Serge Lang Challenges

Advertisement



  serge lang challenges: Challenges Serge Lang, 2012-12-06 I am very thankful to Springer-Verlag for publishing a collection of some of my non-mathematical works-I call them political works. in the broad sense of the word political. Three of these have appeared in print: - My article on the Ladd-Lipset sUIvey. which appeared in the New York Review of Books. 18 May 1978; and also in The File (Springer-Verlag. 1981). - My article on the Baltimore case. which appeared in the Jour nal of Ethics and Behavior. February 1993. - My articles on HIV and AIDS. which appeared in the Yale Sci entific (Fall 1994 and Winter 1995). reprinted updated in the book AIDS: Virus-or drug induced? Kluwer Academic Pub lishers. 1996. pp. 271-307. The first item. Academia. Journalism. and Politics. is itself a book based on my Huntington file. The Background and Motiva tion section of this sub-book can be used as a foreword for all my political works. and also contains an explanation of how I use the word political. In that section. readers will find a general discussion of the way I process information and some criteria I use in discourse.
  serge lang challenges: Undergraduate Algebra Serge Lang, 2013-06-29 This book, together with Linear Algebra, constitutes a curriculum for an algebra program addressed to undergraduates. The separation of the linear algebra from the other basic algebraic structures fits all existing tendencies affecting undergraduate teaching, and I agree with these tendencies. I have made the present book self contained logically, but it is probably better if students take the linear algebra course before being introduced to the more abstract notions of groups, rings, and fields, and the systematic development of their basic abstract properties. There is of course a little overlap with the book Lin ear Algebra, since I wanted to make the present book self contained. I define vector spaces, matrices, and linear maps and prove their basic properties. The present book could be used for a one-term course, or a year's course, possibly combining it with Linear Algebra. I think it is important to do the field theory and the Galois theory, more important, say, than to do much more group theory than we have done here. There is a chapter on finite fields, which exhibit both features from general field theory, and special features due to characteristic p. Such fields have become important in coding theory.
  serge lang challenges: Basic Mathematics Serge Lang, 1988-01
  serge lang challenges: The File Serge Lang, 2012-12-06 The File is a collection of documents from a major dispute involving a number of American college professors, mainly mathematicians, statisticians,and sociologists. The controversy was ignited by the mathematician Serge Lang's reaction to a questionnaire, The 1977 Survey of the American Professoriate, distributed by E. C. Ladd of the University of Connecticut and S. M. Lipset of Stanford. The ensuing discussion - in part acrimonious and personal - soon involved a large group of active and passive participants, and included issues such as survey techniques, evaluation of academic work, public and political honesty, and McCarthyism at Harvard.
  serge lang challenges: Real and Functional Analysis Serge Lang, 2012-12-06 This book is meant as a text for a first year graduate course in analysis. Any standard course in undergraduate analysis will constitute sufficient preparation for its understanding, for instance, my Undergraduate Anal ysis. I assume that the reader is acquainted with notions of uniform con vergence and the like. In this third edition, I have reorganized the book by covering inte gration before functional analysis. Such a rearrangement fits the way courses are taught in all the places I know of. I have added a number of examples and exercises, as well as some material about integration on the real line (e.g. on Dirac sequence approximation and on Fourier analysis), and some material on functional analysis (e.g. the theory of the Gelfand transform in Chapter XVI). These upgrade previous exercises to sections in the text. In a sense, the subject matter covers the same topics as elementary calculus, viz. linear algebra, differentiation and integration. This time, however, these subjects are treated in a manner suitable for the training of professionals, i.e. people who will use the tools in further investiga tions, be it in mathematics, or physics, or what have you. In the first part, we begin with point set topology, essential for all analysis, and we cover the most important results.
  serge lang challenges: Calculus of Several Variables Serge Lang, 2012-10-17 This new, revised edition covers all of the basic topics in calculus of several variables, including vectors, curves, functions of several variables, gradient, tangent plane, maxima and minima, potential functions, curve integrals, Green’s theorem, multiple integrals, surface integrals, Stokes’ theorem, and the inverse mapping theorem and its consequences. It includes many completely worked-out problems.
