Shafarevich Basic Algebraic Geometry

Advertisement



  shafarevich basic algebraic geometry: Basic Algebraic Geometry 2 Igor R. Shafarevich, 2012-11-27 The second volume of Shafarevich's introductory book on algebraic varieties and complex manifolds. As with Volume 1, the author has revised the text and added new material, e.g. as a section on real algebraic curves. Although the material is more advanced than in Volume 1 the algebraic apparatus is kept to a minimum, making the book accessible to non-specialists. It can be read independently of Volume 1 and is suitable for beginning graduate students in mathematics as well as those in theoretical physics.
  shafarevich basic algebraic geometry: Basic Algebraic Geometry 1 Igor R. Shafarevich, 2013-08-13 Shafarevich's Basic Algebraic Geometry has been a classic and universally used introduction to the subject since its first appearance over 40 years ago. As the translator writes in a prefatory note, ``For all [advanced undergraduate and beginning graduate] students, and for the many specialists in other branches of math who need a liberal education in algebraic geometry, Shafarevich’s book is a must.'' The third edition, in addition to some minor corrections, now offers a new treatment of the Riemann--Roch theorem for curves, including a proof from first principles. Shafarevich's book is an attractive and accessible introduction to algebraic geometry, suitable for beginning students and nonspecialists, and the new edition is set to remain a popular introduction to the field.
  shafarevich basic algebraic geometry: Linear Algebra and Geometry Igor R. Shafarevich, Alexey O. Remizov, 2012-08-23 This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.
  shafarevich basic algebraic geometry: Algebraic Geometry I V.I. Danilov, V.V. Shokurov, 2012-02-25 ... To sum up, this book helps to learn algebraic geometry in a short time, its concrete style is enjoyable for students and reveals the beauty of mathematics. --Acta Scientiarum Mathematicarum
  shafarevich basic algebraic geometry: Algebraic Geometry III A.N. Parshin, I.R. Shafarevich, 2013-04-17 Starting with the end of the seventeenth century, one of the most interesting directions in mathematics (attracting the attention as J. Bernoulli, Euler, Jacobi, Legendre, Abel, among others) has been the study of integrals of the form r dz l Aw(T) = -, TO W where w is an algebraic function of z. Such integrals are now called abelian. Let us examine the simplest instance of an abelian integral, one where w is defined by the polynomial equation (1) where the polynomial on the right hand side has no multiple roots. In this case the function Aw is called an elliptic integral. The value of Aw is determined up to mv + nv , where v and v are complex numbers, and m and n are 1 2 1 2 integers. The set of linear combinations mv+ nv forms a lattice H C C, and 1 2 so to each elliptic integral Aw we can associate the torus C/ H. 2 On the other hand, equation (1) defines a curve in the affine plane C = 2 2 {(z,w)}. Let us complete C2 to the projective plane lP' = lP' (C) by the addition of the line at infinity, and let us also complete the curve defined 2 by equation (1). The result will be a nonsingular closed curve E C lP' (which can also be viewed as a Riemann surface). Such a curve is called an elliptic curve.
  shafarevich basic algebraic geometry: Algebraic Geometry Solomon Lefschetz, 2005-12-27 This text for advanced undergraduate students is both an introduction to algebraic geometry and a bridge between its two parts--the analytical-topological and the algebraic. Because of its extensive use of formal power series (power series without convergency), the treatment will appeal to readers conversant with analysis but less familiar with the formidable techniques of modern algebra. The book opens with an overview of the results required from algebra and proceeds to the fundamental concepts of the general theory of algebraic varieties: general point, dimension, function field, rational transformations, and correspondences. A concentrated chapter on formal power series with applications to algebraic varieties follows. An extensive survey of algebraic curves includes places, linear series, abelian differentials, and algebraic correspondences. The text concludes with an examination of systems of curves on a surface.
  shafarevich basic algebraic geometry: Algebraic Geometry Robin Hartshorne, 2010-12-01 An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of Residues and Duality, Foundations of Projective Geometry, Ample Subvarieties of Algebraic Varieties, and numerous research titles.
  shafarevich basic algebraic geometry: An Invitation to Algebraic Geometry Karen E. Smith, Lauri Kahanpää, Pekka Kekäläinen, William Traves, 2013-03-09 The aim of this book is to describe the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra.
  shafarevich basic algebraic geometry: Algebraic Geometry Thomas A. Garrity, 2013-02-01 Algebraic Geometry has been at the center of much of mathematics for hundreds of years. It is not an easy field to break into, despite its humble beginnings in the study of circles, ellipses, hyperbolas, and parabolas. This text consists of a series of ex
