Advertisement
sas enterprise miner 12.1: Getting Started with SAS Enterprise Miner 12.1 SAS Institute, 2014-05-14 Introduces the core functionality of SAS Enterprise Miner and shows how to perform basic data-mining tasks. Provides step-by-step examples that create a complete process-flow diagram including graphic results. |
sas enterprise miner 12.1: Predictive Modeling with SAS Enterprise Miner Kattamuri S. Sarma, 2017-07-20 « Written for business analysts, data scientists, statisticians, students, predictive modelers, and data miners, this comprehensive text provides examples that will strengthen your understanding of the essential concepts and methods of predictive modeling. »-- |
sas enterprise miner 12.1: Text Mining and Analysis Dr. Goutam Chakraborty, Murali Pagolu, Satish Garla, 2014-11-22 Big data: It's unstructured, it's coming at you fast, and there's lots of it. In fact, the majority of big data is text-oriented, thanks to the proliferation of online sources such as blogs, emails, and social media. However, having big data means little if you can't leverage it with analytics. Now you can explore the large volumes of unstructured text data that your organization has collected with Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS. This hands-on guide to text analytics using SAS provides detailed, step-by-step instructions and explanations on how to mine your text data for valuable insight. Through its comprehensive approach, you'll learn not just how to analyze your data, but how to collect, cleanse, organize, categorize, explore, and interpret it as well. Text Mining and Analysis also features an extensive set of case studies, so you can see examples of how the applications work with real-world data from a variety of industries. Text analytics enables you to gain insights about your customers' behaviors and sentiments. Leverage your organization's text data, and use those insights for making better business decisions with Text Mining and Analysis. This book is part of the SAS Press program. |
sas enterprise miner 12.1: Applied Data Mining for Forecasting Using SAS Tim Rey , Arthur Kordon, Chip Wells, 2012-07-02 Applied Data Mining for Forecasting Using SAS, by Tim Rey, Arthur Kordon, and Chip Wells, introduces and describes approaches for mining large time series data sets. Written for forecasting practitioners, engineers, statisticians, and economists, the book details how to select useful candidate input variables for time series regression models in environments when the number of candidates is large, and identifies the correlation structure between selected candidate inputs and the forecast variable. This book is essential for forecasting practitioners who need to understand the practical issues involved in applied forecasting in a business setting. Through numerous real-world examples, the authors demonstrate how to effectively use SAS software to meet their industrial forecasting needs. This book is part of the SAS Press program. |
sas enterprise miner 12.1: Customer Segmentation and Clustering Using SAS Enterprise Miner, Third Edition Randall S. Collica, 2017-03-23 Résumé : A working guide that uses real-world data, this step-by-step resource will show you how to segment customers more intelligently and achieve the one-to-one customer relationship that your business needs. -- |
sas enterprise miner 12.1: SAS Enterprise Miner Exercise and Assignment Handbook for Higher Education Varol Onur Kayhan, This handbook is written for students in higher education. Instructors teaching predictive analytics courses can assign this handbook to their students to expose them to predictive analytics techniques using SAS Enterprise Miner. The handbook is developed using SAS Enterprise Miner version 12.1, but it should apply to other versions with little to no changes. This handbook does not require students to have any previous knowledge of SAS Enterprise Miner. It walks students through different predictive analytics techniques using step-by-step by instructions. Even though the contents of this handbook can be completed by anyone who has access to SAS Enterprise Miner, knowledge of predictive analytics concepts is essential for this handbook to be helpful. Also, this handbook is not a substitute for any lecture or textbook. It is best if this handbook is used in parallel to lectures. |
sas enterprise miner 12.1: SAS and R Ken Kleinman, Nicholas J. Horton, 2014-07-17 An Up-to-Date, All-in-One Resource for Using SAS and R to Perform Frequent Tasks The first edition of this popular guide provided a path between SAS and R using an easy-to-understand, dictionary-like approach. Retaining the same accessible format, SAS and R: Data Management, Statistical Analysis, and Graphics, Second Edition explains how to easily perform an analytical task in both SAS and R, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation. The book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, and graphics, along with more complex applications. New to the Second Edition This edition now covers RStudio, a powerful and easy-to-use interface for R. It incorporates a number of additional topics, including using application program interfaces (APIs), accessing data through database management systems, using reproducible analysis tools, and statistical analysis with Markov chain Monte Carlo (MCMC) methods and finite mixture models. It also includes extended examples of simulations and many new examples. Enables Easy Mobility between the Two Systems Through the extensive indexing and cross-referencing, users can directly find and implement the material they need. SAS users can look up tasks in the SAS index and then find the associated R code while R users can benefit from the R index in a similar manner. Numerous example analyses demonstrate the code in action and facilitate further exploration. The datasets and code are available for download on the book’s website. |
