Advertisement
principle of microwave remote sensing: Theory of Microwave Remote Sensing Leung Tsang, Jin Au Kong, Robert T. Shin, 1985-07-17 The first single-volume guide to the theoretical underpinnings and practical applications of microwave remote sensing, combining detailed coverage of mathematical derivations relevant to propagation and scattering in physical media with physical examples and practical applications to microwave theory. Covers scattering and emission by layered media, radiative transfer theory, solutions to radiative transfer equations with applications to remote sensing, analytic wave theory for scattering by layered random media, and scattering by random discrete scatterers. |
principle of microwave remote sensing: Principles of Remote Sensing Lucas L. F. Janssen, Wim H. Bakker, 2000 |
principle of microwave remote sensing: Ground-Based Microwave Radiometry and Remote Sensing Pranab Kumar Karmakar, 2013-11-04 The ability to effectively monitor the atmosphere on a continuous basis requires remote sensing in microwave. Written for physicists and engineers working in the area of microwave sensing of the atmosphere, Ground-Based Microwave Radiometry and Remote Sensing: Methods and Applications is completely devoted to ground-based remote sensing. This text covers the fundamentals of microwave remote sensing, and examines microwave radiometric measurements and their applications. The book discusses the atmospheric influences on the electromagnetic spectrum, addresses the measurement of incoherent electromagnetic radiation from an object obeying the laws of radiation fundamentals, and explores the height limits in both the water vapor band and the oxygen band. The author describes the measurement technique of water vapor in the polar region, details studies of the measurement of integrated water vapor content by deploying a microwave radiometer, and presents several real-time pictures of radiometric and disdrometer measurements. Includes integrated water vapor and cloud liquid water models Contains measurements in adverse weather conditions Illustrates measurement technique in the Antarctic and Arctic regions Describes rain models in different locations including tropical, temperate regions along with radiometric measurement techniques Presents a definite model for measurement of propagation path delay The booksummarizes the latest research results obtained in the area of measurements and modeling, describes the atmospheric influences on electromagnetic spectrum along with different gaseous and cloud models, and provides examples of radiometric retrievals from a variety of dynamic weather phenomena. |
principle of microwave remote sensing: Microwave Remote Sensing of Land Surfaces Nicolas Baghdadi, Mehrez Zribi, 2016-11-08 Microwave Remote Sensing of Land Surface: Techniques and Methods brings essential coverage of the space techniques of observation on continental surfaces. The authors explore major applications and provide detailed chapters on physical principles, physics of measurement, and data processing for each technique, bringing readers up-to-date descriptions of techniques used by leading scientists in the field of remote sensing and Earth observation. - Presents clear-and-concise descriptions of modern methods - Explores current remote sensing techniques that include physical aspects of measurement (theory) and their applications - Provides physical principles, measurement, and data processing chapters that are included for each technique described |
principle of microwave remote sensing: Physical Principles of Remote Sensing W. G. Rees, Gareth Rees, 2001-09-13 Revised and expanded second edition introduction to remote sensing for students and researchers. |
principle of microwave remote sensing: Principles and Applications of RF/Microwave in Healthcare and Biosensing Changzhi Li, Mohammad-Reza Tofighi, Dominique Schreurs, Tzyy-Sheng Jason Horng, 2016-10-05 This reference, written by leading authorities in the field, gives basic theory, implementation details, advanced research, and applications of RF and microwave in healthcare and biosensing. It first provides a solid understanding of the fundamentals with coverage of the basics of microwave engineering and the interaction between electromagnetic waves and biomaterials. It then presents the state-of-the-art development in microwave biosensing, implantable devices -including applications of microwave technology for sensing biological tissues – and medical diagnosis, along with applications involving remote patient monitoring. this book is an ideal reference for RF and microwave engineer working on, or thinking of working on, the applications of RF and Microwave technology in medicine and biology. Learn: - The fundamentals of RF and microwave engineering in healthcare and biosensing - How to combine biological and medical aspects of the field with underlying engineering concepts - How to implement microwave biosensing for material characterization and cancer diagnosis - Applications and functioning of wireless implantable biomedical devices and microwave non-contact biomedical radars - How to combine devices, systems, and methods for new practical applications - The first book to review the fundamentals, latest developments, and future trends in this important emerging field with emphasis on engineering aspects of sensing, monitoring, and diagnosis using RF and Microwave - Extensive coverage of biosensing applications are included - Written by leaders in the field, including members of the Technical Coordinating Committee of the Biological Effects and Medical Applications of the IEEE Microwave Theory and Techniques Society |
