn SAS to intermediate and even advanced SAS programmers who want to learn new techniques or identify new ways to accomplish existing tasks. In an instructive and conversational tone, author Ron Cody clearly explains each programming technique and then illustrates it with one or more real-life examples, followed by a detailed description of how the program works. The text is divided into four major sections: Getting Started, DATA Step Processing, Presenting and Summarizing Your Data, and Advanced Topics. Subjects addressed include Reading data from external sources Learning details of DATA step programming Subsetting and combining SAS data sets Understanding SAS functions and working with arrays Creating reports with PROC REPORT and PROC TABULATE Getting started with the SAS macro language Leveraging PROC SQL Generating high-quality graphics Using advanced features of user-defined formats and informats Restructuring SAS data sets Working with multiple observations per subject Getting started with Perl regular expressions You can test your knowledge and hone your skills by solving the problems at the end of each chapter. |
sas enterprise guide data mining: Data Preparation for Data Mining Dorian Pyle, 1999-03-22 This book focuses on the importance of clean, well-structured data as the first step to successful data mining. It shows how data should be prepared prior to mining in order to maximize mining performance. |
sas enterprise guide data mining: Getting Started with SAS Enterprise Miner 6.1 SAS Institute, 2009 Introduces the core functionality of SAS Enterprise Miner and shows how to perform basic data-mining tasks. Provides step-by-step examples that create a complete process-flow diagram, including graphic results. |
sas enterprise guide data mining: Encyclopedia of Research Design Neil J. Salkind, 2010-06-22 To request a free 30-day online trial to this product, visit www.sagepub.com/freetrial Research design can be daunting for all types of researchers. At its heart it might be described as a formalized approach toward problem solving, thinking, and acquiring knowledge—the success of which depends upon clearly defined objectives and appropriate choice of statistical tools, tests, and analysis to meet a project′s objectives. Comprising more than 500 entries, the Encyclopedia of Research Design explains how to make decisions about research design, undertake research projects in an ethical manner, interpret and draw valid inferences from data, and evaluate experiment design strategies and results. Two additional features carry this encyclopedia far above other works in the field: bibliographic entries devoted to significant articles in the history of research design and reviews of contemporary tools, such as software and statistical procedures, used to analyze results. Key Features Covers the spectrum of research design strategies, from material presented in introductory classes to topics necessary in graduate research Addresses cross- and multidisciplinary research needs, with many examples drawn from the social and behavioral sciences, neurosciences, and biomedical and life sciences Provides summaries of advantages and disadvantages of often-used strategies Uses hundreds of sample tables, figures, and equations based on real-life cases Key Themes Descriptive Statistics Distributions Graphical Displays of Data Hypothesis Testing Important Publications Inferential Statistics Item Response Theory Mathematical Concepts Measurement Concepts Organizations Publishing Qualitative Research Reliability of Scores Research Design Concepts Research Designs Research Ethics Research Process Research Validity Issues Sampling Scaling Software Applications Statistical Assumptions Statistical Concepts Statistical Procedures Statistical Tests Theories, Laws, and Principles Types of Variables Validity of Scores The Encyclopedia of Research Design is the perfect instrument for new learners as well as experienced researchers to explore both the original and newest branches of the field. |
sas enterprise guide data mining: A Handbook of Statistical Graphics Using SAS ODS Geoff Der, Brian S. Everitt, 2014-08-15 Easily Use SAS to Produce Your Graphics Diagrams, plots, and other types of graphics are indispensable components in nearly all phases of statistical analysis, from the initial assessment of the data to the selection of appropriate statistical models to the diagnosis of the chosen models once they have been fitted to the data. Harnessing the full graphics capabilities of SAS, A Handbook of Statistical Graphics Using SAS ODS covers essential graphical methods needed in every statistician’s toolkit. It explains how to implement the methods using SAS 9.4. The handbook shows how to use SAS to create many types of statistical graphics for exploring data and diagnosing fitted models. It uses SAS’s newer ODS graphics throughout as this system offers a number of advantages, including ease of use, high quality of results, consistent appearance, and convenient semiautomatic graphs from the statistical procedures. Each chapter deals graphically with several sets of example data from a wide variety of areas, such as epidemiology, medicine, and psychology. These examples illustrate the use of graphic displays to give an overview of data, to suggest possible hypotheses for testing new data, and to interpret fitted statistical models. The SAS programs and data sets are available online. |