  serge lang challenges: Geometry Serge Lang, Gene Murrow, 2013-04-17 From the reviews: A prominent research mathematician and a high school teacher have combined their efforts in order to produce a high school geometry course. The result is a challenging, vividly written volume which offers a broader treatment than the traditional Euclidean one, but which preserves its pedagogical virtues. The material included has been judiciously selected: some traditional items have been omitted, while emphasis has been laid on topics which relate the geometry course to the mathematics that precedes and follows. The exposition is clear and precise, while avoiding pedantry. There are many exercises, quite a number of them not routine. The exposition falls into twelve chapters: 1. Distance and Angles.- 2. Coordinates.- 3. Area and the Pythagoras Theorem.- 4. The Distance Formula.- 5. Some Applications of Right Triangles.- 6. Polygons.- 7. Congruent Triangles.- 8. Dilatations and Similarities.- 9. Volumes.- 10. Vectors and Dot Product.- 11. Transformations.- 12. Isometries.This excellent text, presenting elementary geometry in a manner fully corresponding to the requirements of modern mathematics, will certainly obtain well-merited popularity. Publicationes Mathematicae Debrecen#1
  serge lang challenges: The Beauty of Doing Mathematics Serge Lang, 1985-09-04
  serge lang challenges: A First Course in Calculus Serge Lang, 2012-09-17 The purpose of a first course in calculus is to teach the student the basic notions of derivative and integral, and the basic techniques and applica tions which accompany them. The very talented students, with an ob vious aptitude for mathematics, will rapidly require a course in functions of one real variable, more or less as it is understood by professional is not primarily addressed to them (although mathematicians. This book I hope they will be able to acquire from it a good introduction at an early age). I have not written this course in the style I would use for an advanced monograph, on sophisticated topics. One writes an advanced monograph for oneself, because one wants to give permanent form to one's vision of some beautiful part of mathematics, not otherwise ac cessible, somewhat in the manner of a composer setting down his sym phony in musical notation. This book is written for the students to give them an immediate, and pleasant, access to the subject. I hope that I have struck a proper com promise, between dwelling too much on special details and not giving enough technical exercises, necessary to acquire the desired familiarity with the subject. In any case, certain routine habits of sophisticated mathematicians are unsuitable for a first course. Rigor. This does not mean that so-called rigor has to be abandoned.
  serge lang challenges: Introduction to Linear Algebra Serge Lang, 2012-12-06 This is a short text in linear algebra, intended for a one-term course. In the first chapter, Lang discusses the relation between the geometry and the algebra underlying the subject, and gives concrete examples of the notions which appear later in the book. He then starts with a discussion of linear equations, matrices and Gaussian elimination, and proceeds to discuss vector spaces, linear maps, scalar products, determinants, and eigenvalues. The book contains a large number of exercises, some of the routine computational type, while others are conceptual.
  serge lang challenges: Problems and Solutions for Complex Analysis Rami Shakarchi, 2012-12-06 This book contains all the exercises and solutions of Serge Lang's Complex Analy sis. Chapters I through VITI of Lang's book contain the material of an introductory course at the undergraduate level and the reader will find exercises in all of the fol lowing topics: power series, Cauchy's theorem, Laurent series, singularities and meromorphic functions, the calculus of residues, conformal mappings and har monic functions. Chapters IX through XVI, which are suitable for a more advanced course at the graduate level, offer exercises in the following subjects: Schwarz re flection, analytic continuation, Jensen's formula, the Phragmen-LindelOf theorem, entire functions, Weierstrass products and meromorphic functions, the Gamma function and the Zeta function. This solutions manual offers a large number of worked out exercises of varying difficulty. I thank Serge Lang for teaching me complex analysis with so much enthusiasm and passion, and for giving me the opportunity to work on this answer book. Without his patience and help, this project would be far from complete. I thank my brother Karim for always being an infinite source of inspiration and wisdom. Finally, I want to thank Mark McKee for his help on some problems and Jennifer Baltzell for the many years of support, friendship and complicity. Rami Shakarchi Princeton, New Jersey 1999 Contents Preface vii I Complex Numbers and Functions 1 1. 1 Definition . . . . . . . . . . 1 1. 2 Polar Form . . . . . . . . . 3 1. 3 Complex Valued Functions . 8 1. 4 Limits and Compact Sets . . 9 1. 6 The Cauchy-Riemann Equations .
