Serge Lang Differential Geometry

Advertisement



  serge lang differential geometry: Fundamentals of Differential Geometry Serge Lang, 2012-12-06 The present book aims to give a fairly comprehensive account of the fundamentals of differential manifolds and differential geometry. The size of the book influenced where to stop, and there would be enough material for a second volume (this is not a threat). At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differen tiable maps in them (immersions, embeddings, isomorphisms, etc. ). One may also use differentiable structures on topological manifolds to deter mine the topological structure of the manifold (for example, it la Smale [Sm 67]). In differential geometry, one puts an additional structure on the differentiable manifold (a vector field, a spray, a 2-form, a Riemannian metric, ad lib. ) and studies properties connected especially with these objects. Formally, one may say that one studies properties invariant under the group of differentiable automorphisms which preserve the additional structure. In differential equations, one studies vector fields and their in tegral curves, singular points, stable and unstable manifolds, etc. A certain number of concepts are essential for all three, and are so basic and elementary that it is worthwhile to collect them together so that more advanced expositions can be given without having to start from the very beginnings.
  serge lang differential geometry: Introduction to Differentiable Manifolds Serge Lang, 2002-10 Author is well-known and established book author (all Serge Lang books are now published by Springer); Presents a brief introduction to the subject; All manifolds are assumed finite dimensional in order not to frighten some readers; Complete proofs are given; Use of manifolds cuts across disciplines and includes physics, engineering and economics
  serge lang differential geometry: Differential and Riemannian Manifolds Serge Lang, 2012-12-06 This is the third version of a book on differential manifolds. The first version appeared in 1962, and was written at the very beginning of a period of great expansion of the subject. At the time, I found no satisfactory book for the foundations of the subject, for multiple reasons. I expanded the book in 1971, and I expand it still further today. Specifically, I have added three chapters on Riemannian and pseudo Riemannian geometry, that is, covariant derivatives, curvature, and some applications up to the Hopf-Rinow and Hadamard-Cartan theorems, as well as some calculus of variations and applications to volume forms. I have rewritten the sections on sprays, and I have given more examples of the use of Stokes' theorem. I have also given many more references to the literature, all of this to broaden the perspective of the book, which I hope can be used among things for a general course leading into many directions. The present book still meets the old needs, but fulfills new ones. At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.).
  serge lang differential geometry: Differential Manifolds Serge Lang, 2012-12-06 The present volume supersedes my Introduction to Differentiable Manifolds written a few years back. I have expanded the book considerably, including things like the Lie derivative, and especially the basic integration theory of differential forms, with Stokes' theorem and its various special formulations in different contexts. The foreword which I wrote in the earlier book is still quite valid and needs only slight extension here. Between advanced calculus and the three great differential theories (differential topology, differential geometry, ordinary differential equations), there lies a no-man's-land for which there exists no systematic exposition in the literature. It is the purpose of this book to fill the gap. The three differential theories are by no means independent of each other, but proceed according to their own flavor. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.). One may also use differentiable structures on topological manifolds to determine the topological structure of the manifold (e.g. it la Smale [26]).
  serge lang differential geometry: Differential Geometry: Manifolds, Curves, and Surfaces Marcel Berger, Bernard Gostiaux, 2012-12-06 This book consists of two parts, different in form but similar in spirit. The first, which comprises chapters 0 through 9, is a revised and somewhat enlarged version of the 1972 book Geometrie Differentielle. The second part, chapters 10 and 11, is an attempt to remedy the notorious absence in the original book of any treatment of surfaces in three-space, an omission all the more unforgivable in that surfaces are some of the most common geometrical objects, not only in mathematics but in many branches of physics. Geometrie Differentielle was based on a course I taught in Paris in 1969- 70 and again in 1970-71. In designing this course I was decisively influ enced by a conversation with Serge Lang, and I let myself be guided by three general ideas. First, to avoid making the statement and proof of Stokes' formula the climax of the course and running out of time before any of its applications could be discussed. Second, to illustrate each new notion with non-trivial examples, as soon as possible after its introduc tion. And finally, to familiarize geometry-oriented students with analysis and analysis-oriented students with geometry, at least in what concerns manifolds.