sas enterprise miner 12.1: Data Preparation for Analytics Using SAS Gerhard Svolba, 2006-11-27 Written for anyone involved in the data preparation process for analytics, Gerhard Svolba's Data Preparation for Analytics Using SAS offers practical advice in the form of SAS coding tips and tricks, and provides the reader with a conceptual background on data structures and considerations from a business point of view. The tasks addressed include viewing analytic data preparation in the context of its business environment, identifying the specifics of predictive modeling for data mart creation, understanding the concepts and considerations of data preparation for time series analysis, using various SAS procedures and SAS Enterprise Miner for scoring, creating meaningful derived variables for all data mart types, using powerful SAS macros to make changes among the various data mart structures, and more! |
sas enterprise miner 12.1: Applied Data Mining Paolo Giudici, 2005-09-27 Data mining can be defined as the process of selection, explorationand modelling of large databases, in order to discover models andpatterns. The increasing availability of data in the currentinformation society has led to the need for valid tools for itsmodelling and analysis. Data mining and applied statistical methodsare the appropriate tools to extract such knowledge from data.Applications occur in many different fields, including statistics,computer science, machine learning, economics, marketing andfinance. This book is the first to describe applied data mining methodsin a consistent statistical framework, and then show how they canbe applied in practice. All the methods described are eithercomputational, or of a statistical modelling nature. Complexprobabilistic models and mathematical tools are not used, so thebook is accessible to a wide audience of students and industryprofessionals. The second half of the book consists of nine casestudies, taken from the author's own work in industry, thatdemonstrate how the methods described can be applied to realproblems. Provides a solid introduction to applied data mining methods ina consistent statistical framework Includes coverage of classical, multivariate and Bayesianstatistical methodology Includes many recent developments such as web mining,sequential Bayesian analysis and memory based reasoning Each statistical method described is illustrated with real lifeapplications Features a number of detailed case studies based on appliedprojects within industry Incorporates discussion on software used in data mining, withparticular emphasis on SAS Supported by a website featuring data sets, software andadditional material Includes an extensive bibliography and pointers to furtherreading within the text Author has many years experience teaching introductory andmultivariate statistics and data mining, and working on appliedprojects within industry A valuable resource for advanced undergraduate and graduatestudents of applied statistics, data mining, computer science andeconomics, as well as for professionals working in industry onprojects involving large volumes of data - such as in marketing orfinancial risk management. |
sas enterprise miner 12.1: SAS 9.1.3 Intelligence Platform SAS Institute, 2007 Explains how to administer the SAS Web applications that run in the middle tier of the SAS Intelligence Platform. The Web applications include the SAS Information Delivery Portal, SAS Web Report Studio, and SAS Web OLAP Viewer for Java.This guide describes the middle-tier environment, provides sample deployment scenarios, and explains how to configure the Web applications for optimal performance. The guide contains instructions for common administrative tasks, such as configuring trusted Web authentication, as well as instructions for administering the individual Web applications. For example, the guide explains how to add content to the SAS Information Delivery Portal and how to control access to that content. This title is also available online. |