principle of microwave remote sensing: Remote Sensing with Imaging Radar John A. Richards, 2009-10-08 This book is concerned with remote sensing based on the technology of imaging radar. It assumes no prior knowledge of radar on the part of the reader, commencing with a treatment of the essential concepts of microwave imaging and progressing through to the development of multipolarisation and interferometric radar, modes which underpin contemporary applications of the technology. The use of radar for imaging the earth’s surface and its resources is not recent. Aircraft-based microwave systems were operating in the 1960s, ahead of optical systems that image in the visible and infrared regions of the spectrum. Optical remote sensing was given a strong impetus with the launch of the first of the Landsat series of satellites in the mid 1970s. Although the Seasat satellite launched in the same era (1978) carried an imaging radar, it operated only for about 12 months and there were not nearly so many microwave systems as optical platforms in service during the 1980s. As a result, the remote sensing community globally tended to develop strongly around optical imaging until Shuttle missions in the early to mid 1980s and free-flying imaging radar satellites in the early to mid 1990s became available, along with several sophisticated aircraft platforms. Since then, and particularly with the unique capabilities and flexibility of imaging radar, there has been an enormous surge of interest in microwave imaging technology. Unlike optical imaging, understanding the theoretical underpinnings of imaging radar can be challenging, particularly when new to the field. |
principle of microwave remote sensing: Microwave Remote Sensing: Microwave remote sensing fundamentals and radiometry Fawwaz Tayssir Ulaby, Richard K. Moore, Adrian K. Fung, 1981 |
principle of microwave remote sensing: Introduction to Microwave Remote Sensing Iain H. Woodhouse, 2017-07-12 Introduction to Microwave Remote Sensing offers an extensive overview of this versatile and extremely precise technology for technically oriented undergraduates and graduate students. This textbook emphasizes an important shift in conceptualization and directs it toward students with prior knowledge of optical remote sensing: the author dispels any linkage between microwave and optical remote sensing. Instead, he constructs the concept of microwave remote sensing by comparing it to the process of audio perception, explaining the workings of the ear as a metaphor for microwave instrumentation. This volume takes an “application-driven” approach. Instead of describing the technology and then its uses, this textbook justifies the need for measurement then explains how microwave technology addresses this need. Following a brief summary of the field and a history of the use of microwaves, the book explores the physical properties of microwaves and the polarimetric properties of electromagnetic waves. It examines the interaction of microwaves with matter, analyzes passive atmospheric and passive surface measurements, and describes the operation of altimeters and scatterometers. The textbook concludes by explaining how high resolution images are created using radars, and how techniques of interferometry can be applied to both passive and active sensors. |
principle of microwave remote sensing: Physical Principles of Remote Sensing W. G. Rees, 2012-11-29 Fully updated and containing significant new material on photography, laser profiling and image processing, the third edition of this popular textbook covers a broad range of remote sensing applications and techniques across the Earth, environmental and planetary sciences. It focuses on physical principles, giving students a deeper understanding of remote sensing systems and their possibilities, while remaining accessible to those with less mathematical training by providing a step-by-step approach to quantitative topics. Boxed examples, additional photos and numerous colour images engage students and show them how the theory relates to the many real-world applications. Chapter summaries, review questions and additional problems allow students to check their understanding of key concepts and practise handling real data for themselves. Supplementary online material includes links to freely available software, animations, computer programs, colour images and other web-based resources of interest. |
principle of microwave remote sensing: Advances in Passive Microwave Remote Sensing of Oceans Victor Raizer, 2024-09-05 This new edition introduces the fundamentals of passive microwave remote sensing of oceans, including the physical principles of microwave radiometry, novel observational data, their interpretation, and applications. It not only demonstrates and examines the recent advantages and state of the art of microwave data but also provides guidance for explaining complex ocean studies and advanced applications. All chapters are thoroughly updated with detailed analysis of space‐based microwave missions, and a new chapter on space‐based microwave radiometer experiments has been added. This book discusses the power of microwave remote sensing as an efficient tool for diagnostics of ocean phenomena in research and education. Features New to this Edition: • Includes a new chapter and additional data, images, illustrations, and references. • Uses ocean microwave data, acquired from different platforms, to illustrate different methods of analysis and interpretation. • Updates information on recent and important satellite missions dedicated to microwave remote sensing of oceans. • Offers more detailed analysis of multiband microwave data and images. • Provides examples of microwave data that cover different ocean environmental phenomena and hydro‐physical fields, including global and local ocean features. • Presents additional material on advanced applications, including detection capabilities. This book is intended for postgraduate students and professionals working in fields related to remote sensing, geography, oceanography, civil, environmental, and geotechnical engineering. |
principle of microwave remote sensing: Principles of Applied Remote Sensing Siamak Khorram, Cynthia F. van der Wiele, Frank H. Koch, Stacy A. C. Nelson, Matthew D. Potts, 2016-01-04 This textbook is one of the first to explain the fundamentals and applications of remote sensing at both undergraduate and graduate levels. Topics include definitions and a brief history of payloads and platforms, data acquisition and specifications, image processing techniques, data integration and spatial modeling, and a range of applications covering terrestrial, atmospheric, oceanographic and planetary disciplines. The policy and law issues of remote sensing and the future trends on the horizon are also covered. Remote sensing is an exciting, dynamic technology that is transforming the Earth sciences – terrestrial, atmospheric, and marine – as well as the practices of agriculture, disaster response, engineering, natural resources, providing evidence in legal cases and documented humanitarian crises, and many other fields. Increasingly, understanding of these techniques will be central to a number of disciplines, particularly as the technology advances. |
