Probability And Martingales

Advertisement



  probability and martingales: Probability with Martingales David Williams, 1991-02-14 This is a masterly introduction to the modern, and rigorous, theory of probability. The author emphasises martingales and develops all the necessary measure theory.
  probability and martingales: Probability Theory Yuan S. Chow, Henry Teicher, 2012-12-06 Apart from new examples and exercises, some simplifications of proofs, minor improvements, and correction of typographical errors, the principal change from the first edition is the addition of section 9.5, dealing with the central limit theorem for martingales and more general stochastic arrays. vii Preface to the First Edition Probability theory is a branch of mathematics dealing with chance phenomena and has clearly discernible links with the real world. The origins of the sub ject, generally attributed to investigations by the renowned French mathe matician Fermat of problems posed by a gambling contemporary to Pascal, have been pushed back a century earlier to the Italian mathematicians Cardano and Tartaglia about 1570 (Ore, 1953). Results as significant as the Bernoulli weak law of large numbers appeared as early as 1713, although its counterpart, the Borel strong law oflarge numbers, did not emerge until 1909. Central limit theorems and conditional probabilities were already being investigated in the eighteenth century, but the first serious attempts to grapple with the logical foundations of probability seem to be Keynes (1921), von Mises (1928; 1931), and Kolmogorov (1933).
  probability and martingales: Martingale Limit Theory and Its Application P. Hall, C. C. Heyde, 2014-07-10 Martingale Limit Theory and Its Application discusses the asymptotic properties of martingales, particularly as regards key prototype of probabilistic behavior that has wide applications. The book explains the thesis that martingale theory is central to probability theory, and also examines the relationships between martingales and processes embeddable in or approximated by Brownian motion. The text reviews the martingale convergence theorem, the classical limit theory and analogs, and the martingale limit theorems viewed as the rate of convergence results in the martingale convergence theorem. The book explains the square function inequalities, weak law of large numbers, as well as the strong law of large numbers. The text discusses the reverse martingales, martingale tail sums, the invariance principles in the central limit theorem, and also the law of the iterated logarithm. The book investigates the limit theory for stationary processes via corresponding results for approximating martingales and the estimation of parameters from stochastic processes. The text can be profitably used as a reference for mathematicians, advanced students, and professors of higher mathematics or statistics.
  probability and martingales: Probability Rick Durrett, 2010-08-30 This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
  probability and martingales: Measures, Integrals and Martingales René L. Schilling, 2005-11-10 This is a concise and elementary introduction to contemporary measure and integration theory as it is needed in many parts of analysis and probability theory. Undergraduate calculus and an introductory course on rigorous analysis in R are the only essential prerequisites, making the text suitable for both lecture courses and for self-study. Numerous illustrations and exercises are included to consolidate what has already been learned and to discover variants and extensions to the main material. Hints and solutions can be found on the authors website, which can be reached at http: //www.motapa.de/measures_integrals_and_martingales/index.htm
  probability and martingales: Set-Indexed Martingales Gail Ivanoff, Ely Merzbach, 2024-12-15 Set-Indexed Martingales offers a unique, comprehensive development of a general theory of Martingales indexed by a family of sets. The authors establish-for the first time-an appropriate framework that provides a suitable structure for a theory of Martingales with enough generality to include many interesting examples. Developed from first principles, the theory brings together the theories of Martingales with a directed index set and set-indexed stochastic processes. Part One presents several classical concepts extended to this setting, including: stopping, predictability, Doob-Meyer decompositions, martingale characterizations of the set-indexed Poisson process, and Brownian motion. Part Two addresses convergence of sequences of set-indexed processes and introduces functional convergence for processes whose sample paths live in a Skorokhod-type space and semi-functional convergence for processes whose sample paths may be badly behaved.Completely self-contained, the theoretical aspects of this work are rich and promising. With its many important applications-especially in the theory of spatial statistics and in stochastic geometry- Set Indexed Martingales will undoubtedly generate great interest and inspire further research and development of the theory and applications.