sas enterprise guide data mining: Getting Started with SAS Enterprise Miner 12.3 SAS Institute, 2014-05-14 Introduces the core functionality of SAS Enterprise Miner 12.3 on SAS 9.4 and shows how to perform basic data-mining tasks. Provides step-by-step examples that create a complete process-flow diagram including graphic results. Introduces the core functionality of SAS Enterprise Miner 12.3 on SAS 9.4 and shows how to perform basic data-mining tasks. Provides step-by-step examples that create a complete process-flow diagram including graphic results. |
sas enterprise guide data mining: Deep Learning for Numerical Applications with SAS (Hardcover Edition) Henry Bequet, 2019-08-16 Foreword by Oliver Schabenberger, PhD Executive Vice President, Chief Operating Officer and Chief Technology Officer SAS Dive into deep learning! Machine learning and deep learning are ubiquitous in our homes and workplaces-from machine translation to image recognition and predictive analytics to autonomous driving. Deep learning holds the promise of improving many everyday tasks in a variety of disciplines. Much deep learning literature explains the mechanics of deep learning with the goal of implementing cognitive applications fueled by Big Data. This book is different. Written by an expert in high-performance analytics, Deep Learning for Numerical Applications with SAS introduces a new field: Deep Learning for Numerical Applications (DL4NA). Contrary to deep learning, the primary goal of DL4NA is not to learn from data but to dramatically improve the performance of numerical applications by training deep neural networks. Deep Learning for Numerical Applications with SAS presents deep learning concepts in SAS along with step-by-step techniques that allow you to easily reproduce the examples on your high-performance analytics systems. It also discusses the latest hardware innovations that can power your SAS programs: from many-core CPUs to GPUs to FPGAs to ASICs. This book assumes the reader has no prior knowledge of high-performance computing, machine learning, or deep learning. It is intended for SAS developers who want to develop and run the fastest analytics. In addition to discovering the latest trends in hybrid architectures with GPUs and FPGAS, readers will learn how to Use deep learning in SAS Speed up their analytics using deep learning Easily write highly parallel programs using the many task computing paradigms |
sas enterprise guide data mining: Getting Started with SAS Enterprise Miner 13. 1 SAS Institute, 2013-12 Introduces the core functionality of SAS Enterprise Miner and shows how to perform basic data mining tasks. Provides step-by-step examples that create a complete process-flow diagram including graphic results. Introduces the core functionality of SAS Enterprise Miner and shows how to perform basic data mining tasks. Provides step-by-step examples that create a complete process-flow diagram including graphic results. |
sas enterprise guide data mining: SAS and R Ken Kleinman, Nicholas J. Horton, 2014-07-17 An Up-to-Date, All-in-One Resource for Using SAS and R to Perform Frequent Tasks The first edition of this popular guide provided a path between SAS and R using an easy-to-understand, dictionary-like approach. Retaining the same accessible format, SAS and R: Data Management, Statistical Analysis, and Graphics, Second Edition explains how to easily perform an analytical task in both SAS and R, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation. The book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, and graphics, along with more complex applications. New to the Second Edition This edition now covers RStudio, a powerful and easy-to-use interface for R. It incorporates a number of additional topics, including using application program interfaces (APIs), accessing data through database management systems, using reproducible analysis tools, and statistical analysis with Markov chain Monte Carlo (MCMC) methods and finite mixture models. It also includes extended examples of simulations and many new examples. Enables Easy Mobility between the Two Systems Through the extensive indexing and cross-referencing, users can directly find and implement the material they need. SAS users can look up tasks in the SAS index and then find the associated R code while R users can benefit from the R index in a similar manner. Numerous example analyses demonstrate the code in action and facilitate further exploration. The datasets and code are available for download on the book’s website. |