principle of microwave remote sensing: Principles of Synthetic Aperture Radar Imaging Kun-Shan Chen, 2016-01-05 Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach demonstrates the use of image simulation for SAR. It covers the various applications of SAR (including feature extraction, target classification, and change detection), provides a complete understanding of SAR principles, and illustrates the complete chain of a SAR operati |
principle of microwave remote sensing: , |
principle of microwave remote sensing: Thermal Microwave Radiation C Mätzler, 2006-05-19 Combines theoretical concepts with experimental results on thermal microwave radiation to increase the understanding of the complex nature of terrestrial media. Emphasising on radiative transfer models, this book covers the terrestrial aspects, from clear to cloudy atmosphere, precipitation, ocean and land surfaces, vegetation, snow and ice. |
principle of microwave remote sensing: Environmental Geoinformatics Joseph L. Awange, John B. Kyalo Kiema, 2013-06-13 There is no doubt that today, perhaps more than ever before, humanity faces a myriad of complex and demanding challenges. These include natural resource depletion and environmental degradation, food and water insecurity, energy shortages, diminishing biodiversity, increasing losses from natural disasters, and climate change with its associated potentially devastating consequences, such as rising sea levels. These human-induced and natural impacts on the environment need to be well understood in order to develop informed policies, decisions, and remedial measures to mitigate current and future negative impacts. To achieve this, continuous monitoring and management of the environment to acquire data that can be soundly and rigorously analyzed to provide information about its current state and changing patterns, and thereby allow predictions of possible future impacts, are essential. Developing pragmatic and sustainable solutions to address these and many other similar challenges requires the use of geodata and the application of geoinformatics. This book presents the concepts and applications of geoinformatics, a multidisciplinary field that has at its core different technologies that support the acquisition, analysis and visualization of geodata for environmental monitoring and management. We depart from the 4D to the 5D data paradigm, which defines geodata accurately, consistently, rapidly and completely, in order to be useful without any restrictions in space, time or scale to represent a truly global dimension of the digital Earth. The book also features the state-of-the-art discussion of Web-GIS. The concepts and applications of geoinformatics presented in this book will be of benefit to decision-makers across a wide range of fields, including those at environmental agencies, in the emergency services, public health and epidemiology, crime mapping, environmental management agencies, tourist industry, market analysis and e-commerce, or mineral exploration, among many others. The title and subtitle of this textbook convey a distinct message. Monitoring -the passive part in the subtitle - refers to observation and data acquisition, whereas management - the active component - stands for operation and performance. The topic is our environment, which is intimately related to geoinformatics. The overall message is: all the mentioned elements do interact and must not be separated. Hans-Peter B ahr, Prof. Dr.-Ing. Dr.h.c., Karlsruhe Institute of Technology (KIT), Germany. |
principle of microwave remote sensing: Polarimetric Radar Imaging Jong-Sen Lee, Eric Pottier, 2017-12-19 The recent launches of three fully polarimetric synthetic aperture radar (PolSAR) satellites have shown that polarimetric radar imaging can provide abundant data on the Earth’s environment, such as biomass and forest height estimation, snow cover mapping, glacier monitoring, and damage assessment. Written by two of the most recognized leaders in this field, Polarimetric Radar Imaging: From Basics to Applications presents polarimetric radar imaging and processing techniques and shows how to develop remote sensing applications using PolSAR imaging radar. The book provides a substantial and balanced introduction to the basic theory and advanced concepts of polarimetric scattering mechanisms, speckle statistics and speckle filtering, polarimetric information analysis and extraction techniques, and applications typical to radar polarimetric remote sensing. It explains the importance of wave polarization theory and the speckle phenomenon in the information retrieval problem of microwave imaging and inverse scattering. The authors demonstrate how to devise intelligent information extraction algorithms for remote sensing applications. They also describe more advanced polarimetric analysis techniques for polarimetric target decompositions, polarization orientation effects, polarimetric scattering modeling, speckle filtering, terrain and forest classification, manmade target analysis, and PolSAR interferometry. With sample PolSAR data sets and software available for download, this self-contained, hands-on book encourages you to analyze space-borne and airborne PolSAR and polarimetric interferometric SAR (Pol-InSAR) data and then develop applications using this data. |
principle of microwave remote sensing: Multi-Antenna Synthetic Aperture Radar Wen-Qin Wang, 2013-05-22 Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indication, and 3-D imaging. The book pays particular attention to the signal processing aspects of various multi-antenna SAR from a top-level system perspective. Explore Recent Extensions of Synthetic Aperture Radar Systems The backbone of the book is a series of innovative microwave remote sensing approaches developed by the author. Centered around multi-antenna SAR imaging, these approaches address specific challenges and potential problems in future microwave remote sensing. Chapters examine single-input multiple-output (SIMO) multi-antenna SAR, including azimuth and elevation multi-antenna SAR, and multiple-input multiple-output (MIMO) SAR. The book details the corresponding system scheme, signal models, time/phase/spatial synchronization methods, and high-precision imaging algorithms. It also investigates their potential applications. Introductory Tutorials and Novel Approaches in Multi-Antenna SAR Imaging Rigorous and self-contained, this is a unique reference for researchers and industry professionals working with microwave remote sensing, SAR imaging, and radar signal processing. In addition to novel approaches, the book also presents tutorials that serve as an introduction to multi-antenna SAR imaging for those who are new to the field. |