  serge lang differential geometry: Differential Geometry R.W. Sharpe, 2000-11-21 Cartan geometries were the first examples of connections on a principal bundle. They seem to be almost unknown these days, in spite of the great beauty and conceptual power they confer on geometry. The aim of the present book is to fill the gap in the literature on differential geometry by the missing notion of Cartan connections. Although the author had in mind a book accessible to graduate students, potential readers would also include working differential geometers who would like to know more about what Cartan did, which was to give a notion of espaces généralisés (= Cartan geometries) generalizing homogeneous spaces (= Klein geometries) in the same way that Riemannian geometry generalizes Euclidean geometry. In addition, physicists will be interested to see the fully satisfying way in which their gauge theory can be truly regarded as geometry.
  serge lang differential geometry: Elementary Topics in Differential Geometry J. A. Thorpe, 2012-12-06 In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.
  serge lang differential geometry: Introduction to Algebraic Geometry Serge Lang, 2019-03-20 Author Serge Lang defines algebraic geometry as the study of systems of algebraic equations in several variables and of the structure that one can give to the solutions of such equations. The study can be carried out in four ways: analytical, topological, algebraico-geometric, and arithmetic. This volume offers a rapid, concise, and self-contained introductory approach to the algebraic aspects of the third method, the algebraico-geometric. The treatment assumes only familiarity with elementary algebra up to the level of Galois theory. Starting with an opening chapter on the general theory of places, the author advances to examinations of algebraic varieties, the absolute theory of varieties, and products, projections, and correspondences. Subsequent chapters explore normal varieties, divisors and linear systems, differential forms, the theory of simple points, and algebraic groups, concluding with a focus on the Riemann-Roch theorem. All the theorems of a general nature related to the foundations of the theory of algebraic groups are featured.
  serge lang differential geometry: An Introduction to Differential Geometry T. J. Willmore, 2013-05-13 This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.
  serge lang differential geometry: Real and Functional Analysis Serge Lang, 2012-12-06 This book is meant as a text for a first year graduate course in analysis. Any standard course in undergraduate analysis will constitute sufficient preparation for its understanding, for instance, my Undergraduate Anal ysis. I assume that the reader is acquainted with notions of uniform con vergence and the like. In this third edition, I have reorganized the book by covering inte gration before functional analysis. Such a rearrangement fits the way courses are taught in all the places I know of. I have added a number of examples and exercises, as well as some material about integration on the real line (e.g. on Dirac sequence approximation and on Fourier analysis), and some material on functional analysis (e.g. the theory of the Gelfand transform in Chapter XVI). These upgrade previous exercises to sections in the text. In a sense, the subject matter covers the same topics as elementary calculus, viz. linear algebra, differentiation and integration. This time, however, these subjects are treated in a manner suitable for the training of professionals, i.e. people who will use the tools in further investiga tions, be it in mathematics, or physics, or what have you. In the first part, we begin with point set topology, essential for all analysis, and we cover the most important results.
  serge lang differential geometry: Differential Geometry Loring W. Tu, 2017-06-01 This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.
  serge lang differential geometry: Modern Differential Geometry for Physicists Chris J. Isham, 1999 The result is a book which provides a rapid initiation to the material in question with care and sufficient detail to allow the reader to emerge with a genuine familiarity with the foundations of these subjects.Mathematical ReviewsThis book is carefully written, and attention is paid to rigor and relevant details The key notions are discussed with great care and from many points of view, which attenuates the shock of the formalism. Mathematical Reviews