sas enterprise guide data mining: Getting Started with SAS Enterprise Miner 12. 3 SAS Institute, 2013-07 Introduces the core functionality of SAS Enterprise Miner 12.3 on SAS 9.4 and shows how to perform basic data-mining tasks. Provides step-by-step examples that create a complete process-flow diagram including graphic results. Introduces the core functionality of SAS Enterprise Miner 12.3 on SAS 9.4 and shows how to perform basic data-mining tasks. Provides step-by-step examples that create a complete process-flow diagram including graphic results. |
sas enterprise guide data mining: Multivariate Data Reduction and Discrimination with SAS Software Ravindra Khattree, Dayanand N. Naik, 2000-08-14 Easy to read and comprehensive, this book presents descriptive multivariate (DMV) statistical methods using real-world problems and data sets. It offers a unique approach to integrating statistical methods, various kinds of advanced data analyses, and applications of the popular SAS software aids. Emphasis is placed on the correct interpretation of output to draw meaningful conclusions in a variety of disciplines and industries. |
sas enterprise guide data mining: Big Data, Data Mining, and Machine Learning Jared Dean, 2014-05-07 With big data analytics comes big insights into profitability Big data is big business. But having the data and the computational power to process it isn't nearly enough to produce meaningful results. Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners is a complete resource for technology and marketing executives looking to cut through the hype and produce real results that hit the bottom line. Providing an engaging, thorough overview of the current state of big data analytics and the growing trend toward high performance computing architectures, the book is a detail-driven look into how big data analytics can be leveraged to foster positive change and drive efficiency. With continued exponential growth in data and ever more competitive markets, businesses must adapt quickly to gain every competitive advantage available. Big data analytics can serve as the linchpin for initiatives that drive business, but only if the underlying technology and analysis is fully understood and appreciated by engaged stakeholders. This book provides a view into the topic that executives, managers, and practitioners require, and includes: A complete overview of big data and its notable characteristics Details on high performance computing architectures for analytics, massively parallel processing (MPP), and in-memory databases Comprehensive coverage of data mining, text analytics, and machine learning algorithms A discussion of explanatory and predictive modeling, and how they can be applied to decision-making processes Big Data, Data Mining, and Machine Learning provides technology and marketing executives with the complete resource that has been notably absent from the veritable libraries of published books on the topic. Take control of your organization's big data analytics to produce real results with a resource that is comprehensive in scope and light on hyperbole. |
sas enterprise guide data mining: Data Mining for the Masses Matthew North, 2012-08-18 Have you ever found yourself working with a spreadsheet full of data and wishing you could make more sense of the numbers? Have you reviewed sales or operations reports, wondering if there's a better way to anticipate your customers' needs? Perhaps you've even thought to yourself: There's got to be more to these figures than what I'm seeing! Data Mining can help, and you don't need a Ph.D. in Computer Science to do it. You can forecast staffing levels, predict demand for inventory, even sift through millions of lines of customer emails looking for common themes-all using data mining. It's easier than you might think. In Data Mining for the Masses, professor Matt North-a former risk analyst and database developer for eBay.com-uses simple examples, clear explanations and free, powerful, easy-to-use software to teach you the basics of data mining; techniques that can help you answer some of your toughest business questions. You've got data and you know it's got value, if only you can figure out how to unlock it. This book can show you how. Let's start digging! Through an agreement with the Global Text Project, an electronic version of this text is available online at (http://globaltext.terry.uga.edu/books). Proceeds from the sales of printed copies through Amazon enable the author to support the Global Text Project's goal of making electronic texts available to students in developing economies. |