principle of microwave remote sensing: Smart Sensors for Environmental and Medical Applications Hamida Hallil, Hadi Heidari, 2020-05-12 Provides an introduction to the topic of smart chemical sensors, along with an overview of the state of the art based on potential applications This book presents a comprehensive overview of chemical sensors, ranging from the choice of material to sensor validation, modeling, simulation, and manufacturing. It discusses the process of data collection by intelligent techniques such as deep learning, multivariate analysis, and others. It also incorporates different types of smart chemical sensors and discusses each under a common set of sub-sections so that readers can fully understand the advantages and disadvantages of the relevant transducers—depending on the design, transduction mode, and final applications. Smart Sensors for Environmental and Medical Applications covers all major aspects of the field of smart chemical sensors, including working principle and related theory, sensor materials, classification of respective transducer type, relevant fabrication processes, methods for data analysis, and suitable applications. Chapters address field effect transistors technologies for biological and chemical sensors, mammalian cell–based electrochemical sensors for label-free monitoring of analytes, electronic tongues, chemical sensors based on metal oxides, metal oxide (MOX) gas sensor electronic interfaces, and more. Addressing the limitations and challenges in obtaining state-of-the-art smart biochemical sensors, this book: Balances the fundamentals of sensor design, fabrication, characterization, and analysis with advanced methods Categorizes sensors into sub-types and describes their working, focusing on prominent applications Describes instrumentation and IoT networking methods of chemical transducers that can be used for inexpensive, accurate detection in commercialized smart chemical sensors Covers monitoring of food spoilage using polydiacetylene- and liposome-based sensors; smart and intelligent E-nose for sensitive and selective chemical sensing applications; odor sensing system; and microwave chemical sensors Smart Sensors for Environmental and Medical Applications is an important book for senior-level undergraduate and graduate students learning about this high-performance technology and its many applications. It will also inform practitioners and researchers involved in the creation and use of smart sensors. |
principle of microwave remote sensing: Satellite Microwave Remote Sensing Thomas D. Allan, 1983 |
principle of microwave remote sensing: Fundamental Principles of Radar Habibur Rahman, 2019-05-15 The important and fascinating topics of radar enjoy an extensive audience in industry and government but deserve more attention in undergraduate education to better prepare graduating engineers to meet the demands of modern mankind. Radar is not only one of the major applications of electronics and electromagnetic communications, but it is also a mature scientific discipline with significant theoretical and mathematical foundations that warrant an intellectual and educational challenge. Fundamental Principles of Radar is a textbook providing a first exposure to radar principles. It provides a broad concept underlying the basic principle of operations of most existing radar systems and maintains a good balance of mathematical rigor to convince readers without losing interest. The book provides an extensive exposition of the techniques currently being used for radar system design, analysis, and evaluation. It presents a comprehensive set of radar principles, including all features of modern radar applications, with their underlying derivations using simple mathematics. Coverage is limited to the main concepts of radar in order to present them in a systematic and organized fashion. Topics are treated not as abstruse and esoteric to the point of incomprehensibility, but the very complex and rich technology of radar is distilled into its fundamentals. The author’s emphasis is on clarity without sacrificing rigor and completeness, thus making the book broad enough to satisfy a variety of backgrounds and interests. Thorough documentation provides an unusual degree of completeness for a textbook at this level, with interesting and sometimes thought-provoking content to make the subject even more appealing. Key Features: Covers a wide range of topics in radar systems Includes examples and exercises to reinforce the concepts presented and explain their applications Provides self-contained chapters useful for readers seeking selective topics Provides broad concepts underlying the basic principles of operations of most types of radars in use today Includes documentation to lead to further reading of interesting concepts and applications |
principle of microwave remote sensing: Microwave Horns and Feeds A. David Olver, 1994 This monograph is devoted to the theory, design, performance and application of microwave horns and feeds for reflector antennas. It is a collaboration between the microwave antenna group at Queen Mary and Westfield College and the electromagnetic group at the University of Winnipeg, Canada. |
principle of microwave remote sensing: Plasma Scattering of Electromagnetic Radiation John Sheffield, 1975 Plasma Scattering of Electromagnetic Radiation covers the theory and experimental application of plasma scattering. The book discusses the basic properties of a plasma and of the interaction of radiation with a plasma; the relationship between the scattered power spectrum and the fluctuations in plasma density; and the incoherent scattering of low-temperature plasma. The text also describes the constraints and problems that arise in the application of scattering as a diagnostic technique; the characteristic performance of various dispersion elements, image dissectors, and detectors; and the ge ... |