sas enterprise miner 12.1: Discovering Knowledge in Data Daniel T. Larose, 2005-01-28 Learn Data Mining by doing data mining Data mining can be revolutionary-but only when it's done right. The powerful black box data mining software now available can produce disastrously misleading results unless applied by a skilled and knowledgeable analyst. Discovering Knowledge in Data: An Introduction to Data Mining provides both the practical experience and the theoretical insight needed to reveal valuable information hidden in large data sets. Employing a white box methodology and with real-world case studies, this step-by-step guide walks readers through the various algorithms and statistical structures that underlie the software and presents examples of their operation on actual large data sets. Principal topics include: * Data preprocessing and classification * Exploratory analysis * Decision trees * Neural and Kohonen networks * Hierarchical and k-means clustering * Association rules * Model evaluation techniques Complete with scores of screenshots and diagrams to encourage graphical learning, Discovering Knowledge in Data: An Introduction to Data Mining gives students in Business, Computer Science, and Statistics as well as professionals in the field the power to turn any data warehouse into actionable knowledge. An Instructor's Manual presenting detailed solutions to all the problems in the book is available online. |
sas enterprise miner 12.1: Data Mining and Data Warehousing Parteek Bhatia, 2019-06-27 Written in lucid language, this valuable textbook brings together fundamental concepts of data mining and data warehousing in a single volume. Important topics including information theory, decision tree, Naïve Bayes classifier, distance metrics, partitioning clustering, associate mining, data marts and operational data store are discussed comprehensively. The textbook is written to cater to the needs of undergraduate students of computer science, engineering and information technology for a course on data mining and data warehousing. The text simplifies the understanding of the concepts through exercises and practical examples. Chapters such as classification, associate mining and cluster analysis are discussed in detail with their practical implementation using Weka and R language data mining tools. Advanced topics including big data analytics, relational data models and NoSQL are discussed in detail. Pedagogical features including unsolved problems and multiple-choice questions are interspersed throughout the book for better understanding. |
sas enterprise miner 12.1: Pharmaceutical Statistics Using SAS Alex Dmitrienko, Christy Chuang-Stein, Ralph B. D'Agostino, 2007 Introduces a range of data analysis problems encountered in drug development and illustrates them using case studies from actual pre-clinical experiments and clinical studies. Includes a discussion of methodological issues, practical advice from subject matter experts, and review of relevant regulatory guidelines. |
sas enterprise miner 12.1: Predictive Analytics and Data Mining Vijay Kotu, Bala Deshpande, 2014-11-27 Put Predictive Analytics into ActionLearn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining.You’ll be able to:1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process.2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases.3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples |
sas enterprise miner 12.1: Matrix Methods in Data Mining and Pattern Recognition Lars Elden, 2007-07-12 Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.Matrix Methods in Data Mining and Pattern Recognition is divided into three parts. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB®. Some mathematical proofs that emphasize the existence and properties of the matrix decompositions are included. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed by the author are: classification of handwritten digits, text mining, text summarization, pagerank computations related to the GoogleÔ search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.Audience The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.Contents Preface; Part I: Linear Algebra Concepts and Matrix Decompositions. Chapter 1: Vectors and Matrices in Data Mining and Pattern Recognition; Chapter 2: Vectors and Matrices; Chapter 3: Linear Systems and Least Squares; Chapter 4: Orthogonality; Chapter 5: QR Decomposition; Chapter 6: Singular Value Decomposition; Chapter 7: Reduced-Rank Least Squares Models; Chapter 8: Tensor Decomposition; Chapter 9: Clustering and Nonnegative Matrix Factorization; Part II: Data Mining Applications. Chapter 10: Classification of Handwritten Digits; Chapter 11: Text Mining; Chapter 12: Page Ranking for a Web Search Engine; Chapter 13: Automatic Key Word and Key Sentence Extraction; Chapter 14: Face Recognition Using Tensor SVD. Part III: Computing the Matrix Decompositions. Chapter 15: Computing Eigenvalues and Singular Values; Bibliography; Index. |
sas enterprise miner 12.1: Data Mining and Statistics for Decision Making Stéphane Tufféry, 2011-03-23 Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify trends and profiles, allowing, for example, retailers to discover patterns on which to base marketing objectives. This book looks at both classical and recent techniques of data mining, such as clustering, discriminant analysis, logistic regression, generalized linear models, regularized regression, PLS regression, decision trees, neural networks, support vector machines, Vapnik theory, naive Bayesian classifier, ensemble learning and detection of association rules. They are discussed along with illustrative examples throughout the book to explain the theory of these methods, as well as their strengths and limitations. Key Features: Presents a comprehensive introduction to all techniques used in data mining and statistical learning, from classical to latest techniques. Starts from basic principles up to advanced concepts. Includes many step-by-step examples with the main software (R, SAS, IBM SPSS) as well as a thorough discussion and comparison of those software. Gives practical tips for data mining implementation to solve real world problems. Looks at a range of tools and applications, such as association rules, web mining and text mining, with a special focus on credit scoring. Supported by an accompanying website hosting datasets and user analysis. Statisticians and business intelligence analysts, students as well as computer science, biology, marketing and financial risk professionals in both commercial and government organizations across all business and industry sectors will benefit from this book. |