sas enterprise guide data mining: Getting Started with SAS Enterprise Miner 4.3 SAS Institute, 2004 SAS Enterprise Miner is the first and only data mining solution that addresses the entire data mining process-and it does it using an intuitive point-and-click interface. This beginner's guide describes the core functionality of SAS Enterprise Miner and shows you how to perform basic tasks. You will learn how to manage process flow diagrams and projects and how to use the graphical user interface (GUI) tools for SEMMA. The data mining tasks you will learn include sampling, exploring, modifying, modeling, and assessing. Step-by-step examples for creating a process flow diagram are also provided. This title is also available online. This title is intended for both quantitative analysts and business technologists who want to learn to use the data mining capabilities of SAS Enterprise Miner. Supports releases 9.1 and higher of SAS software. |
sas enterprise guide data mining: SAS for Forecasting Time Series, Third Edition John C. Brocklebank, Ph.D., David A. Dickey, Ph.D., Bong Choi, 2018-03-14 To use statistical methods and SAS applications to forecast the future values of data taken over time, you need only follow this thoroughly updated classic on the subject. With this third edition of SAS for Forecasting Time Series, intermediate-to-advanced SAS users—such as statisticians, economists, and data scientists—can now match the most sophisticated forecasting methods to the most current SAS applications. Starting with fundamentals, this new edition presents methods for modeling both univariate and multivariate data taken over time. From the well-known ARIMA models to unobserved components, methods that span the range from simple to complex are discussed and illustrated. Many of the newer methods are variations on the basic ARIMA structures. Completely updated, this new edition includes fresh, interesting business situations and data sets, and new sections on these up-to-date statistical methods: ARIMA models Vector autoregressive models Exponential smoothing models Unobserved component and state-space models Seasonal adjustment Spectral analysis Focusing on application, this guide teaches a wide range of forecasting techniques by example. The examples provide the statistical underpinnings necessary to put the methods into practice. The following up-to-date SAS applications are covered in this edition: The ARIMA procedure The AUTOREG procedure The VARMAX procedure The ESM procedure The UCM and SSM procedures The X13 procedure The SPECTRA procedure SAS Forecast Studio Each SAS application is presented with explanation of its strengths, weaknesses, and best uses. Even users of automated forecasting systems will benefit from this knowledge of what is done and why. Moreover, the accompanying examples can serve as templates that you easily adjust to fit your specific forecasting needs. This book is part of the SAS Press program. |
sas enterprise guide data mining: Data Quality for Analytics Using SAS Gerhard Svolba, 2012-04-01 Analytics offers many capabilities and options to measure and improve data quality, and SAS is perfectly suited to these tasks. Gerhard Svolba's Data Quality for Analytics Using SAS focuses on selecting the right data sources and ensuring data quantity, relevancy, and completeness. The book is made up of three parts. The first part, which is conceptual, defines data quality and contains text, definitions, explanations, and examples. The second part shows how the data quality status can be profiled and the ways that data quality can be improved with analytical methods. The final part details the consequences of poor data quality for predictive modeling and time series forecasting. With this book you will learn how you can use SAS to perform advanced profiling of data quality status and how SAS can help improve your data quality. This book is part of the SAS Press program. |
sas enterprise guide data mining: Data Mining with Rattle and R Graham Williams, 2011-02-25 Data mining is the art and science of intelligent data analysis. By building knowledge from information, data mining adds considerable value to the ever increasing stores of electronic data that abound today. In performing data mining many decisions need to be made regarding the choice of methodology, the choice of data, the choice of tools, and the choice of algorithms. Throughout this book the reader is introduced to the basic concepts and some of the more popular algorithms of data mining. With a focus on the hands-on end-to-end process for data mining, Williams guides the reader through various capabilities of the easy to use, free, and open source Rattle Data Mining Software built on the sophisticated R Statistical Software. The focus on doing data mining rather than just reading about data mining is refreshing. The book covers data understanding, data preparation, data refinement, model building, model evaluation, and practical deployment. The reader will learn to rapidly deliver a data mining project using software easily installed for free from the Internet. Coupling Rattle with R delivers a very sophisticated data mining environment with all the power, and more, of the many commercial offerings. |