  probability and martingales: Stochastic Calculus and Applications Samuel N. Cohen, Robert J. Elliott, 2015-11-18 Completely revised and greatly expanded, the new edition of this text takes readers who have been exposed to only basic courses in analysis through the modern general theory of random processes and stochastic integrals as used by systems theorists, electronic engineers and, more recently, those working in quantitative and mathematical finance. Building upon the original release of this title, this text will be of great interest to research mathematicians and graduate students working in those fields, as well as quants in the finance industry. New features of this edition include: End of chapter exercises; New chapters on basic measure theory and Backward SDEs; Reworked proofs, examples and explanatory material; Increased focus on motivating the mathematics; Extensive topical index. Such a self-contained and complete exposition of stochastic calculus and applications fills an existing gap in the literature. The book can be recommended for first-year graduate studies. It will be useful for all who intend to work with stochastic calculus as well as with its applications.–Zentralblatt (from review of the First Edition)
  probability and martingales: Probability with Martingales David Williams, 2001
  probability and martingales: Martingale Methods in Financial Modelling Marek Musiela, 2013-06-29 The origin of this book can be traced to courses on financial mathemat ics taught by us at the University of New South Wales in Sydney, Warsaw University of Technology (Politechnika Warszawska) and Institut National Polytechnique de Grenoble. Our initial aim was to write a short text around the material used in two one-semester graduate courses attended by students with diverse disciplinary backgrounds (mathematics, physics, computer sci ence, engineering, economics and commerce). The anticipated diversity of potential readers explains the somewhat unusual way in which the book is written. It starts at a very elementary mathematical level and does not as sume any prior knowledge of financial markets. Later, it develops into a text which requires some familiarity with concepts of stochastic calculus (the basic relevant notions and results are collected in the appendix). Over time, what was meant to be a short text acquired a life of its own and started to grow. The final version can be used as a textbook for three one-semester courses one at undergraduate level, the other two as graduate courses. The first part of the book deals with the more classical concepts and results of arbitrage pricing theory, developed over the last thirty years and currently widely applied in financial markets. The second part, devoted to interest rate modelling is more subjective and thus less standard. A concise survey of short-term interest rate models is presented. However, the special emphasis is put on recently developed models built upon market interest rates.
  probability and martingales: Theory of Martingales Robert Liptser, A.N. Shiryayev, 2012-12-06 One service mathematics has rc:ndered the 'Et moi, ', si j'avait su comment CD revenir, je n'y serais point alle. ' human race. It has put common SCIIJC back Jules Verne where it belongs. on the topmost shelf next to tbe dusty canister 1abdled 'discarded non- The series is divergent; tberefore we may be sense'. able to do sometbing witb it Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ... '; 'One service logic has rendered com puter science ... '; 'One service category theory has rendered mathematics ... '. All arguably true_ And all statements obtainable this way form part of the raison d'etre of this series_ This series, Mathematics and Its ApplicatiOns, started in 1977. Now that over one hundred volumes have appeared it seems opportune to reexamine its scope_ At the time I wrote Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches.
  probability and martingales: Probability with Martingales David Williams, 1991
  probability and martingales: An Introduction to Measure and Probability J.C. Taylor, 2012-12-06 Assuming only calculus and linear algebra, this book introduces the reader in a technically complete way to measure theory and probability, discrete martingales, and weak convergence. It is self- contained and rigorous with a tutorial approach that leads the reader to develop basic skills in analysis and probability. While the original goal was to bring discrete martingale theory to a wide readership, it has been extended so that the book also covers the basic topics of measure theory as well as giving an introduction to the Central Limit Theory and weak convergence. Students of pure mathematics and statistics can expect to acquire a sound introduction to basic measure theory and probability. A reader with a background in finance, business, or engineering should be able to acquire a technical understanding of discrete martingales in the equivalent of one semester. J. C. Taylor is a Professor in the Department of Mathematics and Statistics at McGill University in Montreal. He is the author of numerous articles on potential theory, both probabilistic and analytic, and is particularly interested in the potential theory of symmetric spaces.