  serge lang differential geometry: Undergraduate Algebra Serge Lang, 2013-06-29 This book, together with Linear Algebra, constitutes a curriculum for an algebra program addressed to undergraduates. The separation of the linear algebra from the other basic algebraic structures fits all existing tendencies affecting undergraduate teaching, and I agree with these tendencies. I have made the present book self contained logically, but it is probably better if students take the linear algebra course before being introduced to the more abstract notions of groups, rings, and fields, and the systematic development of their basic abstract properties. There is of course a little overlap with the book Lin ear Algebra, since I wanted to make the present book self contained. I define vector spaces, matrices, and linear maps and prove their basic properties. The present book could be used for a one-term course, or a year's course, possibly combining it with Linear Algebra. I think it is important to do the field theory and the Galois theory, more important, say, than to do much more group theory than we have done here. There is a chapter on finite fields, which exhibit both features from general field theory, and special features due to characteristic p. Such fields have become important in coding theory.
  serge lang differential geometry: Differential Analysis on Complex Manifolds R. O. Wells, 2013-04-17 In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Subsequent chapters then develop such topics as Hermitian exterior algebra and the Hodge *-operator, harmonic theory on compact manifolds, differential operators on a Kahler manifold, the Hodge decomposition theorem on compact Kahler manifolds, the Hodge-Riemann bilinear relations on Kahler manifolds, Griffiths's period mapping, quadratic transformations, and Kodaira's vanishing and embedding theorems. The third edition of this standard reference contains a new appendix by Oscar Garcia-Prada which gives an overview of certain developments in the field during the decades since the book first appeared. From reviews of the 2nd Edition: ..the new edition of Professor Wells' book is timely and welcome...an excellent introduction for any mathematician who suspects that complex manifold techniques may be relevant to his work. - Nigel Hitchin, Bulletin of the London Mathematical Society Its purpose is to present the basics of analysis and geometry on compact complex manifolds, and is already one of the standard sources for this material. - Daniel M. Burns, Jr., Mathematical Reviews
  serge lang differential geometry: Manifolds and Differential Geometry Jeffrey Marc Lee, 2009 Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.
  serge lang differential geometry: Second Year Calculus David M. Bressoud, 2012-12-06 Second Year Calculus: From Celestial Mechanics to Special Relativity covers multi-variable and vector calculus, emphasizing the historical physical problems which gave rise to the concepts of calculus. The book carries us from the birth of the mechanized view of the world in Isaac Newton's Mathematical Principles of Natural Philosophy in which mathematics becomes the ultimate tool for modelling physical reality, to the dawn of a radically new and often counter-intuitive age in Albert Einstein's Special Theory of Relativity in which it is the mathematical model which suggests new aspects of that reality. The development of this process is discussed from the modern viewpoint of differential forms. Using this concept, the student learns to compute orbits and rocket trajectories, model flows and force fields, and derive the laws of electricity and magnetism. These exercises and observations of mathematical symmetry enable the student to better understand the interaction of physics and mathematics.
  serge lang differential geometry: Basic Analysis of Regularized Series and Products Jay Jorgenson, Serge Lang, 2006-11-15 Analytic number theory and part of the spectral theory of operators (differential, pseudo-differential, elliptic, etc.) are being merged under amore general analytic theory of regularized products of certain sequences satisfying a few basic axioms. The most basic examples consist of the sequence of natural numbers, the sequence of zeros with positive imaginary part of the Riemann zeta function, and the sequence of eigenvalues, say of a positive Laplacian on a compact or certain cases of non-compact manifolds. The resulting theory is applicable to ergodic theory and dynamical systems; to the zeta and L-functions of number theory or representation theory and modular forms; to Selberg-like zeta functions; andto the theory of regularized determinants familiar in physics and other parts of mathematics. Aside from presenting a systematic account of widely scattered results, the theory also provides new results. One part of the theory deals with complex analytic properties, and another part deals with Fourier analysis. Typical examples are given. This LNM provides basic results which are and will be used in further papers, starting with a general formulation of Cram r's theorem and explicit formulas. The exposition is self-contained (except for far-reaching examples), requiring only standard knowledge of analysis.