sas enterprise guide data mining: Taming Text Grant S. Ingersoll, Thomas S. Morton, Drew Farris, 2013-01-24 Summary Taming Text, winner of the 2013 Jolt Awards for Productivity, is a hands-on, example-driven guide to working with unstructured text in the context of real-world applications. This book explores how to automatically organize text using approaches such as full-text search, proper name recognition, clustering, tagging, information extraction, and summarization. The book guides you through examples illustrating each of these topics, as well as the foundations upon which they are built. About this Book There is so much text in our lives, we are practically drowningin it. Fortunately, there are innovative tools and techniquesfor managing unstructured information that can throw thesmart developer a much-needed lifeline. You'll find them in thisbook. Taming Text is a practical, example-driven guide to working withtext in real applications. This book introduces you to useful techniques like full-text search, proper name recognition,clustering, tagging, information extraction, and summarization.You'll explore real use cases as you systematically absorb thefoundations upon which they are built.Written in a clear and concise style, this book avoids jargon, explainingthe subject in terms you can understand without a backgroundin statistics or natural language processing. Examples arein Java, but the concepts can be applied in any language. Written for Java developers, the book requires no prior knowledge of GWT. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. Winner of 2013 Jolt Awards: The Best Books—one of five notable books every serious programmer should read. What's Inside When to use text-taming techniques Important open-source libraries like Solr and Mahout How to build text-processing applications About the Authors Grant Ingersoll is an engineer, speaker, and trainer, a Lucenecommitter, and a cofounder of the Mahout machine-learning project. Thomas Morton is the primary developer of OpenNLP and Maximum Entropy. Drew Farris is a technology consultant, software developer, and contributor to Mahout,Lucene, and Solr. Takes the mystery out of verycomplex processes.—From the Foreword by Liz Liddy, Dean, iSchool, Syracuse University Table of Contents Getting started taming text Foundations of taming text Searching Fuzzy string matching Identifying people, places, and things Clustering text Classification, categorization, and tagging Building an example question answering system Untamed text: exploring the next frontier |
sas enterprise guide data mining: Cases on Health Outcomes and Clinical Data Mining Patricia B. Cerrito, 2010 Because so much data is now becoming readily available to investigate health outcomes, it is important to examine just how statistical models are used to do this. This book studies health outcomes research using data mining techniques--Provided by publisher. |
sas enterprise guide data mining: Model Risk Management with SAS , 2020-06-29 Cut through the complexity of model risk management with a guide to solutions from SAS! There is an increasing demand for more model governance and model risk awareness. At the same time, high-performing models are expected to be deployed faster than ever. SAS Model Risk Management is a user-friendly, web-based application that facilitates the capture and life cycle management of statistical model-related information. It enables all stakeholders in the model life cycle - developers, validators, internal audit, and management - to get overview reports as well as detailed information in one central place. Model Risk Management with SAS introduces you to the features and capabilities of this software, including the entry, collection, transfer, storage, tracking, and reporting of models that are drawn from multiple lines of business across an organization. This book teaches key concepts, terminology, and base functionality that are integral to SAS Model Risk Management through hands-on examples and demonstrations. With this guide to SAS Model Risk Management, your organization can be confident it is making fact-based decisions and mitigating model risk. |
如何零基础自学SAS? - 知乎
SAS在四大统计软件中的地位,emmmmm我想想,据说世界500强超过350家在用sas,服不服? 不管你服不服,反正我是服了 那么对于软件学习,我个人觉得还是系统的上课或者有一本教 …
选硬盘时,该选择SSD/SATA/SAS哪个好? - 知乎
机械硬盘主要为sata和sas接口,目前家用类别的移动硬盘多为sata接口,sas接口则为企业级应用。 SAS可满足高性能、高可靠性的应用,SATA则满足大容量、非关键业务的应用。
为什么JMP统计软件在中国受众如此之少? - 知乎
最近在一篇推文中得知sas旗下还有一款软件叫jmp,下载后感觉自己发现新大陆,制图非常方便美观,统计分析板块也基本齐全,但是在国内却鲜有人知,这是为什…
正态性检验的结果怎么看? - 知乎
在SAS中Kolmogorov-Smirnov一般适用于样本量大于2000,Shapiro-Wilk用于2000以内的样本。 在SPSS中比较复杂,一般而言, 样本量<50 用夏皮洛-威尔克检验(Shapiro-Wilk, W检 …
如何查看自己的笔记本是哪种固态硬盘接口? - 知乎
机械硬盘5种接口:ide、sata、scsi、sas、fc,比较常见的还是sata! 固态硬盘的接口有sata、sata express、msata、pci-e、m.2、u.2,其中m.2是兼容pci-e和sata的。
为何3.5寸的机械硬盘需要额外的供电而2.5寸的就不需要? - 知乎
我今天亲自试过之后的答案,12v1a的机顶盒电源足以带起大部分3.5寸硬盘,硬盘上的标注因该没什么问题,你们可以看看身边或者网图,一般启动电流不会超过标注的12v1a,也就是12w, …
Origin of the phrase, "There's more than one way to skin a cat."