sas enterprise miner 12.1: Data Mining with Rattle and R Graham Williams, 2011-02-25 Data mining is the art and science of intelligent data analysis. By building knowledge from information, data mining adds considerable value to the ever increasing stores of electronic data that abound today. In performing data mining many decisions need to be made regarding the choice of methodology, the choice of data, the choice of tools, and the choice of algorithms. Throughout this book the reader is introduced to the basic concepts and some of the more popular algorithms of data mining. With a focus on the hands-on end-to-end process for data mining, Williams guides the reader through various capabilities of the easy to use, free, and open source Rattle Data Mining Software built on the sophisticated R Statistical Software. The focus on doing data mining rather than just reading about data mining is refreshing. The book covers data understanding, data preparation, data refinement, model building, model evaluation, and practical deployment. The reader will learn to rapidly deliver a data mining project using software easily installed for free from the Internet. Coupling Rattle with R delivers a very sophisticated data mining environment with all the power, and more, of the many commercial offerings. |
sas enterprise miner 12.1: Introduction to Educational Research W. Newton Suter, 2012 W. Newton Suter argues that what is important in a changing education landscape is the ability to think clearly about research methods, reason through complex problems and evaluate published research. He explains how to evaluate data and establish its relevance. |
sas enterprise miner 12.1: Knowledge Discovery with Support Vector Machines Lutz H. Hamel, 2011-09-20 An easy-to-follow introduction to support vector machines This book provides an in-depth, easy-to-follow introduction to support vector machines drawing only from minimal, carefully motivated technical and mathematical background material. It begins with a cohesive discussion of machine learning and goes on to cover: Knowledge discovery environments Describing data mathematically Linear decision surfaces and functions Perceptron learning Maximum margin classifiers Support vector machines Elements of statistical learning theory Multi-class classification Regression with support vector machines Novelty detection Complemented with hands-on exercises, algorithm descriptions, and data sets, Knowledge Discovery with Support Vector Machines is an invaluable textbook for advanced undergraduate and graduate courses. It is also an excellent tutorial on support vector machines for professionals who are pursuing research in machine learning and related areas. |
sas enterprise miner 12.1: Handbook of Statistical Analysis and Data Mining Applications Robert Nisbet, John Elder, Gary D. Miner, 2009-05-14 The Handbook of Statistical Analysis and Data Mining Applications is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers (both academic and industrial) through all stages of data analysis, model building and implementation. The Handbook helps one discern the technical and business problem, understand the strengths and weaknesses of modern data mining algorithms, and employ the right statistical methods for practical application. Use this book to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques, and discusses their application to real problems, in ways accessible and beneficial to practitioners across industries - from science and engineering, to medicine, academia and commerce. This handbook brings together, in a single resource, all the information a beginner will need to understand the tools and issues in data mining to build successful data mining solutions. - Written By Practitioners for Practitioners - Non-technical explanations build understanding without jargon and equations - Tutorials in numerous fields of study provide step-by-step instruction on how to use supplied tools to build models - Practical advice from successful real-world implementations - Includes extensive case studies, examples, MS PowerPoint slides and datasets - CD-DVD with valuable fully-working 90-day software included: Complete Data Miner - QC-Miner - Text Miner bound with book |
sas enterprise miner 12.1: SAS 9.1.3 Intelligence Platform SAS Institute, 2006 Provides a resource for use if any problems are encountered during an initial installation. |