principle of microwave remote sensing: Microwave Engineering David M. Pozar, 2011-11-22 The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance. Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large number of examples and end-of-chapter problems test the reader's understanding of the material. The 4th edition includes new and updated material on systems, noise, active devices and circuits, power waves, transients, RF CMOS circuits, and more. |
principle of microwave remote sensing: Textbook of Remote Sensing and Geographical Information Systems M. Anji Reddy, 2008 |
principle of microwave remote sensing: Principles of Modeling Uncertainties in Spatial Data and Spatial Analyses Wenzhong Shi, 2009-09-30 When compared to classical sciences such as math, with roots in prehistory, and physics, with roots in antiquity, geographical information science (GISci) is the new kid on the block. Its theoretical foundations are therefore still developing and data quality and uncertainty modeling for spatial data and spatial analysis is an important branch of t |
principle of microwave remote sensing: New-generation SAR for Earth Environment Observation Huadong Guo, Xinwu Li, Wenxue Fu, 2024-09-21 How to reveal and fully use the information of band, amplitude, polarization and phase of electromagnetic wave is the key science and technology issues for SAR imaging mechanisms - information processing - parameter inversion – environmental change cognition, especially for new generation SAR with its capabilities of full polarimetric and interferometric information retrieval, 3D / 4D reconstruction, multi-based synergistic observation and ultra-high resolution data acquisition. Based on above key issues, three aspects of new generation SAR remote sensing are discussed in this book (1) The latest research status and development trend, the basic theories and methods of new generation SAR are discussed comprehensively (2) The new or original concepts, methods and typical applications of new generation SAR information processing and parameter inversion are systematically developed and created, it is the most advanced research achievement in the field of new generation SAR in the recent years (3) A new idea of SAR information integration processing and environmental parameter inversion is proposed, it represent a new SAR science application mode that has the capability to improve the SAR remote-sensing quantitative application level and promote the development of new theories and methodologies. - Presents key issues of new generation SAR remote sensing - Includes the latest research status and development trends and the basic theories and methods of new generation SAR - Presents new or original concepts, methods, and typical applications of new generation SAR information processing and parameter inversion - Covers a new idea of SAR information integration processing and environmental parameter inversion |
principle of microwave remote sensing: Radar Systems Principles Harold R. Raemer, 1996-10-30 In planning a radar system, having the proper mathematical modeling of propagation effects, clutter, and target statistics is essential. Radar Systems Principles provides a strong theoretical basis for the myriad of formulas and rules of thumb required for analysis, conceptual design, and performance evaluation of radar systems. Mathematical derivations of formulas commonly used by radar engineers are presented, with detailed discussions of the assumptions behind these expressions and their ranges of validity. These principles are used in a wide range of radar applications. Radar Systems Principles makes it easy to understand the steps in calculating various formulas and when and how these formulas are used. A set of problems is provided for each chapter, enabling you to check your progress in applying the principles discussed in each section of the text. There are more than 170 figures illustrating key concepts. Numerous references to well-known books on radar for coverage of practical design issues and other specialized topics are given. Radar Systems Principles is an ideal textbook for advanced undergraduates and first-year graduate students and also makes an excellent vehicle for self-study by engineers wishing to enhance their understanding of radar principles and their implication in actual systems. |
principle of microwave remote sensing: Remote Sensing and Image Interpretation Thomas Lillesand, Ralph W. Kiefer, Jonathan Chipman, 2003-10-10 From recent developments in digital image processing to the next generation of satellite systems, this book provides a comprehensive introduction to the field of remote sensing and image interpretation. This book is discipline neutral, so readers in any field of study can gain a clear understanding of these systems and their virtually unlimited applications. * The authors underscore close interactions among the related areas of remote sensing, GIS, GPS, digital image processing, and environmental modeling. * Appendices include material on sources of remote sensing data and information, remote sensing periodicals, online glossaries, and online tutorials. |
principle of microwave remote sensing: Principles of Modern Radar Mark A. Richards, William L. Melvin, 2023-02-17 Principles of Modern Radar: Basic Principles is a comprehensive text for courses in radar systems and technology, a professional training textbook for formal in-house courses and for new hires; a reference for ongoing study following a radar short course and a self-study and professional reference book. |