  shafarevich basic algebraic geometry: Undergraduate Algebra Serge Lang, 2013-06-29 This book, together with Linear Algebra, constitutes a curriculum for an algebra program addressed to undergraduates. The separation of the linear algebra from the other basic algebraic structures fits all existing tendencies affecting undergraduate teaching, and I agree with these tendencies. I have made the present book self contained logically, but it is probably better if students take the linear algebra course before being introduced to the more abstract notions of groups, rings, and fields, and the systematic development of their basic abstract properties. There is of course a little overlap with the book Lin ear Algebra, since I wanted to make the present book self contained. I define vector spaces, matrices, and linear maps and prove their basic properties. The present book could be used for a one-term course, or a year's course, possibly combining it with Linear Algebra. I think it is important to do the field theory and the Galois theory, more important, say, than to do much more group theory than we have done here. There is a chapter on finite fields, which exhibit both features from general field theory, and special features due to characteristic p. Such fields have become important in coding theory.
  shafarevich basic algebraic geometry: Discourses on Algebra Igor R. Shafarevich, 2012-12-06 I wish that algebra would be the Cinderella ofour story. In the math ematics program in schools, geometry has often been the favorite daugh ter. The amount of geometric knowledge studied in schools is approx imately equal to the level achieved in ancient Greece and summarized by Euclid in his Elements (third century B. C. ). For a long time, geom etry was taught according to Euclid; simplified variants have recently appeared. In spite of all the changes introduced in geometry cours es, geometry retains the influence of Euclid and the inclination of the grandiose scientific revolution that occurred in Greece. More than once I have met a person who said, I didn't choose math as my profession, but I'll never forget the beauty of the elegant edifice built in geometry with its strict deduction of more and more complicated propositions, all beginning from the very simplest, most obvious statements! Unfortunately, I have never heard a similar assessment concerning al gebra. Algebra courses in schools comprise a strange mixture of useful rules, logical judgments, and exercises in using aids such as tables of log arithms and pocket calculators. Such a course is closer in spirit to the brand of mathematics developed in ancient Egypt and Babylon than to the line of development that appeared in ancient Greece and then con tinued from the Renaissance in western Europe. Nevertheless, algebra is just as fundamental, just as deep, and just as beautiful as geometry.
  shafarevich basic algebraic geometry: Classical Algebraic Geometry Igor V. Dolgachev, 2012-08-16 Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.
  shafarevich basic algebraic geometry: Algebraic Geometry IV A.N. Parshin, I.R. Shafarevich, 2012-12-06 The problems being solved by invariant theory are far-reaching generalizations and extensions of problems on the reduction to canonical form of various is almost the same thing, projective geometry. objects of linear algebra or, what Invariant theory has a ISO-year history, which has seen alternating periods of growth and stagnation, and changes in the formulation of problems, methods of solution, and fields of application. In the last two decades invariant theory has experienced a period of growth, stimulated by a previous development of the theory of algebraic groups and commutative algebra. It is now viewed as a branch of the theory of algebraic transformation groups (and under a broader interpretation can be identified with this theory). We will freely use the theory of algebraic groups, an exposition of which can be found, for example, in the first article of the present volume. We will also assume the reader is familiar with the basic concepts and simplest theorems of commutative algebra and algebraic geometry; when deeper results are needed, we will cite them in the text or provide suitable references.
  shafarevich basic algebraic geometry: Algebraic Curves William Fulton, 2008 The aim of these notes is to develop the theory of algebraic curves from the viewpoint of modern algebraic geometry, but without excessive prerequisites. We have assumed that the reader is familiar with some basic properties of rings, ideals and polynomials, such as is often covered in a one-semester course in modern algebra; additional commutative algebra is developed in later sections.
  shafarevich basic algebraic geometry: Algebraic Geometry I David Mumford, 1976