  probability and martingales: Probability: A Graduate Course Allan Gut, 2006-03-16 I know it's trivial, but I have forgotten why. This is a slightly exaggerated characterization of the unfortunate attitude of many mathematicians toward the surrounding world. The point of departure of this book is the opposite. This textbook on the theory of probability is aimed at graduate students, with the ideology that rather than being a purely mathematical discipline, probability theory is an intimate companion of statistics. The book starts with the basic tools, and goes on to chapters on inequalities, characteristic functions, convergence, followed by the three main subjects, the law of large numbers, the central limit theorem, and the law of the iterated logarithm. After a discussion of generalizations and extensions, the book concludes with an extensive chapter on martingales. The main feature of this book is the combination of rigor and detail. Instead of being sketchy and leaving lots of technicalities to be filled in by the reader or as easy exercises, a more solid foundation is obtained by providing more of those not so trivial matters and by integrating some of those not so simple exercises and problems into the body of text. Some results have been given more than one proof in order to illustrate the pros and cons of different approaches. On occasion we invite the reader to minor extensions, for which the proofs reduce to minor modifications of existing ones, with the aim of creating an atmosphere of a dialogue with the reader (instead of the more typical monologue), in order to put the reader in the position to approach any other text for which a solid probabilistic foundation is necessary. Allan Gut is a professor of Mathematical Statistics at Uppsala University, Uppsala, Sweden. He is the author of the Springer monograph Stopped Random Walks (1988), the Springer textbook An Intermediate Course in Probability (1995), and has published around 60 articles in probability theory. His interest in attracting amore general audience to the beautiful world of probability has been manifested in his Swedish popular science book Sant eller Sannolikt (True or Probable), Norstedts förlag (2002). From the reviews: This is more substantial than the usual graduate course in probability; it contains many useful and interesting details that previously were scattered around the literature and gives clear evidence that the writer has a great deal of experience in the area. Short Book Reviews of the International Statistical Institute, December 2005 ...This book is a readable, comprehensive, and up-to-date introductory textbook to probability theory with emphasis on limit theorems for sums and extremes of random variables. The purchase is worth its price. Journal of the American Statistical Association, June 2006
  probability and martingales: Peacocks and Associated Martingales, with Explicit Constructions Francis Hirsch, Christophe Profeta, Bernard Roynette, Marc Yor, 2011-05-24 We call peacock an integrable process which is increasing in the convex order; such a notion plays an important role in Mathematical Finance. A deep theorem due to Kellerer states that a process is a peacock if and only if it has the same one-dimensional marginals as a martingale. Such a martingale is then said to be associated to this peacock. In this monograph, we exhibit numerous examples of peacocks and associated martingales with the help of different methods: construction of sheets, time reversal, time inversion, self-decomposability, SDE, Skorokhod embeddings. They are developed in eight chapters, with about a hundred of exercises.
  probability and martingales: Continuous Martingales and Brownian Motion Daniel Revuz, Marc Yor, 2013-03-09 From the reviews: This is a magnificent book! Its purpose is to describe in considerable detail a variety of techniques used by probabilists in the investigation of problems concerning Brownian motion. The great strength of Revuz and Yor is the enormous variety of calculations carried out both in the main text and also (by implication) in the exercises. ... This is THE book for a capable graduate student starting out on research in probability: the effect of working through it is as if the authors are sitting beside one, enthusiastically explaining the theory, presenting further developments as exercises, and throwing out challenging remarks about areas awaiting further research... Bull.L.M.S. 24, 4 (1992) Since the first edition in 1991, an impressive variety of advances has been made in relation to the material of this book, and these are reflected in the successive editions.
  probability and martingales: Introduction to Probability Charles Miller Grinstead, James Laurie Snell, 2012-10-30 This text is designed for an introductory probability course at the university level for sophomores, juniors, and seniors in mathematics, physical and social sciences, engineering, and computer science. It presents a thorough treatment of ideas and techniques necessary for a firm understanding of the subject.
