Rings And Fields Solved Problems

Advertisement



  rings and fields solved problems: Applied Discrete Structures Ken Levasseur, Al Doerr, 2012-02-25 ''In writing this book, care was taken to use language and examples that gradually wean students from a simpleminded mechanical approach and move them toward mathematical maturity. We also recognize that many students who hesitate to ask for help from an instructor need a readable text, and we have tried to anticipate the questions that go unasked. The wide range of examples in the text are meant to augment the favorite examples that most instructors have for teaching the topcs in discrete mathematics. To provide diagnostic help and encouragement, we have included solutions and/or hints to the odd-numbered exercises. These solutions include detailed answers whenever warranted and complete proofs, not just terse outlines of proofs. Our use of standard terminology and notation makes Applied Discrete Structures a valuable reference book for future courses. Although many advanced books have a short review of elementary topics, they cannot be complete. The text is divided into lecture-length sections, facilitating the organization of an instructor's presentation.Topics are presented in such a way that students' understanding can be monitored through thought-provoking exercises. The exercises require an understanding of the topics and how they are interrelated, not just a familiarity with the key words. An Instructor's Guide is available to any instructor who uses the text. It includes: Chapter-by-chapter comments on subtopics that emphasize the pitfalls to avoid; Suggested coverage times; Detailed solutions to most even-numbered exercises; Sample quizzes, exams, and final exams. This textbook has been used in classes at Casper College (WY), Grinnell College (IA), Luzurne Community College (PA), University of the Puget Sound (WA).''--
  rings and fields solved problems: Algebra in Action: A Course in Groups, Rings, and Fields Shahriar Shahriar, 2017-08-16 This text—based on the author's popular courses at Pomona College—provides a readable, student-friendly, and somewhat sophisticated introduction to abstract algebra. It is aimed at sophomore or junior undergraduates who are seeing the material for the first time. In addition to the usual definitions and theorems, there is ample discussion to help students build intuition and learn how to think about the abstract concepts. The book has over 1300 exercises and mini-projects of varying degrees of difficulty, and, to facilitate active learning and self-study, hints and short answers for many of the problems are provided. There are full solutions to over 100 problems in order to augment the text and to model the writing of solutions. Lattice diagrams are used throughout to visually demonstrate results and proof techniques. The book covers groups, rings, and fields. In group theory, group actions are the unifying theme and are introduced early. Ring theory is motivated by what is needed for solving Diophantine equations, and, in field theory, Galois theory and the solvability of polynomials take center stage. In each area, the text goes deep enough to demonstrate the power of abstract thinking and to convince the reader that the subject is full of unexpected results.
  rings and fields solved problems: Exercises in Modules and Rings T.Y. Lam, 2009-12-08 The idea of writing this book came roughly at the time of publication of my graduate text Lectures on Modules and Rings, Springer GTM Vol. 189, 1999. Since that time, teaching obligations and intermittent intervention of other projects caused prolonged delays in the work on this volume. Only a lucky break in my schedule in 2006 enabled me to put the finishing touches on the completion of this long overdue book. This book is intended to serve a dual purpose. First, it is designed as a problem book for Lectures. As such, it contains the statements and full solutions of the many exercises that appeared in Lectures. Second, this book is also offered as a reference and repository for general information in the theory of modules and rings that may be hard to find in the standard textbooks in the field. As a companion volume to Lectures, this work covers the same math ematical material as its parent work; namely, the part of ring theory that makes substantial use of the notion of modules. The two books thus share the same table of contents, with the first half treating projective, injective, and flat modules, homological and uniform dimensions, and the second half dealing with noncommutative localizations and Goldie's theorems, maximal rings of quotients, Frobenius and quasi-Frobenius rings, conclud ing with Morita's theory of category equivalences and dualities.
  rings and fields solved problems: Foundations of Module and Ring Theory Robert Wisbauer, 2018-05-11 This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating study for those new to the subject as well as for researchers and serves as a reference volume. Starting form a basic understanding of linear algebra, the theory is presented and accompanied by complete proofs. For a module M, the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category. Developing the techniques in o[M] is no more complicated than in full module categories and the higher generality yields significant advantages: for example, module theory may be developed for rings without units and also for non-associative rings. Numerous exercises are included in this volume to give further insight into the topics covered and to draw attention to related results in the literature.
  rings and fields solved problems: A Book of Abstract Algebra Charles C Pinter, 2010-01-14 Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
  rings and fields solved problems: Integral Closure of Ideals, Rings, and Modules Craig Huneke, Irena Swanson, 2006-10-12 Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.
  rings and fields solved problems: A First Course in Abstract Algebra Marlow Anderson, Todd Feil, 2005-01-27 Most abstract algebra texts begin with groups, then proceed to rings and fields. While groups are the logically simplest of the structures, the motivation for studying groups can be somewhat lost on students approaching abstract algebra for the first time. To engage and motivate them, starting with something students know and abstracting from there