  serge lang differential geometry: Number Theory III Serge Lang, 2013-12-01 In 1988 Shafarevich asked me to write a volume for the Encyclopaedia of Mathematical Sciences on Diophantine Geometry. I said yes, and here is the volume. By definition, diophantine problems concern the solutions of equations in integers, or rational numbers, or various generalizations, such as finitely generated rings over Z or finitely generated fields over Q. The word Geometry is tacked on to suggest geometric methods. This means that the present volume is not elementary. For a survey of some basic problems with a much more elementary approach, see [La 9Oc]. The field of diophantine geometry is now moving quite rapidly. Out standing conjectures ranging from decades back are being proved. I have tried to give the book some sort of coherence and permanence by em phasizing structural conjectures as much as results, so that one has a clear picture of the field. On the whole, I omit proofs, according to the boundary conditions of the encyclopedia. On some occasions I do give some ideasfor the proofs when these are especially important. In any case, a lengthy bibliography refers to papers and books where proofs may be found. I have also followed Shafarevich's suggestion to give examples, and I have especially chosen these examples which show how some classical problems do or do not get solved by contemporary in sights. Fermat's last theorem occupies an intermediate position. Al though it is not proved, it is not an isolated problem any more.
  serge lang differential geometry: Topics in Nevanlinna Theory Serge Lang, William Cherry, 2006-11-14 These are notes of lectures on Nevanlinna theory, in the classical case of meromorphic functions, and the generalization by Carlson-Griffith to equidimensional holomorphic maps using as domain space finite coverings of C resp. Cn. Conjecturally best possible error terms are obtained following a method of Ahlfors and Wong. This is especially significant when obtaining uniformity for the error term w.r.t. coverings, since the analytic yields case a strong version of Vojta's conjectures in the number-theoretic case involving the theory of heights. The counting function for the ramified locus in the analytic case is the analogue of the normalized logarithmetic discriminant in the number-theoretic case, and is seen to occur with the expected coefficient 1. The error terms are given involving an approximating function (type function) similar to the probabilistic type function of Khitchine in number theory. The leisurely exposition allows readers with no background in Nevanlinna Theory to approach some of the basic remaining problems around the error term. It may be used as a continuation of a graduate course in complex analysis, also leading into complex differential geometry.
  serge lang differential geometry: Elementary Differential Geometry Barrett O'Neill, 2014-05-12 Elementary Differential Geometry focuses on the elementary account of the geometry of curves and surfaces. The book first offers information on calculus on Euclidean space and frame fields. Topics include structural equations, connection forms, frame fields, covariant derivatives, Frenet formulas, curves, mappings, tangent vectors, and differential forms. The publication then examines Euclidean geometry and calculus on a surface. Discussions focus on topological properties of surfaces, differential forms on a surface, integration of forms, differentiable functions and tangent vectors, congruence of curves, derivative map of an isometry, and Euclidean geometry. The manuscript takes a look at shape operators, geometry of surfaces in E, and Riemannian geometry. Concerns include geometric surfaces, covariant derivative, curvature and conjugate points, Gauss-Bonnet theorem, fundamental equations, global theorems, isometries and local isometries, orthogonal coordinates, and integration and orientation. The text is a valuable reference for students interested in elementary differential geometry.
  serge lang differential geometry: Differential Geometry of Curves and Surfaces Manfredo Perdigao do Carmo, 2009
  serge lang differential geometry: Lectures on Differential Geometry Richard M. Schoen, Shing-Tung Yau, 1994
  serge lang differential geometry: Algebra: Chapter 0 Paolo Aluffi, 2021-11-09 Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
  serge lang differential geometry: Introduction to Linear Algebra Serge Lang, 2012-12-06 This is a short text in linear algebra, intended for a one-term course. In the first chapter, Lang discusses the relation between the geometry and the algebra underlying the subject, and gives concrete examples of the notions which appear later in the book. He then starts with a discussion of linear equations, matrices and Gaussian elimination, and proceeds to discuss vector spaces, linear maps, scalar products, determinants, and eigenvalues. The book contains a large number of exercises, some of the routine computational type, while others are conceptual.
  serge lang differential geometry: A First Course in Calculus Serge Lang, 2012-09-17 The purpose of a first course in calculus is to teach the student the basic notions of derivative and integral, and the basic techniques and applica tions which accompany them. The very talented students, with an ob vious aptitude for mathematics, will rapidly require a course in functions of one real variable, more or less as it is understood by professional is not primarily addressed to them (although mathematicians. This book I hope they will be able to acquire from it a good introduction at an early age). I have not written this course in the style I would use for an advanced monograph, on sophisticated topics. One writes an advanced monograph for oneself, because one wants to give permanent form to one's vision of some beautiful part of mathematics, not otherwise ac cessible, somewhat in the manner of a composer setting down his sym phony in musical notation. This book is written for the students to give them an immediate, and pleasant, access to the subject. I hope that I have struck a proper com promise, between dwelling too much on special details and not giving enough technical exercises, necessary to acquire the desired familiarity with the subject. In any case, certain routine habits of sophisticated mathematicians are unsuitable for a first course. Rigor. This does not mean that so-called rigor has to be abandoned.