  probability and martingales: Knowing the Odds John B. Walsh, 2012-09-06 John Walsh, one of the great masters of the subject, has written a superb book on probability. It covers at a leisurely pace all the important topics that students need to know, and provides excellent examples. I regret his book was not available when I taught such a course myself, a few years ago. --Ioannis Karatzas, Columbia University In this wonderful book, John Walsh presents a panoramic view of Probability Theory, starting from basic facts on mean, median and mode, continuing with an excellent account of Markov chains and martingales, and culminating with Brownian motion. Throughout, the author's personal style is apparent; he manages to combine rigor with an emphasis on the key ideas so the reader never loses sight of the forest by being surrounded by too many trees. As noted in the preface, ``To teach a course with pleasure, one should learn at the same time.'' Indeed, almost all instructors will learn something new from the book (e.g. the potential-theoretic proof of Skorokhod embedding) and at the same time, it is attractive and approachable for students. --Yuval Peres, Microsoft With many examples in each section that enhance the presentation, this book is a welcome addition to the collection of books that serve the needs of advanced undergraduate as well as first year graduate students. The pace is leisurely which makes it more attractive as a text. --Srinivasa Varadhan, Courant Institute, New York This book covers in a leisurely manner all the standard material that one would want in a full year probability course with a slant towards applications in financial analysis at the graduate or senior undergraduate honors level. It contains a fair amount of measure theory and real analysis built in but it introduces sigma-fields, measure theory, and expectation in an especially elementary and intuitive way. A large variety of examples and exercises in each chapter enrich the presentation in the text.
  probability and martingales: Probability Davar Khoshnevisan, 2007 This is a textbook for a one-semester graduate course in measure-theoretic probability theory, but with ample material to cover an ordinary year-long course at a more leisurely pace. Khoshnevisan's approach is to develop the ideas that are absolutely central to modern probability theory, and to showcase them by presenting their various applications. As a result, a few of the familiar topics are replaced by interesting non-standard ones. The topics range from undergraduate probability and classical limit theorems to Brownian motion and elements of stochastic calculus. Throughout, the reader will find many exciting applications of probability theory and probabilistic reasoning. There are numerous exercises, ranging from the routine to the very difficult. Each chapter concludes with historical notes.
  probability and martingales: A Basic Course in Probability Theory Rabi Bhattacharya, Edward C. Waymire, 2017-02-13 This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. In this second edition, the text has been reorganized for didactic purposes, new exercises have been added and basic theory has been expanded. General Markov dependent sequences and their convergence to equilibrium is the subject of an entirely new chapter. The introduction of conditional expectation and conditional probability very early in the text maintains the pedagogic innovation of the first edition; conditional expectation is illustrated in detail in the context of an expanded treatment of martingales, the Markov property, and the strong Markov property. Weak convergence of probabilities on metric spaces and Brownian motion are two topics to highlight. A selection of large deviation and/or concentration inequalities ranging from those of Chebyshev, Cramer–Chernoff, Bahadur–Rao, to Hoeffding have been added, with illustrative comparisons of their use in practice. This also includes a treatment of the Berry–Esseen error estimate in the central limit theorem. The authors assume mathematical maturity at a graduate level; otherwise the book is suitable for students with varying levels of background in analysis and measure theory. For the reader who needs refreshers, theorems from analysis and measure theory used in the main text are provided in comprehensive appendices, along with their proofs, for ease of reference. Rabi Bhattacharya is Professor of Mathematics at the University of Arizona. Edward Waymire is Professor of Mathematics at Oregon State University. Both authors have co-authored numerous books, including a series of four upcoming graduate textbooks in stochastic processes with applications.
  probability and martingales: Concentration Inequalities for Sums and Martingales Bernard Bercu, Bernard Delyon, Emmanuel Rio, 2015-09-29 The purpose of this book is to provide an overview of historical and recent results on concentration inequalities for sums of independent random variables and for martingales. The first chapter is devoted to classical asymptotic results in probability such as the strong law of large numbers and the central limit theorem. Our goal is to show that it is really interesting to make use of concentration inequalities for sums and martingales. The second chapter deals with classical concentration inequalities for sums of independent random variables such as the famous Hoeffding, Bennett, Bernstein and Talagrand inequalities. Further results and improvements are also provided such as the missing factors in those inequalities. The third chapter concerns concentration inequalities for martingales such as Azuma-Hoeffding, Freedman and De la Pena inequalities. Several extensions are also provided. The fourth chapter is devoted to applications of concentration inequalities in probability and statistics.