  rings and fields solved problems: Basic Algebra Paul M. Cohn, 2004-12-01 This is the first volume of a revised edition of P.M. Cohn's classic three-volume text Algebra, widely regarded as one of the most outstanding introductory algebra textbooks. This volume covers the important results of algebra. Readers should have some knowledge of linear algebra, groups and fields, although all the essential facts and definitions are recalled.
  rings and fields solved problems: A History of Algebra Bartel L. van der Waerden, 2013-06-29
  rings and fields solved problems: Smarandache Near-Rings W. B. Vasantha Kandasamy, 2002 Generally, in any human field, a Smarandache Structure on a set A means a weak structure W on A such that there exists a proper subset B in A which is embedded with a stronger structure S. These types of structures occur in our everyday life, that's why we study them in this book. Thus, as a particular case: A Near-Ring is a non-empty set N together with two binary operations '+' and '.' such that (N, +) is a group (not necessarily abelian), (N, .) is a semigroup. For all a, b, c in N we have (a + b) . c = a . c + b . c. A Near-Field is a non-empty set P together with two binary operations '+' and '.' such that (P, +) is a group (not necessarily abelian), (P \ {0}, .) is a group. For all a, b, c I P we have (a + b) . c = a . c + b . c. A Smarandache Near-ring is a near-ring N which has a proper subset P in N, where P is a near-field (with respect to the same binary operations on N).
  rings and fields solved problems: Abstract Algebra Thomas Judson, 2023-08-11 Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory.
  rings and fields solved problems: Modern Algebra (Abstract Algebra) ,
  rings and fields solved problems: Visual Group Theory Nathan Carter, 2021-06-08 Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2012! Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts, but its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory.
  rings and fields solved problems: Algebra Michael Artin, 2013-09-01 Algebra, Second Edition, by Michael Artin, is ideal for the honors undergraduate or introductory graduate course. The second edition of this classic text incorporates twenty years of feedback and the author's own teaching experience. The text discusses concrete topics of algebra in greater detail than most texts, preparing students for the more abstract concepts; linear algebra is tightly integrated throughout.
  rings and fields solved problems: A First Course in Noncommutative Rings Tsit-Yuen Lam, 2001-06-21 Aimed at the novice rather than the connoisseur and stressing the role of examples and motivation, this text is suitable not only for use in a graduate course, but also for self-study in the subject by interested graduate students. More than 400 exercises testing the understanding of the general theory in the text are included in this new edition.
  rings and fields solved problems: A Course On Abstract Algebra Minking Eie, Shou-te Chang, 2010-02-26 This textbook provides an introduction to abstract algebra for advanced undergraduate students. Based on the authors' lecture notes at the Department of Mathematics, National Chung Cheng University of Taiwan, it begins with a description of the algebraic structures of the ring and field of rational numbers. Abstract groups are then introduced. Technical results such as Lagrange's Theorem and Sylow's Theorems follow as applications of group theory. Ring theory forms the second part of abstract algebra, with the ring of polynomials and the matrix ring as basic examples. The general theory of ideals as well as maximal ideals in the rings of polynomials over the rational numbers are also discussed. The final part of the book focuses on field theory, field extensions and then Galois theory to illustrate the correspondence between the Galois groups and field extensions.This textbook is more accessible and less ambitious than most existing books covering the same subject. Readers will also find the pedagogical material very useful in enhancing the teaching and learning of abstract algebra.
  rings and fields solved problems: Algebra: Chapter 0 Paolo Aluffi, 2021-11-09 Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
  rings and fields solved problems: Galois Theory Through Exercises Juliusz Brzeziński, 2018-03-21 This textbook offers a unique introduction to classical Galois theory through many concrete examples and exercises of varying difficulty (including computer-assisted exercises). In addition to covering standard material, the book explores topics related to classical problems such as Galois’ theorem on solvable groups of polynomial equations of prime degrees, Nagell's proof of non-solvability by radicals of quintic equations, Tschirnhausen's transformations, lunes of Hippocrates, and Galois' resolvents. Topics related to open conjectures are also discussed, including exercises related to the inverse Galois problem and cyclotomic fields. The author presents proofs of theorems, historical comments and useful references alongside the exercises, providing readers with a well-rounded introduction to the subject and a gateway to further reading. A valuable reference and a rich source of exercises with sample solutions, this book will be useful to both students and lecturers. Its original concept makes it particularly suitable for self-study.
  rings and fields solved problems: A History of Abstract Algebra Israel Kleiner, 2007-10-02 This book explores the history of abstract algebra. It shows how abstract algebra has arisen in attempting to solve some of these classical problems, providing a context from which the reader may gain a deeper appreciation of the mathematics involved.
  rings and fields solved problems: Groups, Rings and Fields David A.R. Wallace, 2012-12-06 David Wallace has written a text on modern algebra which is suitable for a first course in the subject given to mathematics undergraduates. It aims to promote a feeling for the evolutionary and historical development of algebra. It assumes some familiarity with complex numbers, matrices and linear algebra which are commonly taught during the first year of an undergraduate course. Each chapter contains examples, exercises and solutions, perfectly suited to aid self-study. All arguments in the text are carefully crafted to promote understanding and enjoyment for the reader.
  rings and fields solved problems: Abstract Algebra with Applications Audrey Terras, 2019 This text offers a friendly and concise introduction to abstract algebra, emphasizing its uses in the modern world.