  shafarevich basic algebraic geometry: Basic Algebraic Geometry 1 Igor R. Shafarevich, 2013-11-27 The first edition of this book came out just as the apparatus of algebraic geometry was reaching a stage that permitted a lucid and concise account of the foundations of the subject. The author was no longer forced into the painful choice between sacrificing rigour of exposition or overloading the clear geometrical picture with cumbersome algebraic apparatus. The 15 years that have elapsed since the first edition have seen the appear ance of many beautiful books treating various branches of algebraic geometry. However, as far as I know, no other author has been attracted to the aim which this book set itself: to give an overall view of the many varied aspects of algebraic geometry, without going too far afield into the different theories. There is thus scope for a second edition. In preparing this, I have included some additional material, rather varied in nature, and have made some small cuts, but the general character of the book remains unchanged.
  shafarevich basic algebraic geometry: Algebraic Geometry II I.R. Shafarevich, 2014-10-05 This two-part volume contains numerous examples and insights on various topics. The authors have taken pains to present the material rigorously and coherently. This book will be immensely useful to mathematicians and graduate students working in algebraic geometry, arithmetic algebraic geometry, complex analysis and related fields.
  shafarevich basic algebraic geometry: Basic Algebraic Geometry I.R. Shafarevich, 2012-12-06 Algebraic geometry occupied a central place in the mathematics of the last century. The deepest results of Abel, Riemann, Weierstrass, many of the most important papers of Klein and Poincare belong to this do mam. At the end of the last and the beginning of the present century the attitude towards algebraic geometry changed abruptly. Around 1910 Klein wrote: When I was a student, Abelian functions*-as an after-effect of Jacobi's tradition-were regarded as the undIsputed summit of mathe matics, and each of us, as a matter of course, had the ambition to forge ahead in this field. And now? The young generation hardly know what Abelian functions are. (Vorlesungen tiber die Entwicklung der Mathe matik im XIX. Jahrhundert, Springer-Verlag, Berlin 1926, Seite 312). The style of thinking that was fully developed in algebraic geometry at that time was too far removed from the set-theoretical and axio matic spirit, which then determined the development of mathematics. Several decades had to lapse before the rise of the theory of topolo gical, differentiable and complex manifolds, the general theory of fields, the theory of ideals in sufficiently general rings, and only then it became possible to construct algebraic geometry on the basis of the principles of set-theoretical mathematics. Around the middle of the present century algebraic geometry had undergone to a large extent such a reshaping process. As a result, it can again lay claim to the position it once occupied in mathematics
  shafarevich basic algebraic geometry: Geometries and Groups Viacheslav V. Nikulin, Igor R. Shafarevich, 2012-12-06 This book is devoted to the theory of geometries which are locally Euclidean, in the sense that in small regions they are identical to the geometry of the Euclidean plane or Euclidean 3-space. Starting from the simplest examples, we proceed to develop a general theory of such geometries, based on their relation with discrete groups of motions of the Euclidean plane or 3-space; we also consider the relation between discrete groups of motions and crystallography. The description of locally Euclidean geometries of one type shows that these geometries are themselves naturally represented as the points of a new geometry. The systematic study of this new geometry leads us to 2-dimensional Lobachevsky geometry (also called non-Euclidean or hyperbolic geometry) which, following the logic of our study, is constructed starting from the properties of its group of motions. Thus in this book we would like to introduce the reader to a theory of geometries which are different from the usual Euclidean geometry of the plane and 3-space, in terms of examples which are accessible to a concrete and intuitive study. The basic method of study is the use of groups of motions, both discrete groups and the groups of motions of geometries. The book does not presuppose on the part of the reader any preliminary knowledge outside the limits of a school geometry course.
  shafarevich basic algebraic geometry: The Geometry of Schemes David Eisenbud, Joe Harris, 2006-04-06 Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.
  shafarevich basic algebraic geometry: Algebraic Geometry Daniel Perrin, 2007-12-16 Aimed primarily at graduate students and beginning researchers, this book provides an introduction to algebraic geometry that is particularly suitable for those with no previous contact with the subject; it assumes only the standard background of undergraduate algebra. The book starts with easily-formulated problems with non-trivial solutions and uses these problems to introduce the fundamental tools of modern algebraic geometry: dimension; singularities; sheaves; varieties; and cohomology. A range of exercises is provided for each topic discussed, and a selection of problems and exam papers are collected in an appendix to provide material for further study.