sas enterprise miner 12.1: Intelligent Credit Scoring Naeem Siddiqi, 2017-01-10 A better development and implementation framework for credit risk scorecards Intelligent Credit Scoring presents a business-oriented process for the development and implementation of risk prediction scorecards. The credit scorecard is a powerful tool for measuring the risk of individual borrowers, gauging overall risk exposure and developing analytically driven, risk-adjusted strategies for existing customers. In the past 10 years, hundreds of banks worldwide have brought the process of developing credit scoring models in-house, while ‘credit scores' have become a frequent topic of conversation in many countries where bureau scores are used broadly. In the United States, the ‘FICO' and ‘Vantage' scores continue to be discussed by borrowers hoping to get a better deal from the banks. While knowledge of the statistical processes around building credit scorecards is common, the business context and intelligence that allows you to build better, more robust, and ultimately more intelligent, scorecards is not. As the follow-up to Credit Risk Scorecards, this updated second edition includes new detailed examples, new real-world stories, new diagrams, deeper discussion on topics including WOE curves, the latest trends that expand scorecard functionality and new in-depth analyses in every chapter. Expanded coverage includes new chapters on defining infrastructure for in-house credit scoring, validation, governance, and Big Data. Black box scorecard development by isolated teams has resulted in statistically valid, but operationally unacceptable models at times. This book shows you how various personas in a financial institution can work together to create more intelligent scorecards, to avoid disasters, and facilitate better decision making. Key items discussed include: Following a clear step by step framework for development, implementation, and beyond Lots of real life tips and hints on how to detect and fix data issues How to realise bigger ROI from credit scoring using internal resources Explore new trends and advances to get more out of the scorecard Credit scoring is now a very common tool used by banks, Telcos, and others around the world for loan origination, decisioning, credit limit management, collections management, cross selling, and many other decisions. Intelligent Credit Scoring helps you organise resources, streamline processes, and build more intelligent scorecards that will help achieve better results. |
sas enterprise miner 12.1: SAS Text Analytics for Business Applications Teresa Jade, Biljana Belamaric-Wilsey, Michael Wallis, 2019-03-29 Extract actionable insights from text and unstructured data. Information extraction is the task of automatically extracting structured information from unstructured or semi-structured text. SAS Text Analytics for Business Applications: Concept Rules for Information Extraction Models focuses on this key element of natural language processing (NLP) and provides real-world guidance on the effective application of text analytics. Using scenarios and data based on business cases across many different domains and industries, the book includes many helpful tips and best practices from SAS text analytics experts to ensure fast, valuable insight from your textual data. Written for a broad audience of beginning, intermediate, and advanced users of SAS text analytics products, including SAS Visual Text Analytics, SAS Contextual Analysis, and SAS Enterprise Content Categorization, this book provides a solid technical reference. You will learn the SAS information extraction toolkit, broaden your knowledge of rule-based methods, and answer new business questions. As your practical experience grows, this book will serve as a reference to deepen your expertise. |
sas enterprise miner 12.1: Learning SAS by Example Ron Cody, 2018-07-03 Learn to program SAS by example! Learning SAS by Example, A Programmer’s Guide, Second Edition, teaches SAS programming from very basic concepts to more advanced topics. Because most programmers prefer examples rather than reference-type syntax, this book uses short examples to explain each topic. The second edition has brought this classic book on SAS programming up to the latest SAS version, with new chapters that cover topics such as PROC SGPLOT and Perl regular expressions. This book belongs on the shelf (or e-book reader) of anyone who programs in SAS, from those with little programming experience who want to learn SAS to intermediate and even advanced SAS programmers who want to learn new techniques or identify new ways to accomplish existing tasks. In an instructive and conversational tone, author Ron Cody clearly explains each programming technique and then illustrates it with one or more real-life examples, followed by a detailed description of how the program works. The text is divided into four major sections: Getting Started, DATA Step Processing, Presenting and Summarizing Your Data, and Advanced Topics. Subjects addressed include Reading data from external sources Learning details of DATA step programming Subsetting and combining SAS data sets Understanding SAS functions and working with arrays Creating reports with PROC REPORT and PROC TABULATE Getting started with the SAS macro language Leveraging PROC SQL Generating high-quality graphics Using advanced features of user-defined formats and informats Restructuring SAS data sets Working with multiple observations per subject Getting started with Perl regular expressions You can test your knowledge and hone your skills by solving the problems at the end of each chapter. |