  rings and fields solved problems: Commutative Algebra David Eisenbud, 2013-12-01 Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algebraic geometry. To help beginners, the essential ideals from algebraic geometry are treated from scratch. Appendices on homological algebra, multilinear algebra and several other useful topics help to make the book relatively self- contained. Novel results and presentations are scattered throughout the text.
  rings and fields solved problems: A Course in Finite Group Representation Theory Peter Webb, 2016-08-19 This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.
  rings and fields solved problems: Algebraic Number Theory and Fermat's Last Theorem Ian Stewart, David Tall, 2001-12-12 First published in 1979 and written by two distinguished mathematicians with a special gift for exposition, this book is now available in a completely revised third edition. It reflects the exciting developments in number theory during the past two decades that culminated in the proof of Fermat's Last Theorem. Intended as a upper level textbook, it
  rings and fields solved problems: Number Fields Daniel A. Marcus, 2018-07-05 Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.
  rings and fields solved problems: Determinantal Rings Winfried Bruns, Udo Vetter, 2006-11-14 Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law. This approach suggest (and is simplified by) the simultaneous treatment of the Schubert subvarieties of Grassmannian. Other methods have not been neglected, however. Principal radical systems are discussed in detail, and one section is devoted to each of invariant and representation theory. While the book is primarily a research monograph, it serves also as a reference source and the reader requires only the basics of commutative algebra together with some supplementary material found in the appendix. The text may be useful for seminars following a course in commutative ring theory since a vast number of notions, results, and techniques can be illustrated significantly by applying them to determinantal rings.
  rings and fields solved problems: Selected Exercises in Algebra Rocco Chirivì, Ilaria Del Corso, Roberto Dvornicich, 2020-01-29 This book, the first of two volumes, contains over 250 selected exercises in Algebra which have featured as exam questions for the Arithmetic course taught by the authors at the University of Pisa. Each exercise is presented together with one or more solutions, carefully written with consistent language and notation. A distinguishing feature of this book is the fact that each exercise is unique and requires some creative thinking in order to be solved. The themes covered in this volume are: mathematical induction, combinatorics, modular arithmetic, Abelian groups, commutative rings, polynomials, field extensions, finite fields. The book includes a detailed section recalling relevant theory which can be used as a reference for study and revision. A list of preliminary exercises introduces the main techniques to be applied in solving the proposed exam questions. This volume is aimed at first year students in Mathematics and Computer Science.
  rings and fields solved problems: Problems in Algebraic Number Theory M. Ram Murty, Jody Esmonde, 2005 The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject Includes various levels of problems - some are easy and straightforward, while others are more challenging All problems are elegantly solved
  rings and fields solved problems: Abstract Algebra Manual Ayman Badawi, 2001 This is the most current textbook in teaching the basic concepts of abstract algebra. The author finds that there are many students who just memorise a theorem without having the ability to apply the theorem to a given problem. Therefore, this is a hands-on manual, where many typical algebraic problems are provided for students to be able to apply the theorems and to actually practice the methods they have learned. Each chapter begins with a statement of a major result in Group and Ring Theory, followed by problems and solutions.
  rings and fields solved problems: Rings and Categories of Modules Frank W. Anderson, Kent R. Fuller, 2012-12-06 This book is intended to provide a reasonably self-contained account of a major portion of the general theory of rings and modules suitable as a text for introductory and more advanced graduate courses. We assume the famil iarity with rings usually acquired in standard undergraduate algebra courses. Our general approach is categorical rather than arithmetical. The continuing theme of the text is the study of the relationship between the one-sided ideal structure that a ring may possess and the behavior of its categories of modules. Following a brief outline of set-theoretic and categorical foundations, the text begins with the basic definitions and properties of rings, modules and homomorphisms and ranges through comprehensive treatments of direct sums, finiteness conditions, the Wedderburn-Artin Theorem, the Jacobson radical, the hom and tensor functions, Morita equivalence and duality, de composition theory of injective and projective modules, and semi perfect and perfect rings. In this second edition we have included a chapter containing many of the classical results on artinian rings that have hdped to form the foundation for much of the contemporary research on the representation theory of artinian rings and finite dimensional algebras. Both to illustrate the text and to extend it we have included a substantial number of exercises covering a wide spectrum of difficulty. There are, of course many important areas of ring and module theory that the text does not touch upon.
  rings and fields solved problems: A Journey Through The Realm of Numbers Menny Aka, Manfred Einsiedler, Thomas Ward, 2020-10-03 This book takes the reader on a journey from familiar high school mathematics to undergraduate algebra and number theory. The journey starts with the basic idea that new number systems arise from solving different equations, leading to (abstract) algebra. Along this journey, the reader will be exposed to important ideas of mathematics, and will learn a little about how mathematics is really done. Starting at an elementary level, the book gradually eases the reader into the complexities of higher mathematics; in particular, the formal structure of mathematical writing (definitions, theorems and proofs) is introduced in simple terms. The book covers a range of topics, from the very foundations (numbers, set theory) to basic abstract algebra (groups, rings, fields), driven throughout by the need to understand concrete equations and problems, such as determining which numbers are sums of squares. Some topics usually reserved for a more advanced audience, such as Eisenstein integers or quadratic reciprocity, are lucidly presented in an accessible way. The book also introduces the reader to open source software for computations, to enhance understanding of the material and nurture basic programming skills. For the more adventurous, a number of Outlooks included in the text offer a glimpse of possible mathematical excursions. This book supports readers in transition from high school to university mathematics, and will also benefit university students keen to explore the beginnings of algebraic number theory. It can be read either on its own or as a supporting text for first courses in algebra or number theory, and can also be used for a topics course on Diophantine equations.