  serge lang challenges: Fundamentals of Diophantine Geometry S. Lang, 1983-08-29 Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.
  serge lang challenges: Complex Analysis Serge Lang, 2013-04-10 The present book is meant as a text for a course on complex analysis at the advanced undergraduate level, or first-year graduate level. Somewhat more material has been included than can be covered at leisure in one term, to give opportunities for the instructor to exercise his taste, and lead the course in whatever direction strikes his fancy at the time. A large number of routine exercises are included for the more standard portions, and a few harder exercises of striking theoretical interest are also included, but may be omitted in courses addressed to less advanced students. In some sense, I think the classical German prewar texts were the best (Hurwitz-Courant, Knopp, Bieberbach, etc. ) and I would recom mend to anyone to look through them. More recent texts have empha sized connections with real analysis, which is important, but at the cost of exhibiting succinctly and clearly what is peculiar about complex anal ysis: the power series expansion, the uniqueness of analytic continuation, and the calculus of residues. The systematic elementary development of formal and convergent power series was standard fare in the German texts, but only Cartan, in the more recent books, includes this material, which I think is quite essential, e. g. , for differential equations. I have written a short text, exhibiting these features, making it applicable to a wide variety of tastes. The book essentially decomposes into two parts.
  serge lang challenges: Introduction to Diophantine Approximations Serge Lang, 2012-12-06 The aim of this book is to illustrate by significant special examples three aspects of the theory of Diophantine approximations: the formal relationships that exist between counting processes and the functions entering the theory; the determination of these functions for numbers given as classical numbers; and certain asymptotic estimates holding almost everywhere. Each chapter works out a special case of a much broader general theory, as yet unknown. Indications for this are given throughout the book, together with reference to current publications. The book may be used in a course in number theory, whose students will thus be put in contact with interesting but accessible problems on the ground floor of mathematics.
  serge lang challenges: Elliptic Curves S. Lang, 2013-06-29 It is possible to write endlessly on elliptic curves. (This is not a threat.) We deal here with diophantine problems, and we lay the foundations, especially for the theory of integral points. We review briefly the analytic theory of the Weierstrass function, and then deal with the arithmetic aspects of the addition formula, over complete fields and over number fields, giving rise to the theory of the height and its quadraticity. We apply this to integral points, covering the inequalities of diophantine approximation both on the multiplicative group and on the elliptic curve directly. Thus the book splits naturally in two parts. The first part deals with the ordinary arithmetic of the elliptic curve: The transcendental parametrization, the p-adic parametrization, points of finite order and the group of rational points, and the reduction of certain diophantine problems by the theory of heights to diophantine inequalities involving logarithms. The second part deals with the proofs of selected inequalities, at least strong enough to obtain the finiteness of integral points.
  serge lang challenges: Solutions Manual for Lang’s Linear Algebra Rami Shakarchi, 1996-08-09 This solutions manual for Lang’s Undergraduate Analysis provides worked-out solutions for all problems in the text. They include enough detail so that a student can fill in the intervening details between any pair of steps.
  serge lang challenges: Topics in Nevanlinna Theory Serge Lang, William Cherry, 2006-11-14 These are notes of lectures on Nevanlinna theory, in the classical case of meromorphic functions, and the generalization by Carlson-Griffith to equidimensional holomorphic maps using as domain space finite coverings of C resp. Cn. Conjecturally best possible error terms are obtained following a method of Ahlfors and Wong. This is especially significant when obtaining uniformity for the error term w.r.t. coverings, since the analytic yields case a strong version of Vojta's conjectures in the number-theoretic case involving the theory of heights. The counting function for the ramified locus in the analytic case is the analogue of the normalized logarithmetic discriminant in the number-theoretic case, and is seen to occur with the expected coefficient 1. The error terms are given involving an approximating function (type function) similar to the probabilistic type function of Khitchine in number theory. The leisurely exposition allows readers with no background in Nevanlinna Theory to approach some of the basic remaining problems around the error term. It may be used as a continuation of a graduate course in complex analysis, also leading into complex differential geometry.