  shafarevich basic algebraic geometry: Linear Algebraic Groups James E. Humphreys, 2012-12-06 James E. Humphreys is presently Professor of Mathematics at the University of Massachusetts at Amherst. Before this, he held the posts of Assistant Professor of Mathematics at the University of Oregon and Associate Professor of Mathematics at New York University. His main research interests include group theory and Lie algebras. He graduated from Oberlin College in 1961. He did graduate work in philosophy and mathematics at Cornell University and later received hi Ph.D. from Yale University if 1966. In 1972, Springer-Verlag published his first book, Introduction to Lie Algebras and Representation Theory (graduate Texts in Mathematics Vol. 9).
  shafarevich basic algebraic geometry: Lectures on Curves, Surfaces and Projective Varieties Mauro Beltrametti, 2009 This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students in the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses at the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.
  shafarevich basic algebraic geometry: Representations of Fundamental Groups of Algebraic Varieties Kang Zuo, 2006-11-14 Using harmonic maps, non-linear PDE and techniques from algebraic geometry this book enables the reader to study the relation between fundamental groups and algebraic geometry invariants of algebraic varieties. The reader should have a basic knowledge of algebraic geometry and non-linear analysis. This book can form the basis for graduate level seminars in the area of topology of algebraic varieties. It also contains present new techniques for researchers working in this area.
  shafarevich basic algebraic geometry: Principles of Algebraic Geometry Phillip Griffiths, Joseph Harris, 2014-08-21 A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special topics in complex manifolds.
  shafarevich basic algebraic geometry: Shafarevich Maps and Automorphic Forms Janos Kollar, 2014-07 The aim of this book is to study various geometric properties and algebraic invariants of smooth projective varieties with infinite fundamental groups. This approach allows for much interplay between methods of algebraic geometry, complex analysis, the theory of harmonic maps, and topology. Making systematic use of Shafarevich maps, a concept previously introduced by the author, this work isolates those varieties where the fundamental group influences global properties of the canonical class. The book is primarily geared toward researchers and graduate students in algebraic geometry who are interested in the structure and classification theory of algebraic varieties. There are, however, presentations of many other applications involving other topics as well--such as Abelian varieties, theta functions, and automorphic forms on bounded domains. The methods are drawn from diverse sources, including Atiyah's L2 -index theorem, Gromov's theory of Poincar series, and recent generalizations of Kodaira's vanishing theorem. Originally published in 1995. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
  shafarevich basic algebraic geometry: Lectures on Invariant Theory Igor Dolgachev, 2003-08-07 The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.
  shafarevich basic algebraic geometry: Algebraic Geometry Joe Harris, JOE AUTOR HARRIS, 1992-09-17 This textbook is an introduction to algebraic geometry that emphasizes the classical roots of the subject, avoiding the technical details better treated with the most recent methods. It provides a basis for understanding the developments of the last half century which have put the subject on a radically new footing. Based on lectures given at Brown and Harvard, the book retains an informal style and stresses examples. Annotation copyright by Book News, Inc., Portland, OR
  shafarevich basic algebraic geometry: Lectures on Curves on an Algebraic Surface David Mumford, 1966-08-21 These lectures, delivered by Professor Mumford at Harvard in 1963-1964, are devoted to a study of properties of families of algebraic curves, on a non-singular projective algebraic curve defined over an algebraically closed field of arbitrary characteristic. The methods and techniques of Grothendieck, which have so changed the character of algebraic geometry in recent years, are used systematically throughout. Thus the classical material is presented from a new viewpoint.
  shafarevich basic algebraic geometry: Basic Number Theory. Andre Weil, 2013-12-14 Itpzf}JlOV, li~oxov uoq>ZUJlCJ. 7:WV Al(JX., llpoj1. AE(Jj1. The first part of this volume is based on a course taught at Princeton University in 1961-62; at that time, an excellent set ofnotes was prepared by David Cantor, and it was originally my intention to make these notes available to the mathematical public with only quite minor changes. Then, among some old papers of mine, I accidentally came across a long-forgotten manuscript by ChevaIley, of pre-war vintage (forgotten, that is to say, both by me and by its author) which, to my taste at least, seemed to have aged very welt It contained abrief but essentially com plete account of the main features of c1assfield theory, both local and global; and it soon became obvious that the usefulness of the intended volume would be greatly enhanced if I inc1uded such a treatment of this topic. It had to be expanded, in accordance with my own plans, but its outline could be preserved without much change. In fact, I have adhered to it rather c10sely at some critical points.