principle of microwave remote sensing: Environmental Geoinformatics Joseph Awange, John Kiema, 2018-12-08 This second edition includes updated chapters from the first edition as well as five additional new chapters (Light detection and ranging (LiDAR), CORONA historical de-classified products, Unmanned Aircraft Vehicles (UAVs), GNSS-reflectometry and GNSS applications to climate variability), shifting the main focus from monitoring and management to extreme hydro-climatic and food security challenges and exploiting big data. Since the publication of first edition, much has changed in terms of technology, and the demand for geospatial data has increased with the advent of the big data era. For instance, the use of laser scanning has advanced so much that it is unavoidable in most environmental monitoring tasks, whereas unmanned aircraft vehicles (UAVs)/drones are emerging as efficient tools that address food security issues as well as many other contemporary challenges. Furthermore, global navigation satellite systems (GNSS) are now responding to challenges posed by climate change by unravelling the impacts of teleconnection (e.g., ENSO) as well as advancing the use of reflected signals (GNSS-reflectometry) to monitor, e.g., soil moisture variations. Indeed all these rely on the explosive use of “big data” in many fields of human endeavour. Moreover, with the ever-increasing global population, intense pressure is being exerted on the Earth’s resources, leading to significant changes in its land cover (e.g., deforestation), diminishing biodiversity and natural habitats, dwindling fresh water supplies, and changing weather and climatic patterns (e.g., global warming, changing sea level). Environmental monitoring techniques that provide information on these are under scrutiny from an increasingly environmentally conscious society that demands the efficient delivery of such information at a minimal cost. Environmental changes vary both spatially and temporally, thereby putting pressure on traditional methods of data acquisition, some of which are highly labour intensive, such as animal tracking for conservation purposes. With these challenges, conventional monitoring techniques, particularly those that record spatial changes call for more sophisticated approaches that deliver the necessary information at an affordable cost. One direction being pursued in the development of such techniques involves environmental geoinformatics, which can act as a stand-alone method or complement traditional methods. |
principle of microwave remote sensing: Passive Microwave Remote Sensing of the Earth Eugene A. Sharkov, 2003-12-16 This book represents the most comprehensive description of the physical foundations of methods and instruments in the fields of passive remote sensing applied to investigations of the Earth, Solar system bodies and space. Emphasis is placed on the physical aspects necessary to judge the possibilities and limitations of passive remote sensing methods in specific observation cases. Numerous practical applications and illustrations are given referring to airspace up-to-date experiments. Due to the lack in traditional separation on methods and instruments of remote sensing of the Earth and outerterrestrial space this book aims to supply more information in this field. |
principle of microwave remote sensing: Fundamentals of Remote Sensing George Joseph, 2005 This book presents the fundamental concepts covering various stages of remote sensing from data collection to end utilization, so that it can be appreciated irrespective of the discipline in which the reader has graduated. The physical principles on which remote sensing are based has been explained without getting into complicated mathematical equations. |
principle of microwave remote sensing: Quantitative Remote Sensing of Land Surfaces Shunlin Liang, 2003-12-12 Processing the vast amounts of data on the Earth's land surface environment generated by NASA's and other international satellite programs is a significant challenge. Filling a gap between the theoretical, physically-based modelling and specific applications, this in-depth study presents practical quantitative algorithms for estimating various land surface variables from remotely sensed observations. A concise review of the basic principles of optical remote sensing as well as practical algorithms for estimating land surface variables quantitatively from remotely sensed observations. Emphasizes both the basic principles of optical remote sensing and practical algorithms for estimating land surface variables quantitatively from remotely sensed observations Presents the current physical understanding of remote sensing as a system with a focus on radiative transfer modelling of the atmosphere, canopy, soil and snow Gathers the state of the art quantitative algorithms for sensor calibration, atmospheric and topographic correction, estimation of a variety of biophysical and geoph ysical variables, and four-dimensional data assimilation |
principle of microwave remote sensing: Through-the-Wall Radar Imaging Moeness G. Amin, 2017-12-19 Through-the-wall radar imaging (TWRI) allows police, fire and rescue personnel, first responders, and defense forces to detect, identify, classify, and track the whereabouts of humans and moving objects. Electromagnetic waves are considered the most effective at achieving this objective, yet advances in this multi-faceted and multi-disciplinary technology require taking phenomenological issues into consideration and must be based on a solid understanding of the intricacies of EM wave interactions with interior and exterior objects and structures. Providing a broad overview of the myriad factors involved, namely size, weight, mobility, acquisition time, aperture distribution, power, bandwidth, standoff distance, and, most importantly, reliable performance and delivery of accurate information, Through-the-Wall Radar Imaging examines this technology from the algorithmic, modeling, experimentation, and system design perspectives. It begins with coverage of the electromagnetic properties of walls and building materials, and discusses techniques in the design of antenna elements and array configurations, beamforming concepts and issues, and the use of antenna array with collocated and distributed apertures. Detailed chapters discuss several suitable waveforms inverse scattering approaches and revolve around the relevance of physical-based model approaches in TWRI along with theoretical and experimental research in 3D building tomography using microwave remote sensing, high-frequency asymptotic modeling methods, synthetic aperture radar (SAR) techniques, impulse radars, airborne radar imaging of multi-floor buildings strategies for target detection, and detection of concealed targets. The book concludes with a discussion of how the Doppler principle can be used to measure motion at a very fine level of detail. The book provides a deep understanding of the challenges of TWRI, stressing its multidisciplinary and phenomenological nature. The breadth and depth of topics covered presents a highly detailed treatment of this potentially life-saving technology. |