  serge lang challenges: Undergraduate Analysis Serge Lang, 2013-03-14 This is a logically self-contained introduction to analysis, suitable for students who have had two years of calculus. The book centers around those properties that have to do with uniform convergence and uniform limits in the context of differentiation and integration. Topics discussed include the classical test for convergence of series, Fourier series, polynomial approximation, the Poisson kernel, the construction of harmonic functions on the disc, ordinary differential equation, curve integrals, derivatives in vector spaces, multiple integrals, and others. In this second edition, the author has added a new chapter on locally integrable vector fields, has rewritten many sections and expanded others. There are new sections on heat kernels in the context of Dirac families and on the completion of normed vector spaces. A proof of the fundamental lemma of Lebesgue integration is included, in addition to many interesting exercises.
  serge lang challenges: Number Theory III Serge Lang, 1997-04-14 In 1988 Shafarevich asked me to write a volume for the Encyclopaedia of Mathematical Sciences on Diophantine Geometry. I said yes, and here is the volume. By definition, diophantine problems concern the solutions of equations in integers, or rational numbers, or various generalizations, such as finitely generated rings over Z or finitely generated fields over Q. The word Geometry is tacked on to suggest geometric methods. This means that the present volume is not elementary. For a survey of some basic problems with a much more elementary approach, see [La 9Oc]. The field of diophantine geometry is now moving quite rapidly. Out standing conjectures ranging from decades back are being proved. I have tried to give the book some sort of coherence and permanence by em phasizing structural conjectures as much as results, so that one has a clear picture of the field. On the whole, I omit proofs, according to the boundary conditions of the encyclopedia. On some occasions I do give some ideas for the proofs when these are especially important. In any case, a lengthy bibliography refers to papers and books where proofs may be found. I have also followed Shafarevich's suggestion to give examples, and I have especially chosen these examples which show how some classical problems do or do not get solved by contemporary in sights. Fermat's last theorem occupies an intermediate position. Al though it is not proved, it is not an isolated problem any more.
  serge lang challenges: Problems in Group Theory John D. Dixon, 2007-01-01 265 challenging problems in all phases of group theory, gathered for the most part from papers published since 1950, although some classics are included.
  serge lang challenges: Number Theory III Serge Lang, 2013-12-01 In 1988 Shafarevich asked me to write a volume for the Encyclopaedia of Mathematical Sciences on Diophantine Geometry. I said yes, and here is the volume. By definition, diophantine problems concern the solutions of equations in integers, or rational numbers, or various generalizations, such as finitely generated rings over Z or finitely generated fields over Q. The word Geometry is tacked on to suggest geometric methods. This means that the present volume is not elementary. For a survey of some basic problems with a much more elementary approach, see [La 9Oc]. The field of diophantine geometry is now moving quite rapidly. Out standing conjectures ranging from decades back are being proved. I have tried to give the book some sort of coherence and permanence by em phasizing structural conjectures as much as results, so that one has a clear picture of the field. On the whole, I omit proofs, according to the boundary conditions of the encyclopedia. On some occasions I do give some ideasfor the proofs when these are especially important. In any case, a lengthy bibliography refers to papers and books where proofs may be found. I have also followed Shafarevich's suggestion to give examples, and I have especially chosen these examples which show how some classical problems do or do not get solved by contemporary in sights. Fermat's last theorem occupies an intermediate position. Al though it is not proved, it is not an isolated problem any more.