  probability and martingales: Stochastic Processes in Cell Biology Paul C. Bressloff, 2022-01-04 This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. In the second edition the material has been significantly expanded, particularly within the context of nonequilibrium and self-organizing systems. Given the amount of additional material, the book has been divided into two volumes, with volume I mainly covering molecular processes and volume II focusing on cellular processes. A wide range of biological topics are covered in the new edition, including stochastic ion channels and excitable systems, molecular motors, stochastic gene networks, genetic switches and oscillators, epigenetics, normal and anomalous diffusion in complex cellular environments, stochastically-gated diffusion, active intracellular transport, signal transduction, cell sensing, bacterial chemotaxis, intracellular pattern formation, cell polarization, cell mechanics, biological polymers and membranes, nuclear structure and dynamics, biological condensates, molecular aggregation and nucleation, cellular length control, cell mitosis, cell motility, cell adhesion, cytoneme-based morphogenesis, bacterial growth, and quorum sensing. The book also provides a pedagogical introduction to the theory of stochastic and nonequilibrium processes – Fokker Planck equations, stochastic differential equations, stochastic calculus, master equations and jump Markov processes, birth-death processes, Poisson processes, first passage time problems, stochastic hybrid systems, queuing and renewal theory, narrow capture and escape, extreme statistics, search processes and stochastic resetting, exclusion processes, WKB methods, large deviation theory, path integrals, martingales and branching processes, numerical methods, linear response theory, phase separation, fluctuation-dissipation theorems, age-structured models, and statistical field theory. This text is primarily aimed at graduate students and researchers working in mathematical biology, statistical and biological physicists, and applied mathematicians interested in stochastic modeling. Applied probabilists should also find it of interest. It provides significant background material in applied mathematics and statistical physics, and introduces concepts in stochastic and nonequilibrium processes via motivating biological applications. The book is highly illustrated and contains a large number of examples and exercises that further develop the models and ideas in the body of the text. It is based on a course that the author has taught at the University of Utah for many years.
  probability and martingales: Radically Elementary Probability Theory. (AM-117), Volume 117 Edward Nelson, 2016-03-02 Using only the very elementary framework of finite probability spaces, this book treats a number of topics in the modern theory of stochastic processes. This is made possible by using a small amount of Abraham Robinson's nonstandard analysis and not attempting to convert the results into conventional form.
  probability and martingales: Probability and Stochastics Erhan Çınlar, 2011-02-21 This text is an introduction to the modern theory and applications of probability and stochastics. The style and coverage is geared towards the theory of stochastic processes, but with some attention to the applications. In many instances the gist of the problem is introduced in practical, everyday language and then is made precise in mathematical form. The first four chapters are on probability theory: measure and integration, probability spaces, conditional expectations, and the classical limit theorems. There follows chapters on martingales, Poisson random measures, Levy Processes, Brownian motion, and Markov Processes. Special attention is paid to Poisson random measures and their roles in regulating the excursions of Brownian motion and the jumps of Levy and Markov processes. Each chapter has a large number of varied examples and exercises. The book is based on the author’s lecture notes in courses offered over the years at Princeton University. These courses attracted graduate students from engineering, economics, physics, computer sciences, and mathematics. Erhan Cinlar has received many awards for excellence in teaching, including the President’s Award for Distinguished Teaching at Princeton University. His research interests include theories of Markov processes, point processes, stochastic calculus, and stochastic flows. The book is full of insights and observations that only a lifetime researcher in probability can have, all told in a lucid yet precise style.
  probability and martingales: Probability with Martingales David Williams, 1991-02-14 Probability theory is nowadays applied in a huge variety of fields including physics, engineering, biology, economics and the social sciences. This book is a modern, lively and rigorous account which has Doob's theory of martingales in discrete time as its main theme. It proves important results such as Kolmogorov's Strong Law of Large Numbers and the Three-Series Theorem by martingale techniques, and the Central Limit Theorem via the use of characteristic functions. A distinguishing feature is its determination to keep the probability flowing at a nice tempo. It achieves this by being selective rather than encyclopaedic, presenting only what is essential to understand the fundamentals; and it assumes certain key results from measure theory in the main text. These measure-theoretic results are proved in full in appendices, so that the book is completely self-contained. The book is written for students, not for researchers, and has evolved through several years of class testing. Exercises play a vital rôle. Interesting and challenging problems, some with hints, consolidate what has already been learnt, and provide motivation to discover more of the subject than can be covered in a single introduction.