  rings and fields solved problems: Computational Algebra: Course And Exercises With Solutions Ihsen Yengui, 2021-05-17 This book intends to provide material for a graduate course on computational commutative algebra and algebraic geometry, highlighting potential applications in cryptography. Also, the topics in this book could form the basis of a graduate course that acts as a segue between an introductory algebra course and the more technical topics of commutative algebra and algebraic geometry.This book contains a total of 124 exercises with detailed solutions as well as an important number of examples that illustrate definitions, theorems, and methods. This is very important for students or researchers who are not familiar with the topics discussed. Experience has shown that beginners who want to take their first steps in algebraic geometry are usually discouraged by the difficulty of the proposed exercises and the absence of detailed answers. Therefore, exercises (and their solutions) as well as examples occupy a prominent place in this course.This book is not designed as a comprehensive reference work, but rather as a selective textbook. The many exercises with detailed answers make it suitable for use in both a math or computer science course.
  rings and fields solved problems: Algebra 1 Ramji Lal, 2017-05-16 This is the first in a series of three volumes dealing with important topics in algebra. It offers an introduction to the foundations of mathematics together with the fundamental algebraic structures, namely groups, rings, fields, and arithmetic. Intended as a text for undergraduate and graduate students of mathematics, it discusses all major topics in algebra with numerous motivating illustrations and exercises to enable readers to acquire a good understanding of the basic algebraic structures, which they can then use to find the exact or the most realistic solutions to their problems.
  rings and fields solved problems: Discrete Mathematical Structures B. V. Senthil Kumar, Hemen Dutta, 2019-07-08 This book contains fundamental concepts on discrete mathematical structures in an easy to understand style so that the reader can grasp the contents and explanation easily. The concepts of discrete mathematical structures have application to computer science, engineering and information technology including in coding techniques, switching circuits, pointers and linked allocation, error corrections, as well as in data networking, Chemistry, Biology and many other scientific areas. The book is for undergraduate and graduate levels learners and educators associated with various courses and progammes in Mathematics, Computer Science, Engineering and Information Technology. The book should serve as a text and reference guide to many undergraduate and graduate programmes offered by many institutions including colleges and universities. Readers will find solved examples and end of chapter exercises to enhance reader comprehension. Features Offers comprehensive coverage of basic ideas of Logic, Mathematical Induction, Graph Theory, Algebraic Structures and Lattices and Boolean Algebra Provides end of chapter solved examples and practice problems Delivers materials on valid arguments and rules of inference with illustrations Focuses on algebraic structures to enable the reader to work with discrete structures
  rings and fields solved problems: Elements of Modern Algebra, International Edition Linda Gilbert, 2008-11-01 ELEMENTS OF MODERN ALGEBRA, 7e, INTERNATIONAL EDITION with its user-friendly format, provides you with the tools you need to get succeed in abstract algebra and develop mathematical maturity as a bridge to higher-level mathematics courses.. Strategy boxes give you guidance and explanations about techniques and enable you to become more proficient at constructing proofs. A summary of key words and phrases at the end of each chapter help you master the material. A reference section, symbolic marginal notes, an appendix, and numerous examples help you develop your problem solving skills.
  rings and fields solved problems: Euclid's Elements A. C. McKay, R. A. Thompson, 2016-08-26 This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
  rings and fields solved problems: Modules and Rings David Alexander Ross Wallace, 1982
  rings and fields solved problems: Encyclopedic Dictionary of Mathematics Nihon Sūgakkai, 1993 V.1. A.N. v.2. O.Z. Apendices and indexes.
  rings and fields solved problems: A First Course in Abstract Algebra John B. Fraleigh, 2020 This is an introduction to abstract algebra. It is anticipated that the students have studied calculus and probably linear algebra. However, these are primarily mathematical maturity prerequisites; subject matter from calculus and linear algebra appears mostly in illustrative examples and exercises. As in previous editions of the text, my aim remains to teach students as much about groups, rings, and fields as I can in a first course. For many students, abstract algebra is their first extended exposure to an axiomatic treatment of mathematics. Recognizing this, I have included extensive explanations concerning what we are trying to accomplish, how we are trying to do it, and why we choose these methods. Mastery of this text constitutes a firm foundation for more specialized work in algebra, and also provides valuable experience for any further axiomatic study of mathematics--
  rings and fields solved problems: Guide to Abstract Algebra Carol Whitehead, 1988
Rings - Etsy
Big blue statement ring, huge bold rings for women, oversized contemporary polymer clay jewelry, chunky large cocktail ring