  serge lang challenges: Fundamentals of Differential Geometry Serge Lang, 2012-12-06 The present book aims to give a fairly comprehensive account of the fundamentals of differential manifolds and differential geometry. The size of the book influenced where to stop, and there would be enough material for a second volume (this is not a threat). At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differen tiable maps in them (immersions, embeddings, isomorphisms, etc. ). One may also use differentiable structures on topological manifolds to deter mine the topological structure of the manifold (for example, it la Smale [Sm 67]). In differential geometry, one puts an additional structure on the differentiable manifold (a vector field, a spray, a 2-form, a Riemannian metric, ad lib. ) and studies properties connected especially with these objects. Formally, one may say that one studies properties invariant under the group of differentiable automorphisms which preserve the additional structure. In differential equations, one studies vector fields and their in tegral curves, singular points, stable and unstable manifolds, etc. A certain number of concepts are essential for all three, and are so basic and elementary that it is worthwhile to collect them together so that more advanced expositions can be given without having to start from the very beginnings.
  serge lang challenges: SL2(R) S. Lang, 1985-08-23 This book introduces the infinite dimensional representation theory of semisimple Lie groups by concentrating on one example - SL2(R). The contents are accessible to a wide audience, requiring only a knowledge of real analysis, and some differential equations.
  serge lang challenges: Abelian Varieties Serge Lang, 2019-02-13 Based on the work in algebraic geometry by Norwegian mathematician Niels Henrik Abel (1802–29), this monograph was originally published in 1959 and reprinted later in author Serge Lang's career without revision. The treatment remains a basic advanced text in its field, suitable for advanced undergraduates and graduate students in mathematics. Prerequisites include some background in elementary qualitative algebraic geometry and the elementary theory of algebraic groups. The book focuses exclusively on Abelian varieties rather than the broader field of algebraic groups; therefore, the first chapter presents all the general results on algebraic groups relevant to this treatment. Each chapter begins with a brief introduction and concludes with a historical and bibliographical note. Topics include general theorems on Abelian varieties, the theorem of the square, divisor classes on an Abelian variety, functorial formulas, the Picard variety of an arbitrary variety, the I-adic representations, and algebraic systems of Abelian varieties. The text concludes with a helpful Appendix covering the composition of correspondences.
  serge lang challenges: Real Analysis N. L. Carothers, 2000-08-15 A text for a first graduate course in real analysis for students in pure and applied mathematics, statistics, education, engineering, and economics.
  serge lang challenges: Introduction to Linear Algebra Gilbert Strang, 1993 Book Description: Gilbert Strang's textbooks have changed the entire approach to learning linear algebra -- away from abstract vector spaces to specific examples of the four fundamental subspaces: the column space and nullspace of A and A'. Introduction to Linear Algebra, Fourth Edition includes challenge problems to complement the review problems that have been highly praised in previous editions. The basic course is followed by seven applications: differential equations, engineering, graph theory, statistics, Fourier methods and the FFT, linear programming, and computer graphics. Thousands of teachers in colleges and universities and now high schools are using this book, which truly explains this crucial subject.
  serge lang challenges: Complex Analysis Theodore W. Gamelin, 2013-11-01 The book provides an introduction to complex analysis for students with some familiarity with complex numbers from high school. It conists of sixteen chapters. The first eleven chapters are aimed at an Upper Division undergraduate audience. The remaining five chapters are designed to complete the coverage of all background necessary for passing PhD qualifying exams in complex analysis. Topics studied in the book include Julia sets and the Mandelbrot set, Dirichlet series and the prime number theorem, and the uniformization theorem for Riemann surfaces. The three geometries, spherical, euclidean, and hyperbolic, are stressed. Exercises range from the very simple to the quite challenging, in all chapters. The book is based on lectures given over the years by the author at several places, including UCLA, Brown University, the universities at La Plata and Buenos Aires, Argentina; and the Universidad Autonomo de Valencia, Spain.