  probability and martingales: Martingales and Stochastic Integrals I Paul-Andre Meyer, 2006-11-15
  probability and martingales: Probability Albert Shiryaev, 2013-11-11 In the Preface to the first edition, originally published in 1980, we mentioned that this book was based on the author's lectures in the Department of Mechanics and Mathematics of the Lomonosov University in Moscow, which were issued, in part, in mimeographed form under the title Probabil ity, Statistics, and Stochastic Processors, I, II and published by that Univer sity. Our original intention in writing the first edition of this book was to divide the contents into three parts: probability, mathematical statistics, and theory of stochastic processes, which corresponds to an outline of a three semester course of lectures for university students of mathematics. However, in the course of preparing the book, it turned out to be impossible to realize this intention completely, since a full exposition would have required too much space. In this connection, we stated in the Preface to the first edition that only probability theory and the theory of random processes with discrete time were really adequately presented. Essentially all of the first edition is reproduced in this second edition. Changes and corrections are, as a rule, editorial, taking into account com ments made by both Russian and foreign readers of the Russian original and ofthe English and Germantranslations [Sll]. The author is grateful to all of these readers for their attention, advice, and helpful criticisms. In this second English edition, new material also has been added, as follows: in Chapter 111, §5, §§7-12; in Chapter IV, §5; in Chapter VII, §§8-10.
  probability and martingales: Probability Leo Breiman, 1968-01-01 Well known for the clear, inductive nature of its exposition, this reprint volume is an excellent introduction to mathematical probability theory. It may be used as a graduate-level text in one- or two-semester courses in probability for students who are familiar with basic measure theory, or as a supplement in courses in stochastic processes or mathematical statistics. Designed around the needs of the student, this book achieves readability and clarity by giving the most important results in each area while not dwelling on any one subject. Each new idea or concept is introduced from an intuitive, common-sense point of view. Students are helped to understand why things work, instead of being given a dry theorem-proof regime.
  probability and martingales: Some Topics in Probability and Analysis R. F. Gundy, 1989
  probability and martingales: Probability and Measure Theory Robert B. Ash, Catherine A. Doleans-Dade, 2000 Probability and Measure Theory, Second Edition, is a text for a graduate-level course in probability that includes essential background topics in analysis. It provides extensive coverage of conditional probability and expectation, strong laws of large numbers, martingale theory, the central limit theorem, ergodic theory, and Brownian motion. Clear, readable style Solutions to many problems presented in text Solutions manual for instructors Material new to the second edition on ergodic theory, Brownian motion, and convergence theorems used in statistics No knowledge of general topology required, just basic analysis and metric spaces Efficient organization
  probability and martingales: Random Walk, Brownian Motion, and Martingales Rabi Bhattacharya, Edward C. Waymire, 2021-09-20 This textbook offers an approachable introduction to stochastic processes that explores the four pillars of random walk, branching processes, Brownian motion, and martingales. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study. Consisting of many short chapters, the book begins with a comprehensive account of the simple random walk in one dimension. From here, different paths may be chosen according to interest. Themes span Poisson processes, branching processes, the Kolmogorov–Chentsov theorem, martingales, renewal theory, and Brownian motion. Special topics follow, showcasing a selection of important contemporary applications, including mathematical finance, optimal stopping, ruin theory, branching random walk, and equations of fluids. Engaging exercises accompany the theory throughout. Random Walk, Brownian Motion, and Martingales is an ideal introduction to the rigorous study of stochastic processes. Students and instructors alike will appreciate the accessible, example-driven approach. A single, graduate-level course in probability is assumed.
  probability and martingales: Foundations of Modern Probability Olav Kallenberg, 2014-01-15
  probability and martingales: A Probability Path Sidney I. Resnick, 2013-11-30
  probability and martingales: Measure, Integral and Probability Marek Capinski, (Peter) Ekkehard Kopp, 2013-06-29 The central concepts in this book are Lebesgue measure and the Lebesgue integral. Their role as standard fare in UK undergraduate mathematics courses is not wholly secure; yet they provide the principal model for the development of the abstract measure spaces which underpin modern probability theory, while the Lebesgue function spaces remain the main sour ce of examples on which to test the methods of functional analysis and its many applications, such as Fourier analysis and the theory of partial differential equations. It follows that not only budding analysts have need of a clear understanding of the construction and properties of measures and integrals, but also that those who wish to contribute seriously to the applications of analytical methods in a wide variety of areas of mathematics, physics, electronics, engineering and, most recently, finance, need to study the underlying theory with some care. We have found remarkably few texts in the current literature which aim explicitly to provide for these needs, at a level accessible to current under graduates. There are many good books on modern prob ability theory, and increasingly they recognize the need for a strong grounding in the tools we develop in this book, but all too often the treatment is either too advanced for an undergraduate audience or else somewhat perfunctory.