  serge lang differential geometry: Handbook of Global Analysis Demeter Krupka, David Saunders, 2011-08-11 This is a comprehensive exposition of topics covered by the American Mathematical Society’s classification “Global Analysis , dealing with modern developments in calculus expressed using abstract terminology. It will be invaluable for graduate students and researchers embarking on advanced studies in mathematics and mathematical physics.This book provides a comprehensive coverage of modern global analysis and geometrical mathematical physics, dealing with topics such as; structures on manifolds, pseudogroups, Lie groupoids, and global Finsler geometry; the topology of manifolds and differentiable mappings; differential equations (including ODEs, differential systems and distributions, and spectral theory); variational theory on manifolds, with applications to physics; function spaces on manifolds; jets, natural bundles and generalizations; and non-commutative geometry. - Comprehensive coverage of modern global analysis and geometrical mathematical physics- Written by world-experts in the field- Up-to-date contents
  serge lang differential geometry: Differential Analysis on Complex Manifolds Raymond O. Wells, 2007-12-06 In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Subsequent chapters then develop such topics as Hermitian exterior algebra and the Hodge *-operator, harmonic theory on compact manifolds, differential operators on a Kahler manifold, the Hodge decomposition theorem on compact Kahler manifolds, the Hodge-Riemann bilinear relations on Kahler manifolds, Griffiths's period mapping, quadratic transformations, and Kodaira's vanishing and embedding theorems. The third edition of this standard reference contains a new appendix by Oscar Garcia-Prada which gives an overview of the developments in the field during the decades since the book appeared. From a review of the 2nd Edition: “..the new edition ofProfessor Wells' book is timely and welcome...an excellent introduction for any mathematician who suspects that complex manifold techniques may be relevant to his work.” Nigel Hitchin, Bulletin of the London Mathematical Society “Its purpose is to present the basics of analysis and geometry on compact complex manifolds, and is already one of the standard sources for this material.”
  serge lang differential geometry: The Convenient Setting of Global Analysis Andreas Kriegl, Peter W. Michor, 2024-08-15 This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. The approach is simple: a mapping is called smooth if it maps smooth curves to smooth curves. Up to Fr‚chet spaces, this notion of smoothness coincides with all known reasonable concepts. In the same spirit, calculus of holomorphic mappings (including Hartogs' theorem and holomorphic uniform boundedness theorems) and calculus of real analytic mappings are developed. Existence of smooth partitions of unity, the foundations of manifold theory in infinite dimensions, the relation between tangent vectors and derivations, and differential forms are discussed thoroughly. Special emphasis is given to the notion of regular infinite dimensional Lie groups. Many applications of this theory are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.
  serge lang differential geometry: The Beauty of Doing Mathematics Serge Lang, 1985-09-04
  serge lang differential geometry: A First Course in Differential Equations J. David Logan, 2006 This book is intended as an alternative to the standard differential equations text, which typically includes a large collection of methods and applications, packaged with state-of-the-art color graphics, student solution manuals, the latest fonts, marginal notes, and web-based supplements. These texts adds up to several hundred pages of text and can be very expensive for students to buy. Many students do not have the time or desire to read voluminous texts and explore internet supplements. Here, however, the author writes concisely, to the point, and in plain language. Many examples and exercises are included. In addition, this text also encourages students to use a computer algebra system to solve problems numerically, and as such, templates of MATLAB programs that solve differential equations are given in an appendix, as well as basic Maple and Mathematica commands.