  serge lang challenges: Complex Analysis in one Variable NARASIMHAN, 2012-12-06 This book is based on a first-year graduate course I gave three times at the University of Chicago. As it was addressed to graduate students who intended to specialize in mathematics, I tried to put the classical theory of functions of a complex variable in context, presenting proofs and points of view which relate the subject to other branches of mathematics. Complex analysis in one variable is ideally suited to this attempt. Of course, the branches of mathema tics one chooses, and the connections one makes, must depend on personal taste and knowledge. My own leaning towards several complex variables will be apparent, especially in the notes at the end of the different chapters. The first three chapters deal largely with classical material which is avai lable in the many books on the subject. I have tried to present this material as efficiently as I could, and, even here, to show the relationship with other branches of mathematics. Chapter 4 contains a proof of Picard's theorem; the method of proof I have chosen has far-reaching generalizations in several complex variables and in differential geometry. The next two chapters deal with the Runge approximation theorem and its many applications. The presentation here has been strongly influenced by work on several complex variables.
  serge lang challenges: Algebra Serge Lang, 1969
  serge lang challenges: Calculus Morris Kline, 2013-05-09 Application-oriented introduction relates the subject as closely as possible to science with explorations of the derivative; differentiation and integration of the powers of x; theorems on differentiation, antidifferentiation; the chain rule; trigonometric functions; more. Examples. 1967 edition.
  serge lang challenges: A Programmer's Introduction to Mathematics Jeremy Kun, 2018-11-27 A Programmer's Introduction to Mathematics uses your familiarity with ideas from programming and software to teach mathematics. You'll learn about the central objects and theorems of mathematics, including graphs, calculus, linear algebra, eigenvalues, optimization, and more. You'll also be immersed in the often unspoken cultural attitudes of mathematics, learning both how to read and write proofs while understanding why mathematics is the way it is. Between each technical chapter is an essay describing a different aspect of mathematical culture, and discussions of the insights and meta-insights that constitute mathematical intuition. As you learn, we'll use new mathematical ideas to create wondrous programs, from cryptographic schemes to neural networks to hyperbolic tessellations. Each chapter also contains a set of exercises that have you actively explore mathematical topics on your own. In short, this book will teach you to engage with mathematics. A Programmer's Introduction to Mathematics is written by Jeremy Kun, who has been writing about math and programming for 8 years on his blog Math Intersect Programming. As of 2018, he works in datacenter optimization at Google.
  serge lang challenges: High-Probability Trading Marcel Link, 2003-03-17 A common denominator among most new traders is that, within six months of launching their new pursuit, they are out of money and out of trading. High-Probability Trading softens the impact of this trader's tuition, detailing a comprehensive program for weathering those perilous first months and becoming a profitable trader. This no-nonsense book takes a uniquely blunt look at the realities of trading. Filled with real-life examples and intended for use by both short- and long-term traders, it explores each aspect of successful trading.
  serge lang challenges: Trigonometry I.M. Gelfand, Mark Saul, 2012-12-06 In a sense, trigonometry sits at the center of high school mathematics. It originates in the study of geometry when we investigate the ratios of sides in similar right triangles, or when we look at the relationship between a chord of a circle and its arc. It leads to a much deeper study of periodic functions, and of the so-called transcendental functions, which cannot be described using finite algebraic processes. It also has many applications to physics, astronomy, and other branches of science. It is a very old subject. Many of the geometric results that we now state in trigonometric terms were given a purely geometric exposition by Euclid. Ptolemy, an early astronomer, began to go beyond Euclid, using the geometry of the time to construct what we now call tables of values of trigonometric functions. Trigonometry is an important introduction to calculus, where one stud ies what mathematicians call analytic properties of functions. One of the goals of this book is to prepare you for a course in calculus by directing your attention away from particular values of a function to a study of the function as an object in itself. This way of thinking is useful not just in calculus, but in many mathematical situations. So trigonometry is a part of pre-calculus, and is related to other pre-calculus topics, such as exponential and logarithmic functions, and complex numbers.