sas enterprise miner 12.1: Modern Multivariate Statistical Techniques Alan J. Izenman, 2013-03-11 This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before. |
sas enterprise miner 12.1: Service And Operations Management Cengiz Haksever, Barry Render, 2017-12-26 The purpose of this book is to provide cutting-edge information on service management such as the role services play in an economy, service strategy, ethical issues in services and service supply chains. It also covers basic topics of operations management including linear and goal programming, project management, inventory management and forecasting.This book takes a multidisciplinary approach to services and operational management challenges; it draws upon the theory and practice in many fields of study such as economics, management science, statistics, psychology, sociology, ethics and technology, to name a few. It contains chapters most textbooks do not include, such as ethics, management of public and non-profit service organizations, productivity and measurement of performance, routing and scheduling of service vehicles.An Instructor's Solutions Manual is available upon request for all instructors who adopt this book as a course text. Please send your request to sales@wspc.com. |
sas enterprise miner 12.1: DDT United States. Environmental Protection Agency, 1975 |
sas enterprise miner 12.1: Data Science and Big Data Analytics EMC Education Services, 2015-01-27 Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today! |
sas enterprise miner 12.1: Piping and Pipeline Calculations Manual Phillip Ellenberger, 2014-02-12 Piping and Pipeline Calculations Manual, Second Edition provides engineers and designers with a quick reference guide to calculations, codes, and standards applicable to piping systems. The book considers in one handy reference the multitude of pipes, flanges, supports, gaskets, bolts, valves, strainers, flexibles, and expansion joints that make up these often complex systems. It uses hundreds of calculations and examples based on the author's 40 years of experiences as both an engineer and instructor. Each example demonstrates how the code and standard has been correctly and incorrectly applied. Aside from advising on the intent of codes and standards, the book provides advice on compliance. Readers will come away with a clear understanding of how piping systems fail and what the code requires the designer, manufacturer, fabricator, supplier, erector, examiner, inspector, and owner to do to prevent such failures. The book enhances participants' understanding and application of the spirit of the code or standard and form a plan for compliance. The book covers American Water Works Association standards where they are applicable. |
sas enterprise miner 12.1: Big Data, Mining, and Analytics Stephan Kudyba, 2014-03-12 This book ties together big data, data mining, and analytics to explain how readers can leverage them to transform their business strategy. Illustrating basic approaches of business intelligence to data and text mining, the book guides readers through the process of extracting valuable knowledge from the varieties of data currently being generated in the brick and mortar and Internet environments. It considers the broad spectrum of analytics approaches for decision making, including dashboards, OLAP cubes, data mining, and text mining. |
sas enterprise miner 12.1: Proceedings of the Twelfth International Conference on Management Science and Engineering Management Jiuping Xu, Fang Lee Cooke, Mitsuo Gen, Syed Ejaz Ahmed, 2018-06-25 This proceedings book is divided in 2 Volumes and 8 Parts. Part I is dedicated to Decision Support System, which is about the information system that supports business or organizational decision-making activities; Part II is on Computing Methodology, which is always used to provide the most effective algorithm for numerical solutions of various modeling problems; Part III presents Information Technology, which is the application of computers to store, study, retrieve, transmit and manipulate data, or information in the context of a business or other enterprise; Part IV is dedicated to Data Analysis, which is a process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, suggesting conclusions, and supporting decision-making; Part V presents papers on Operational Management, which is about the plan, organization, implementation and control of the operation process; Part VI is on Project Management, which is about the initiating, planning, executing, controlling, and closing the work of a team to achieve specific goals and meet specific success criteria at the specified time in the field of engineering; Part VII presents Green Supply Chain, which is about the management of the flow of goods and services based on the concept of “low-carbon”; Part VIII is focused on Industry Strategy Management, which refers to the decision-making and management art of an industry or organization in a long-term and long-term development direction, objectives, tasks and policies, as well as resource allocation. |