  serge lang differential geometry: Geometry Serge Lang, Gene Murrow, 2013-04-17 From the reviews: A prominent research mathematician and a high school teacher have combined their efforts in order to produce a high school geometry course. The result is a challenging, vividly written volume which offers a broader treatment than the traditional Euclidean one, but which preserves its pedagogical virtues. The material included has been judiciously selected: some traditional items have been omitted, while emphasis has been laid on topics which relate the geometry course to the mathematics that precedes and follows. The exposition is clear and precise, while avoiding pedantry. There are many exercises, quite a number of them not routine. The exposition falls into twelve chapters: 1. Distance and Angles.- 2. Coordinates.- 3. Area and the Pythagoras Theorem.- 4. The Distance Formula.- 5. Some Applications of Right Triangles.- 6. Polygons.- 7. Congruent Triangles.- 8. Dilatations and Similarities.- 9. Volumes.- 10. Vectors and Dot Product.- 11. Transformations.- 12. Isometries.This excellent text, presenting elementary geometry in a manner fully corresponding to the requirements of modern mathematics, will certainly obtain well-merited popularity. Publicationes Mathematicae Debrecen#1
  serge lang differential geometry: Decompositions of Manifolds , 1986-12-22 Decompositions of Manifolds
  serge lang differential geometry: Riemannian Geometry Peter Petersen, 2006-11-24 This volume introduces techniques and theorems of Riemannian geometry, and opens the way to advanced topics. The text combines the geometric parts of Riemannian geometry with analytic aspects of the theory, and reviews recent research. The updated second edition includes a new coordinate-free formula that is easily remembered (the Koszul formula in disguise); an expanded number of coordinate calculations of connection and curvature; general fomulas for curvature on Lie Groups and submersions; variational calculus integrated into the text, allowing for an early treatment of the Sphere theorem using a forgotten proof by Berger; recent results regarding manifolds with positive curvature.
  serge lang differential geometry: Linear Algebra and Geometry Igor R. Shafarevich, Alexey O. Remizov, 2012-08-23 This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.
  serge lang differential geometry: Manifolds, Sheaves, and Cohomology Torsten Wedhorn, 2016-07-25 This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples.
  serge lang differential geometry: All the Mathematics You Missed Thomas A. Garrity, 2002 An essential resource for advanced undergraduate and beginning graduate students in quantitative subjects who need to quickly learn some serious mathematics.
  serge lang differential geometry: Complex Analysis Serge Lang, 2013-04-10 The present book is meant as a text for a course on complex analysis at the advanced undergraduate level, or first-year graduate level. Somewhat more material has been included than can be covered at leisure in one term, to give opportunities for the instructor to exercise his taste, and lead the course in whatever direction strikes his fancy at the time. A large number of routine exercises are included for the more standard portions, and a few harder exercises of striking theoretical interest are also included, but may be omitted in courses addressed to less advanced students. In some sense, I think the classical German prewar texts were the best (Hurwitz-Courant, Knopp, Bieberbach, etc. ) and I would recom mend to anyone to look through them. More recent texts have empha sized connections with real analysis, which is important, but at the cost of exhibiting succinctly and clearly what is peculiar about complex anal ysis: the power series expansion, the uniqueness of analytic continuation, and the calculus of residues. The systematic elementary development of formal and convergent power series was standard fare in the German texts, but only Cartan, in the more recent books, includes this material, which I think is quite essential, e. g. , for differential equations. I have written a short text, exhibiting these features, making it applicable to a wide variety of tastes. The book essentially decomposes into two parts.
  serge lang differential geometry: Global Calculus S. Ramanan, 2005 The power that analysis, topology and algebra bring to geometry has revolutionised the way geometers and physicists look at conceptual problems. Some of the key ingredients in this interplay are sheaves, cohomology, Lie groups, connections and differential operators. In Global Calculus, the appropriate formalism for these topics is laid out with numerous examples and applications by one of the experts in differential and algebraic geometry. Ramanan has chosen an uncommon but natural path through the subject. In this almost completely self-contained account, these topics are developed from scratch. The basics of Fourier transforms, Sobolev theory and interior regularity are proved at the same time as symbol calculus, culminating in beautiful results in global analysis, real and complex. Many new perspectives on traditional and modern questions of differential analysis and geometry are the hallmarks of the book. The book is suitable for a first year graduate course on Global Analysis.
  serge lang differential geometry: Differential Forms in Algebraic Topology Raoul Bott, Loring W. Tu, 2013-04-17 Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.
Serge: A Reformed International Missions Organization
Serge is an international Christian missions organization that sends and cares for missionaries, mentors & equips ministry leaders, and develops gospel-centered resources for ongoing renewal.