  shafarevich basic algebraic geometry: Arithmetic and Geometry Michael Artin, John Tate, 2013-11-11
  shafarevich basic algebraic geometry: Hopf Algebras and Their Actions on Rings Susan Montgomery, 1993-10-28 The last ten years have seen a number of significant advances in Hopf algebras. The best known is the introduction of quantum groups, which are Hopf algebras that arose in mathematical physics and now have connections to many areas of mathematics. In addition, several conjectures of Kaplansky have been solved, the most striking of which is a kind of Lagrange's theorem for Hopf algebras. Work on actions of Hopf algebras has unified earlier results on group actions, actions of Lie algebras, and graded algebras. This book brings together many of these recent developments from the viewpoint of the algebraic structure of Hopf algebras and their actions and coactions. Quantum groups are treated as an important example, rather than as an end in themselves. The two introductory chapters review definitions and basic facts; otherwise, most of the material has not previously appeared in book form. Providing an accessible introduction to Hopf algebras, this book would make an excellent graduate textbook for a course in Hopf algebras or an introduction to quantum groups.
  shafarevich basic algebraic geometry: Algebraic Function Fields and Codes Henning Stichtenoth, 2009-02-11 This book links two subjects: algebraic geometry and coding theory. It uses a novel approach based on the theory of algebraic function fields. Coverage includes the Riemann-Rock theorem, zeta functions and Hasse-Weil's theorem as well as Goppa' s algebraic-geometric codes and other traditional codes. It will be useful to researchers in algebraic geometry and coding theory and computer scientists and engineers in information transmission.
  shafarevich basic algebraic geometry: Rational Curves on Algebraic Varieties Janos Kollar, 2013-04-09 The aim of this book is to provide an introduction to the structure theory of higher dimensional algebraic varieties by studying the geometry of curves, especially rational curves, on varieties. The main applications are in the study of Fano varieties and of related varieties with lots of rational curves on them. This Ergebnisse volume provides the first systematic introduction to this field of study. The book contains a large number of examples and exercises which serve to illustrate the range of the methods and also lead to many open questions of current research.
  shafarevich basic algebraic geometry: Algebraic Curves and Riemann Surfaces Rick Miranda, 1995 In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.
  shafarevich basic algebraic geometry: Using Algebraic Geometry David A Cox, John Little, Donal O'Shea, 2005-03-09 The discovery of new algorithms for dealing with polynomial equations, and their implementation on fast, inexpensive computers, has revolutionized algebraic geometry and led to exciting new applications in the field. This book details many uses of algebraic geometry and highlights recent applications of Grobner bases and resultants. This edition contains two new sections, a new chapter, updated references and many minor improvements throughout.
  shafarevich basic algebraic geometry: Linear Algebra and Geometry P. K. Suetin, Alexandra I. Kostrikin, Yu I Manin, 1997-10-01 This advanced textbook on linear algebra and geometry covers a wide range of classical and modern topics. Differing from existing textbooks in approach, the work illustrates the many-sided applications and connections of linear algebra with functional analysis, quantum mechanics and algebraic and differential geometry. The subjects covered in some detail include normed linear spaces, functions of linear operators, the basic structures of quantum mechanics and an introduction to linear programming. Also discussed are Kahler's metic, the theory of Hilbert polynomials, and projective and affine geometries. Unusual in its extensive use of applications in physics to clarify each topic, this comprehensice volume should be of particular interest to advanced undergraduates and graduates in mathematics and physics, and to lecturers in linear and multilinear algebra, linear programming and quantum mechanics.
  shafarevich basic algebraic geometry: Undergraduate Algebraic Geometry Miles A. Reid, 1988
  shafarevich basic algebraic geometry: Introduction to Algebraic Geometry and Algebraic Groups , 1980-01-01 Introduction to Algebraic Geometry and Algebraic Groups
Igor Shafarevich - Wikipedia
Igor Rostislavovich Shafarevich (Russian: И́горь Ростисла́вович Шафаре́вич; 3 June 1923 – 19 February 2017) was a Soviet and Russian mathematician who contributed to algebraic number …