sas enterprise miner 12.1: Data Mining Using SAS Enterprise Miner Randall Matignon, 2007-08-03 The most thorough and up-to-date introduction to data mining techniques using SAS Enterprise Miner. The Sample, Explore, Modify, Model, and Assess (SEMMA) methodology of SAS Enterprise Miner is an extremely valuable analytical tool for making critical business and marketing decisions. Until now, there has been no single, authoritative book that explores every node relationship and pattern that is a part of the Enterprise Miner software with regard to SEMMA design and data mining analysis. Data Mining Using SAS Enterprise Miner introduces readers to a wide variety of data mining techniques and explains the purpose of-and reasoning behind-every node that is a part of the Enterprise Miner software. Each chapter begins with a short introduction to the assortment of statistics that is generated from the various nodes in SAS Enterprise Miner v4.3, followed by detailed explanations of configuration settings that are located within each node. Features of the book include: The exploration of node relationships and patterns using data from an assortment of computations, charts, and graphs commonly used in SAS procedures A step-by-step approach to each node discussion, along with an assortment of illustrations that acquaint the reader with the SAS Enterprise Miner working environment Descriptive detail of the powerful Score node and associated SAS code, which showcases the important of managing, editing, executing, and creating custom-designed Score code for the benefit of fair and comprehensive business decision-making Complete coverage of the wide variety of statistical techniques that can be performed using the SEMMA nodes An accompanying Web site that provides downloadable Score code, training code, and data sets for further implementation, manipulation, and interpretation as well as SAS/IML software programming code This book is a well-crafted study guide on the various methods employed to randomly sample, partition, graph, transform, filter, impute, replace, cluster, and process data as well as interactively group and iteratively process data while performing a wide variety of modeling techniques within the process flow of the SAS Enterprise Miner software. Data Mining Using SAS Enterprise Miner is suitable as a supplemental text for advanced undergraduate and graduate students of statistics and computer science and is also an invaluable, all-encompassing guide to data mining for novice statisticians and experts alike. |
sas enterprise miner 12.1: SAS Viya Kevin D. Smith, Xiangxiang Meng, 2018-02-08 Learn how to access analytics from SAS Cloud Analytic Services (CAS) using Python and the SAS Viya platform. SAS Viya : The Python Perspective is an introduction to using the Python client on the SAS Viya platform. SAS Viya is a high-performance, fault-tolerant analytics architecture that can be deployed on both public and private cloud infrastructures. While SAS Viya can be used by various SAS applications, it also enables you to access analytic methods from SAS, Python, Lua, and Java, as well as through a REST interface using HTTP or HTTPS. This book focuses on the perspective of SAS Viya from Python. SAS Viya is made up of multiple components. The central piece of this ecosystem is SAS Cloud Analytic Services (CAS). CAS is the cloud-based server that all clients communicate with to run analytical methods. The Python client is used to drive the CAS component directly using objects and constructs that are familiar to Python programmers. Some knowledge of Python would be helpful before using this book; however, there is an appendix that covers the features of Python that are used in the CAS Python client. Knowledge of CAS is not required to use this book. However, you will need to have a CAS server set up and running to execute the examples in this book. With this book, you will learn how to: Install the required components for accessing CAS from Python Connect to CAS, load data, and run simple analyses Work with CAS using APIs familiar to Python users Grasp general CAS workflows and advanced features of the CAS Python client SAS Viya : The Python Perspective covers topics that will be useful to beginners as well as experienced CAS users. It includes examples from creating connections to CAS all the way to simple statistics and machine learning, but it is also useful as a desktop reference. |
sas enterprise miner 12.1: Real World Health Care Data Analysis Douglas Faries, Xiang Zhang, Zbigniew Kadziola, Uwe Siebert, Felicitas Kuehne, Robert L. Obenchain, Josep Maria Haro, 2020 Real world health care data from observational studies, pragmatic trials, patient registries, and databases is common and growing in use. Real World Health Care Data Analysis: Causal Methods and Implementation in SAS® brings together best practices for causal-based comparative effectiveness analyses based on real world data in a single location. Example SAS code is provided to make the analyses relatively easy and efficient.The book also presents several emerging topics of interest, including algorithms for personalized medicine, methods that address the complexities of time varying confounding, extensions of propensity scoring to comparisons between more than two interventions, sensitivity analyses for unmeasured confounding, and implementation of model averaging. |