Jun 29, 2011 · Stack Exchange Network. Stack Exchange network consists of 183 Q&A communities including Stack Overflow, the largest, most trusted online community for …
word choice - Grandma and Nan, origins and differences?
Oct 4, 2012 · Etymology. The word nan for grandma is a shortening of the word nana.Both of these words probably are child pronunciations of the word nanny.
To trust someone as far as you can throw them
Apr 18, 2017 · Stack Exchange Network. Stack Exchange network consists of 183 Q&A communities including Stack Overflow, the largest, most trusted online community for …
A Question About Quantifier Shift for "each of you" to "you each"
Dec 4, 2015 · Stack Exchange Network. Stack Exchange network consists of 183 Q&A communities including Stack Overflow, the largest, most trusted online community for …
如何零基础自学SAS? - 知乎
SAS在四大统计软件中的地位,emmmmm我想想,据说世界500强超过350家在用sas,服不服? 不管你服不服,反正我是服了 那么对于软件学习,我个人觉得还是系统的上课或者有一本教 …
选硬盘时,该选择SSD/SATA/SAS哪个好? - 知乎
机械硬盘主要为sata和sas接口,目前家用类别的移动硬盘多为sata接口,sas接口则为企业级应用。 SAS可满足高性能、高可靠性的应用,SATA则满足大容量、非关键业务的应用。
为什么JMP统计软件在中国受众如此之少? - 知乎
最近在一篇推文中得知sas旗下还有一款软件叫jmp,下载后感觉自己发现新大陆,制图非常方便美观,统计分析板块也基本齐全,但是在国内却鲜有人知,这是为什…
正态性检验的结果怎么看? - 知乎
在SAS中Kolmogorov-Smirnov一般适用于样本量大于2000,Shapiro-Wilk用于2000以内的样本。 在SPSS中比较复杂,一般而言, 样本量<50 用夏皮洛-威尔克检验(Shapiro-Wilk, W检 …
如何查看自己的笔记本是哪种固态硬盘接口? - 知乎
机械硬盘5种接口:ide、sata、scsi、sas、fc,比较常见的还是sata! 固态硬盘的接口有sata、sata express、msata、pci-e、m.2、u.2,其中m.2是兼容pci-e和sata的。
为何3.5寸的机械硬盘需要额外的供电而2.5寸的就不需要? - 知乎
我今天亲自试过之后的答案,12v1a的机顶盒电源足以带起大部分3.5寸硬盘,硬盘上的标注因该没什么问题,你们可以看看身边或者网图,一般启动电流不会超过标注的12v1a,也就是12w, …
Origin of the phrase, "There's more than one way to skin a cat."
Jun 29, 2011 · Stack Exchange Network. Stack Exchange network consists of 183 Q&A communities including Stack Overflow, the largest, most trusted online community for …
word choice - Grandma and Nan, origins and differences?
Oct 4, 2012 · Etymology. The word nan for grandma is a shortening of the word nana.Both of these words probably are child pronunciations of the word nanny.
To trust someone as far as you can throw them
Apr 18, 2017 · Stack Exchange Network. Stack Exchange network consists of 183 Q&A communities including Stack Overflow, the largest, most trusted online community for …
A Question About Quantifier Shift for "each of you" to "you each"
Dec 4, 2015 · Stack Exchange Network. Stack Exchange network consists of 183 Q&A communities including Stack Overflow, the largest, most trusted online community for …