principle of microwave remote sensing: Proceedings of the 2011 2nd International Congress on Computer Applications and Computational Science Ford Lumban Gaol, Quang Vinh Nguyen, 2012-02-23 The latest inventions in computer technology influence most of human daily activities. In the near future, there is tendency that all of aspect of human life will be dependent on computer applications. In manufacturing, robotics and automation have become vital for high quality products. In education, the model of teaching and learning is focusing more on electronic media than traditional ones. Issues related to energy savings and environment is becoming critical. Computational Science should enhance the quality of human life, not only solve their problems. Computational Science should help humans to make wise decisions by presenting choices and their possible consequences. Computational Science should help us make sense of observations, understand natural language, plan and reason with extensive background knowledge. Intelligence with wisdom is perhaps an ultimate goal for human-oriented science. This book is a compilation of some recent research findings in computer application and computational science. This book provides state-of-the-art accounts in Computer Control and Robotics, Computers in Education and Learning Technologies, Computer Networks and Data Communications, Data Mining and Data Engineering, Energy and Power Systems, Intelligent Systems and Autonomous Agents, Internet and Web Systems, Scientific Computing and Modeling, Signal, Image and Multimedia Processing, and Software Engineering. |
principle of microwave remote sensing: Light Scattering by Nonspherical Particles Michael I. Mishchenko, Joachim W. Hovenier, Larry D. Travis, 1999-09-22 There is hardly a field of science or engineering that does not have some interest in light scattering by small particles. For example, this subject is important to climatology because the energy budget for the Earth's atmosphere is strongly affected by scattering of solar radiation by cloud and aerosol particles, and the whole discipline of remote sensing relies largely on analyzing the parameters of radiation scattered by aerosols, clouds, and precipitation. The scattering of light by spherical particles can be easily computed using the conventional Mie theory. However, most small solid particles encountered in natural and laboratory conditions have nonspherical shapes. Examples are soot and mineral aerosols, cirrus cloud particles, snow and frost crystals, ocean hydrosols, interplanetary and cometary dust grains, and microorganisms. It is now well known that scattering properties of nonspherical particles can differ dramatically from those of equivalent (e.g., equal-volume or equal-surface-area) spheres. Therefore, the ability to accurately compute or measure light scattering by nonspherical particles in order to clearly understand the effects of particle nonsphericity on light scattering is very important. The rapid improvement of computers and experimental techniques over the past 20 years and the development of efficient numerical approaches have resulted in major advances in this field which have not been systematically summarized. Because of the universal importance of electromagnetic scattering by nonspherical particles, papers on different aspects of this subject are scattered over dozens of diverse research and engineering journals. Often experts in one discipline (e.g., biology) are unaware of potentially useful results obtained in another discipline (e.g., antennas and propagation). This leads to an inefficient use of the accumulated knowledge and unnecessary redundancy in research activities. This book offers the first systematic and unified discussion of light scattering by nonspherical particles and its practical applications and represents the state-of-the-art of this important research field. Individual chapters are written by leading experts in respective areas and cover three major disciplines: theoretical and numerical techniques, laboratory measurements, and practical applications. An overview chapter provides a concise general introduction to the subject of nonspherical scattering and should be especially useful to beginners and those interested in fast practical applications. The audience for this book will include graduate students, scientists, and engineers working on specific aspects of electromagnetic scattering by small particles and its applications in remote sensing, geophysics, astrophysics, biomedical optics, and optical engineering. - The first systematic and comprehensive treatment of electromagnetic scattering by nonspherical particles and its applications - Individual chapters are written by leading experts in respective areas - Includes a survey of all the relevant literature scattered over dozens of basic and applied research journals - Consistent use of unified definitions and notation makes the book a coherent volume - An overview chapter provides a concise general introduction to the subject of light scattering by nonspherical particles - Theoretical chapters describe specific easy-to-use computer codes publicly available on the World Wide Web - Extensively illustrated with over 200 figures, 4 in color |
principle of microwave remote sensing: Comprehensive Remote Sensing Shunlin Liang, 2017-11-08 Comprehensive Remote Sensing, Nine Volume Set covers all aspects of the topic, with each volume edited by well-known scientists and contributed to by frontier researchers. It is a comprehensive resource that will benefit both students and researchers who want to further their understanding in this discipline. The field of remote sensing has quadrupled in size in the past two decades, and increasingly draws in individuals working in a diverse set of disciplines ranging from geographers, oceanographers, and meteorologists, to physicists and computer scientists. Researchers from a variety of backgrounds are now accessing remote sensing data, creating an urgent need for a one-stop reference work that can comprehensively document the development of remote sensing, from the basic principles, modeling and practical algorithms, to various applications. Fully comprehensive coverage of this rapidly growing discipline, giving readers a detailed overview of all aspects of Remote Sensing principles and applications Contains ‘Layered content’, with each article beginning with the basics and then moving on to more complex concepts Ideal for advanced undergraduates and academic researchers Includes case studies that illustrate the practical application of remote sensing principles, further enhancing understanding |