sas enterprise miner 12.1: Data Mining Using SAS Enterprise Miner SAS Institute, 2003 |
sas enterprise miner 12.1: Decision Trees for Business Intelligence and Data Mining Barry De Ville, 2006 This example-driven guide illustrates the application and operation of decision trees in data mining, business intelligence, business analytics, prediction, and knowledge discovery. It explains in detail the use of decision trees as a data mining technique and how this technique complements and supplements other business intelligence applications. |
sas enterprise miner 12.1: MASTERING DATA MINING: THE ART AND SCIENCE OF CUSTOMER RELATIONSHIP MANAGEMENT Michael J. A. Berry, Gordon S. Linoff, 2008-09-01 Special Features: · Best-in-class data mining techniques for solving critical problems in all areas of business· Explains how to pick the right data mining techniques for specific problems· Shows how to perform analysis and evaluate results· Features real-world examples from across various industry sectors· Companion Web site with updates on data mining products and service providers About The Book: Companies have invested in building data warehouses to capture vast amounts of customer information. The payoff comes with mining or getting access to the data within this information gold mine to make better business decisions. Readers and reviewers loved Berry and Linoff's first book, Data Mining Techniques, because the authors so clearly illustrate practical techniques with real benefits for improved marketing and sales. Mastering Data Mining takes off from there-assuming readers know the basic techniques covered in the first book, the authors focus on how to best apply these techniques to real business cases. They start with simple applications and work up to the most powerful and sophisticated examples over the course of about 20 cases. (Ralph Kimball used this same approach in his highly successful Data Warehouse Toolkit). As with their first book, Mastering Data Mining is sufficiently technical for database analysts, but is accessible to technically savvy business and marketing managers. It should also appeal to a new breed of database marketing managers. |
sas enterprise miner 12.1: Engineering Electromagnetics William H. Hayt, Jr, |
sas enterprise miner 12.1: Abstracts of Conference Papers , 1984 |
sas enterprise miner 12.1: Business Intelligence and Analytics Ramesh Sharda, Dursun Delen, Efraim Turban, Peng Liang Ting, 2014 Appropriate for all courses in Decision Support Systems (DSS), computerized decision making tools, and management support systems. Decision Support and Business Intelligence Systems 10e provides the only comprehensive, up-to-date guide to today's revolutionary management support system technologies, and showcases how they can be used for better decision-making. The 10th edition focuses on Business Intelligence (BI) and analytics for enterprise decision support in a more streamlined book. In addition to traditional decision support applications, this edition expands the reader's understanding of the various types of analytics by providing examples, products, services, and exercises by discussing Web-related issues throughout the text. |
如何零基础自学SAS? - 知乎
SAS在四大统计软件中的地位,emmmmm我想想,据说世界500强超过350家在用sas,服不服? 不管你服不服,反正我是服了 那 …
选硬盘时,该选择SSD/SATA/SAS哪个好? - 知乎
机械硬盘主要为sata和sas接口,目前家用类别的移动硬盘多为sata接口,sas接口则为企业级应用。 SAS可满足高性能、高可靠性的应 …
为什么JMP统计软件在中国受众如此之少? - 知乎
最近在一篇推文中得知sas旗下还有一款软件叫jmp,下载后感觉自己发现新大陆,制图非常方便美观,统计分析板块也基本齐全,但 …
正态性检验的结果怎么看? - 知乎
在SAS中Kolmogorov-Smirnov一般适用于样本量大于2000,Shapiro-Wilk用于2000以内的样本。 在SPSS中比较复杂,一般而 …
如何查看自己的笔记本是哪种固态硬盘接口? - 知乎
机械硬盘5种接口:ide、sata、scsi、sas、fc,比较常见的还是sata! 固态硬盘的接口有sata、sata express、msata、pci-e …
如何零基础自学SAS? - 知乎
SAS在四大统计软件中的地位,emmmmm我想想,据说世界500强超过350家在用sas,服不服? 不管你服不服,反正我是服了 那么对于软件学习,我个人觉得还是系统的上课或者有一本教 …
选硬盘时,该选择SSD/SATA/SAS哪个好? - 知乎
机械硬盘主要为sata和sas接口,目前家用类别的移动硬盘多为sata接口,sas接口则为企业级应用。 SAS可满足高性能、高可靠性的应用,SATA则满足大容量、非关键业务的应用。
为什么JMP统计软件在中国受众如此之少? - 知乎
最近在一篇推文中得知sas旗下还有一款软件叫jmp,下载后感觉自己发现新大陆,制图非常方便美观,统计分析板块也基本齐全,但是在国内却鲜有人知,这是为什…
正态性检验的结果怎么看? - 知乎
在SAS中Kolmogorov-Smirnov一般适用于样本量大于2000,Shapiro-Wilk用于2000以内的样本。 在SPSS中比较复杂,一般而言, 样本量<50 用夏皮洛-威尔克检验(Shapiro-Wilk, W检 …
如何查看自己的笔记本是哪种固态硬盘接口? - 知乎
机械硬盘5种接口:ide、sata、scsi、sas、fc,比较常见的还是sata! 固态硬盘的接口有sata、sata express、msata、pci-e、m.2、u.2,其中m.2是兼容pci-e和sata的。
为何3.5寸的机械硬盘需要额外的供电而2.5寸的就不需要? - 知乎
我今天亲自试过之后的答案,12v1a的机顶盒电源足以带起大部分3.5寸硬盘,硬盘上的标注因该没什么问题,你们可以看看身边或者网图,一般启动电流不会超过标注的12v1a,也就是12w, …
Origin of the phrase, "There's more than one way to skin a cat."
Jun 29, 2011 · Stack Exchange Network. Stack Exchange network consists of 183 Q&A communities including Stack Overflow, the largest, most trusted online community for …
word choice - Grandma and Nan, origins and differences? - English ...
Oct 4, 2012 · Etymology. The word nan for grandma is a shortening of the word nana.Both of these words probably are child pronunciations of the word nanny.
To trust someone as far as you can throw them
Apr 18, 2017 · Stack Exchange Network. Stack Exchange network consists of 183 Q&A communities including Stack Overflow, the largest, most trusted online community for …
A Question About Quantifier Shift for "each of you" to "you each"
Dec 4, 2015 · Stack Exchange Network. Stack Exchange network consists of 183 Q&A communities including Stack Overflow, the largest, most trusted online community for …