  serge lang challenges: Linear Algebra Kuldeep Singh, 2013-10-31 Linear algebra is a fundamental area of mathematics, and is arguably the most powerful mathematical tool ever developed. It is a core topic of study within fields as diverse as: business, economics, engineering, physics, computer science, ecology, sociology, demography and genetics. For an example of linear algebra at work, one needs to look no further than the Google search engine, which relies upon linear algebra to rank the results of a search with respect to relevance. The strength of the text is in the large number of examples and the step-by-step explanation of each topic as it is introduced. It is compiled in a way that allows distance learning, with explicit solutions to set problems freely available online. The miscellaneous exercises at the end of each chapter comprise questions from past exam papers from various universities, helping to reinforce the reader's confidence. Also included, generally at the beginning of sections, are short historical biographies of the leading players in the field of linear algebra to provide context for the topics covered. The dynamic and engaging style of the book includes frequent question and answer sections to test the reader's understanding of the methods introduced, rather than requiring rote learning. When first encountered, the subject can appear abstract and students will sometimes struggle to see its relevance; to counter this, the book also contains interviews with key people who use linear algebra in practice, in both professional and academic life. It will appeal to undergraduate students in mathematics, the physical sciences and engineering.
  serge lang challenges: Introduction to Algebraic Geometry Serge Lang, 2019-03-20 Author Serge Lang defines algebraic geometry as the study of systems of algebraic equations in several variables and of the structure that one can give to the solutions of such equations. The study can be carried out in four ways: analytical, topological, algebraico-geometric, and arithmetic. This volume offers a rapid, concise, and self-contained introductory approach to the algebraic aspects of the third method, the algebraico-geometric. The treatment assumes only familiarity with elementary algebra up to the level of Galois theory. Starting with an opening chapter on the general theory of places, the author advances to examinations of algebraic varieties, the absolute theory of varieties, and products, projections, and correspondences. Subsequent chapters explore normal varieties, divisors and linear systems, differential forms, the theory of simple points, and algebraic groups, concluding with a focus on the Riemann-Roch theorem. All the theorems of a general nature related to the foundations of the theory of algebraic groups are featured.
  serge lang challenges: Algebra: Chapter 0 Paolo Aluffi, 2021-11-09 Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
  serge lang challenges: Modern Classical Homotopy Theory Jeffrey Strom, 2023-01-19 The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.
  serge lang challenges: Math! Serge Lang, 1985-09-20 Dieses Buch enthalt eine Sammlung von Dialogen des bekannten Mathematikers Serge Lang mit Schulern. Serge Lang behandelt die Schuler als seinesgleichen und zeigt ihnen mit dem ihm eigenen lebendigen Stil etwas vom Wesen des mathematischen Denkens. Die Begegnungen zwischen Lang und den Schulern sind nach Bandaufnahmen aufgezeichnet worden und daher authentisch und lebendig. Das Buch stellt einen frischen und neuartigen Ansatz fur Lehren, Lernen und Genuss von Mathematik vor. Das Buch ist von grossem Interesse fur Lehrer und Schule
  serge lang challenges: Schaum's Outline of Precalculus, 3rd Edition Fred Safier, 2012-11-16 Tough Test Questions? Missed Lectures? Not Enough Time? Fortunately, there's Schaum's. This all-in-one-package includes 738 fully solved problems, examples, and practice exercises to sharpen your problem-solving skills. Plus, you will have access to 30 detailed videos featuring Math instructors who explain how to solve the most commonly tested problems--it's just like having your own virtual tutor! You'll find everything you need to build confidence, skills, and knowledge for the highest score possible. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you 738 fully solved problems The latest course scope and sequences, with complete coverage of limits, continuity, and derivatives Succinct explanation of all precalculus concepts Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum’s to shorten your study time--and get your best test scores!
  serge lang challenges: A Complete Course in Calculus Serge Lang, 1968
Serge: A Reformed International Missions Organization
Serge is an international Christian missions organization that sends and cares for missionaries, mentors & equips ministry leaders, and develops gospel-centered resources for ongoing renewal.