Rings - Etsy
There are many different types of rings sold by sellers on Etsy. Some of the popular rings available on Etsy include: rings box, rings for women, rings dish, rings for men, rings holder, …

Rings - Etsy UK
Set of 2 Sterling Silver Ring, Spacer Rings, Silver Stackable Rings, Fidget Ring, Women Ring, Gift For Her Minimalist

Rings for Women - Etsy
Check out our rings for women selection for the very best in unique or custom, handmade pieces from our statement rings shops.

Wedding & Engagement - Etsy
10K Gold Wedding Ring Set, Solid Gold Wedding Band Traditional Wedding Band Set, Wedding Band His and Hers, Woman,Engagement Rings

925silver Couples Rings - Etsy
Check out our 925silver couples rings selection for the very best in unique or custom, handmade pieces from our statement rings shops.

Wedding Rings - Etsy
"The rings arrived in a timely fashion and we're securely wrapped. They are indeed a little bit darker than pictured but reading the reviews we expected that. The engraving looks very nice …

Engagement Ring - Etsy
Check out our engagement ring selection for the very best in unique or custom, handmade pieces from our engagement rings shops.

Bridal Sets - Etsy
Lab sapphire engagement ring set, nature inspired rings, pear sapphire ring, fantasy engagement ring with curved wedding band, elvish ring

Peridot Ring - Etsy
Check out our peridot ring selection for the very best in unique or custom, handmade pieces from our rings shops.

Rings - Etsy
Big blue statement ring, huge bold rings for women, oversized contemporary polymer clay jewelry, chunky large cocktail ring

Rings - Etsy
There are many different types of rings sold by sellers on Etsy. Some of the popular rings available on Etsy …

Rings - Etsy UK
Set of 2 Sterling Silver Ring, Spacer Rings, Silver Stackable Rings, Fidget Ring, Women Ring, Gift For Her Minimalist

Rings for Women - Etsy
Check out our rings for women selection for the very best in unique or custom, handmade pieces from our …

Wedding & Engagement - Etsy
10K Gold Wedding Ring Set, Solid Gold Wedding Band Traditional Wedding Band Set, Wedding Band His and Hers, Woman,Engagement Rings