Serge (fabric) - Wikipedia
Serge is a type of twill fabric that has diagonal lines or ridges on both inner and outer surfaces via a two-up, two-down weave. [1] The worsted variety is used in making military uniforms, suits, …

SERGE Definition & Meaning - Merriam-Webster
Feb 10, 2025 · The meaning of SERGE is a durable twilled fabric having a smooth clear face and a pronounced diagonal rib on the front and the back. How to use serge in a sentence.

Serge Fabric: The Durable and Classy Material You Need For Your …
Aug 19, 2022 · Serge is a type of twill fabric that has diagonal lines or ridges on both sides, made with a two-up, two-down weave. The worsted variety is used in making military uniforms, suits, …

SERGE | English meaning - Cambridge Dictionary
SERGE definition: 1. a strong cloth made from wool, used especially to make jackets and coats 2. a strong cloth made…. Learn more.

SERGE Definition & Meaning | Dictionary.com
noun a twilled worsted or woolen fabric used especially for clothing. cotton, rayon, or silk in a twill weave. serge 2 [ surj ] Phonetic (Standard)IPA

About Us - Reformed Missions Organization - Serge
Formerly known as World Harvest Mission, Serge is an international Christian missions organization with over 300 missionaries in over 26 countries.

Christian Missions - Go and Grow with Us | Serge
Become a missionary with Serge - explore the life-changing opportunities for you to grow and serve around the world. Global Health, Business, Education, Church Planting, Discipleship, …

Meet Our Leadership - Serge
Serge (formerly World Harvest Mission) was organized under the leadership of Dr. Jack Miller, a pastor, evangelist and author. In the late 1970s, the missions-outreach of the congregation he …

Sergey Urman, M.D. | Ophthalmologist - Boston Vision
Meet Dr. Urman Sergey Urman, M.D. is a board-certified member of the American Board of Ophthalmology. He is also a member of the New England

Serge: A Reformed International Missions Organization
Serge is an international Christian missions organization that sends and cares for missionaries, mentors & equips ministry leaders, and develops gospel-centered resources for ongoing renewal.

Serge (fabric) - Wikipedia
Serge is a type of twill fabric that has diagonal lines or ridges on both inner and outer surfaces via a two-up, two-down weave. [1] The worsted variety is used in making military uniforms, suits, …

SERGE Definition & Meaning - Merriam-Webster
Feb 10, 2025 · The meaning of SERGE is a durable twilled fabric having a smooth clear face and a pronounced diagonal rib on the front and the back. How to use serge in a sentence.

Serge Fabric: The Durable and Classy Material You Need For …
Aug 19, 2022 · Serge is a type of twill fabric that has diagonal lines or ridges on both sides, made with a two-up, two-down weave. The worsted variety is used in making military uniforms, suits, …

SERGE | English meaning - Cambridge Dictionary
SERGE definition: 1. a strong cloth made from wool, used especially to make jackets and coats 2. a strong cloth made…. Learn more.

SERGE Definition & Meaning | Dictionary.com
noun a twilled worsted or woolen fabric used especially for clothing. cotton, rayon, or silk in a twill weave. serge 2 [ surj ] Phonetic (Standard)IPA

About Us - Reformed Missions Organization - Serge
Formerly known as World Harvest Mission, Serge is an international Christian missions organization with over 300 missionaries in over 26 countries.

Christian Missions - Go and Grow with Us | Serge
Become a missionary with Serge - explore the life-changing opportunities for you to grow and serve around the world. Global Health, Business, Education, Church Planting, Discipleship, …

Meet Our Leadership - Serge
Serge (formerly World Harvest Mission) was organized under the leadership of Dr. Jack Miller, a pastor, evangelist and author. In the late 1970s, the missions-outreach of the congregation he …

Sergey Urman, M.D. | Ophthalmologist - Boston Vision
Meet Dr. Urman Sergey Urman, M.D. is a board-certified member of the American Board of Ophthalmology. He is also a member of the New England