Serge (fabric) - Wikipedia
Serge is a type of twill fabric that has diagonal lines or ridges on both inner and outer surfaces via a two-up, two-down weave. [1] The worsted variety is used in making military uniforms, suits, …

SERGE Definition & Meaning - Merriam-Webster
Feb 10, 2025 · The meaning of SERGE is a durable twilled fabric having a smooth clear face and a pronounced diagonal rib on the front and the back. How to use serge in a sentence.

Serge Fabric: The Durable and Classy Material You Need For Your …
Aug 19, 2022 · Serge is a type of twill fabric that has diagonal lines or ridges on both sides, made with a two-up, two-down weave. The worsted variety is used in making military uniforms, suits, …

SERGE | English meaning - Cambridge Dictionary
SERGE definition: 1. a strong cloth made from wool, used especially to make jackets and coats 2. a strong cloth made…. Learn more.

SERGE Definition & Meaning | Dictionary.com
noun a twilled worsted or woolen fabric used especially for clothing. cotton, rayon, or silk in a twill weave. serge 2 [ surj ] Phonetic (Standard)IPA

About Us - Reformed Missions Organization - Serge
Formerly known as World Harvest Mission, Serge is an international Christian missions organization with over 300 missionaries in over 26 countries.

Christian Missions - Go and Grow with Us | Serge
Become a missionary with Serge - explore the life-changing opportunities for you to grow and serve around the world. Global Health, Business, Education, Church Planting, Discipleship, …

Meet Our Leadership - Serge
Serge (formerly World Harvest Mission) was organized under the leadership of Dr. Jack Miller, a pastor, evangelist and author. In the late 1970s, the missions-outreach of the congregation he …

Sergey Urman, M.D. | Ophthalmologist - Boston Vision
Meet Dr. Urman Sergey Urman, M.D. is a board-certified member of the American Board of Ophthalmology. He is also a member of the New England

Serge: A Reformed International Missions Organization
Serge is an international Christian missions organization that sends and cares for missionaries, mentors & equips ministry leaders, and develops gospel-centered resources for ongoing renewal.

Serge (fabric) - Wikipedia
Serge is a type of twill fabric that has diagonal lines or ridges on both inner and outer surfaces via a two-up, two-down weave. [1] The worsted variety is used in making military uniforms, suits, …

SERGE Definition & Meaning - Merriam-Webster
Feb 10, 2025 · The meaning of SERGE is a durable twilled fabric having a smooth clear face and a pronounced diagonal rib on the front and the back. How to use serge in a sentence.

Serge Fabric: The Durable and Classy Material You Need For …
Aug 19, 2022 · Serge is a type of twill fabric that has diagonal lines or ridges on both sides, made with a two-up, two-down weave. The worsted variety is used in making military uniforms, suits, …

SERGE | English meaning - Cambridge Dictionary
SERGE definition: 1. a strong cloth made from wool, used especially to make jackets and coats 2. a strong cloth made…. Learn more.

SERGE Definition & Meaning | Dictionary.com
noun a twilled worsted or woolen fabric used especially for clothing. cotton, rayon, or silk in a twill weave. serge 2 [ surj ] Phonetic (Standard)IPA

About Us - Reformed Missions Organization - Serge
Formerly known as World Harvest Mission, Serge is an international Christian missions organization with over 300 missionaries in over 26 countries.

Christian Missions - Go and Grow with Us | Serge
Become a missionary with Serge - explore the life-changing opportunities for you to grow and serve around the world. Global Health, Business, Education, Church Planting, Discipleship, …

Meet Our Leadership - Serge
Serge (formerly World Harvest Mission) was organized under the leadership of Dr. Jack Miller, a pastor, evangelist and author. In the late 1970s, the missions-outreach of the congregation he …

Sergey Urman, M.D. | Ophthalmologist - Boston Vision
Meet Dr. Urman Sergey Urman, M.D. is a board-certified member of the American Board of Ophthalmology. He is also a member of the New England