  probability and martingales: Foundations of Constructive Probability Theory Yuen-Kwok Chan, 2021-05-27 This book provides a systematic and general theory of probability within the framework of constructive mathematics.
  probability and martingales: A User's Guide to Measure Theoretic Probability David Pollard, 2001-12-10 Rigorous probabilistic arguments, built on the foundation of measure theory introduced eighty years ago by Kolmogorov, have invaded many fields. Students of statistics, biostatistics, econometrics, finance, and other changing disciplines now find themselves needing to absorb theory beyond what they might have learned in the typical undergraduate, calculus-based probability course. This 2002 book grew from a one-semester course offered for many years to a mixed audience of graduate and undergraduate students who have not had the luxury of taking a course in measure theory. The core of the book covers the basic topics of independence, conditioning, martingales, convergence in distribution, and Fourier transforms. In addition there are numerous sections treating topics traditionally thought of as more advanced, such as coupling and the KMT strong approximation, option pricing via the equivalent martingale measure, and the isoperimetric inequality for Gaussian processes. The book is not just a presentation of mathematical theory, but is also a discussion of why that theory takes its current form. It will be a secure starting point for anyone who needs to invoke rigorous probabilistic arguments and understand what they mean.
  probability and martingales: Probability Theory , 2008
  probability and martingales: Probability for Statisticians Galen R. Shorack, 2006-05-02 The choice of examples used in this text clearly illustrate its use for a one-year graduate course. The material to be presented in the classroom constitutes a little more than half the text, while the rest of the text provides background, offers different routes that could be pursued in the classroom, as well as additional material that is appropriate for self-study. Of particular interest is a presentation of the major central limit theorems via Steins method either prior to or alternative to a characteristic function presentation. Additionally, there is considerable emphasis placed on the quantile function as well as the distribution function, with both the bootstrap and trimming presented. The section on martingales covers censored data martingales.
  probability and martingales: Probability Theory Yuan Shih Chow, Henry Teicher, 2003-10-17 Comprising the major theorems of probability theory and the measure theoretical foundations of the subject, the main topics treated here are independence, interchangeability, and martingales. Particular emphasis is placed upon stopping times, both as tools in proving theorems and as objects of interest themselves. No prior knowledge of measure theory is assumed and a unique feature of the book is the combined presentation of measure and probability. It is easily adapted for graduate students familiar with measure theory using the guidelines given. Special features include: - A comprehensive treatment of the law of the iterated logarithm - The Marcinklewicz-Zygmund inequality, its extension to martingales and applications thereof - Development and applications of the second moment analogue of Walds equation - Limit theorems for martingale arrays; the central limit theorem for the interchangeable and martingale cases; moment convergence in the central limit theorem - Complete discussion, including central limit theorem, of the random casting of r balls into n cells - Recent martingale inequalities - Cram r-L vy theorem and factor-closed families of distributions.
  probability and martingales: Hilbert Space Methods in Probability and Statistical Inference Christopher G. Small, Don L. McLeish, 2011-09-15 Explains how Hilbert space techniques cross the boundaries into the foundations of probability and statistics. Focuses on the theory of martingales stochastic integration, interpolation and density estimation. Includes a copious amount of problems and examples.
Probability - Wikipedia
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely …

Probability - Math is Fun
How likely something is to happen. Many events can't be predicted with total certainty. The best we can say is …

Probability - Formula, Calculating, Find, Theorems, E…
Probability is all about how likely is an event to happen. For a random experiment with sample space S, the …

7.5: Basic Concepts of Probability - Mathematics Lib…
Define probability including impossible and certain events. Calculate basic theoretical probabilities. Calculate …

Probability Definition in Math - BYJU'S
Probability is a measure of the likelihood of an event to occur. Many events cannot be predicted with …