Igor Rostislavovich Shafarevich (1923 - 2017) - Biography
Feb 19, 2017 · Igor Shafarevich was a Russian mathematician who worked in algebraic number theory and algebraic geometry. He was an important dissident during the Soviet era.

Igor Shafarevich, Russian Mathematician With a Mixed Political …
Mar 13, 2017 · MOSCOW — Igor Shafarevich, an internationally renowned Russian mathematician who had a central role in the anti-Soviet dissident movement during the height …

Igor Shafarevich - Simple English Wikipedia, the free encyclopedia
Igor Rostislavovich Shafarevich (Russian: И́горь Ростисла́вович Шафаре́вич; 3 June 1923 – 19 February 2017) was a Russian mathematician. He contributed to algebraic number theory and …

Biography:Igor Shafarevich - HandWiki
Igor Rostislavovich Shafarevich (Russian: И́горь Ростисла́вович Шафаре́вич; 3 June 1923 – 19 February 2017) was a Soviet and Russian mathematician who contributed to algebraic number …

Igor Rostislavovich Shafarevich and His Mathematical Heritage
From 1970 to 1973, Shafarevich was President of the Moscow Mathematical Society. Shafarevich’s scientific contributions gained wide national and international recognition. In …

Igor Rotislavovich Shafarevich (1923–2017) - ias.ac.in
To understand these and later events in his life, it is necessary to bring out Shafarevich’s social and political views. While open criticism would have been fa-tal in the early nineteen fifties, he …

Igor Shafarevich - Wikiwand
Igor Rostislavovich Shafarevich (Russian: И́горь Ростисла́вович Шафаре́вич; 3 June 1923 – 19 February 2017) was a Soviet and Russian mathematician who contributed to algebraic number …

Igor Rostislavovich Shafarevich: in Memoriam - arXiv.org
The prominent Russian mathematician Igor Rostislavovich Shafarevich passed away on February 19, 2017, leaving behind outstanding contributions in number theory, algebra, and algebraic …

Persons: Shafarevich, Igor Rostislavovich
Shafarevich, Igor Rostislavovich (1923–2017) ... Full member of the Russian Academy of Sciences Professor Doctor of physico-mathematical sciences (1946) Birth date: 3.06.1923 …

Igor Shafarevich - Wikipedia
Igor Rostislavovich Shafarevich (Russian: И́горь Ростисла́вович Шафаре́вич; 3 June 1923 – 19 February 2017) was a Soviet and Russian …

Igor Rostislavovich Shafarevich (1923 - 2017) - Bi…
Feb 19, 2017 · Igor Shafarevich was a Russian mathematician who worked in algebraic number theory and algebraic geometry. He was an important …

Igor Shafarevich, Russian Mathematician With a Mixe…
Mar 13, 2017 · MOSCOW — Igor Shafarevich, an internationally renowned Russian mathematician who had a central role in the anti-Soviet …

Igor Shafarevich - Simple English Wikipedia, the free e…
Igor Rostislavovich Shafarevich (Russian: И́горь Ростисла́вович Шафаре́вич; 3 June 1923 – 19 February 2017) was a Russian mathematician. …

Biography:Igor Shafarevich - HandWiki
Igor Rostislavovich Shafarevich (Russian: И́горь Ростисла́вович Шафаре́вич; 3 June 1923 – 19 February 2017) was a Soviet and Russian …