principle of microwave remote sensing: Light Scattering and Nanoscale Surface Roughness Alexei A. Maradudin, 2010-05-10 All real surfaces, both those occurring naturally, and those fabricated artificially and with great care, are rough to some degree. It is therefore of interest, and often of importance, to know the extent to which this roughness affects physical p- cesses occurring at a surface. A particularly interesting class of physical processes occurring at a rough surface is the scattering of electromagnetic waves from it, or their transmission through it. In this case the degree of the surface roughness is referred to the wavelength of the waves incident on it. The study of the scattering of electromagnetic waves from rough surfaces has been actively carried out for more than a century now, since Rayleigh's inves- gations of the scattering of a monochromatic plane wave incident normally on a 1 sinusoidal interface between two different media. The first theoretical treatment of the scattering of an electromagnetic wave from a randomly rough surface was due to Mandel'shtam/ in the context of the scattering of light from a liquid s- face. In these pioneering studies the angular dependence of the intensity of the scattered field was calculated by perturbation theory as an expansion in powers of the surface profile function though the first nonzero term, a single scattering approximation. |
principle of microwave remote sensing: Fundamentals of Satellite Remote Sensing Emilio Chuvieco, 2020-01-22 Fundamentals of Satellite Remote Sensing: An Environmental Approach, Third Edition, is a definitive guide to remote sensing systems that focuses on satellite-based remote sensing tools and methods for space-based Earth observation (EO). It presents the advantages of using remote sensing data for studying and monitoring the planet, and emphasizes concepts that make the best use of satellite data. The book begins with an introduction to the basic processes that ensure the acquisition of space-borne imagery, and provides an overview of the main satellite observation systems. It then describes visual and digital image analysis, highlights various interpretation techniques, and outlines their applications to science and management. The latter part of the book covers the integration of remote sensing with Geographic Information System (GIS) for environmental analysis. This latest edition has been written to reflect a global audience and covers the most recent advances incorporated since the publication of the previous book, relating to the acquisition and interpretation of remotely sensed data. New in the Third Edition: Includes additional illustrations in full color. Uses sample images acquired from different ecosystems at different spatial resolutions to illustrate different interpretation techniques. Includes updated EO missions, such as the third generations of geostationary meteorological satellites, the new polar orbiting platforms (Suomi), the ESA Sentinels program, and high-resolution commercial systems. Includes extended coverage of radar and LIDAR processing methods. Includes all new information on near-ground missions, including unmanned aerial vehicles (UAVs). Covers new ground sensors, as well as machine-learning approaches to classification. Adds more focus on land surface characterization, time series, change detection, and ecosystem processes. Extends the interactions of EO data and GIS that cover different environmental problems, with particular relevance to global observation. Fundamentals of Satellite Remote Sensing: An Environmental Approach, Third Edition, details the tools that provide global, recurrent, and comprehensive views of the processes affecting the Earth. As one of CRC’s Essential titles, this book and stands out as one of the best in its field and is a must-have for researchers, academics, students, and professionals involved in the field of environmental science, as well as for libraries developing collections on the forefront of this industry. |
Retirement, Investments, and Insurance | Principal
Apex Clearing Corporation is not affiliated with any member of the Principal Financial Group ®.Principal ® SimpleInvest portfolios are comprised primarily of Principal ® products, including …
Help with online access to your personal Principal
Multi-factor authentication, a security measure, helps prevent cybercriminals from accessing your account, even if they have your password. Here’s how it works: If you log in from an …
Contact Us | Principal
For login assistance, please call us toll-free at 800-986-3343, Monday through Friday, 7:00 AM - 7:00 PM Central Standard Time.
Self-registration page | Principal
Businesses and auditors “I manage retirement or insurance plans at my company.” To create an employer or plan sponsor account, watch for an email from your Principal representative and …
401(k) & 403(b) retirement plans | Principal
If your employer offers a 401 (k), 403(b), or a governmental 457(b) plan with services through Principal ®, enroll online now.
Retirement, Investments, & Insurance for Individuals | Principal
Disability insurance has limitations and exclusions. For costs and coverage details, contact your Principal ® representative. Disability insurance from Principal ® is issued by Principal Life …
Start activation. - Principal Financial Group
Welcome to the account activation process. To begin creating your account please click proceed. You must also consent to doing business electronically.
Help for individuals | Principal
Find answers to common questions about retirement plans, insurance claims, and accessing your online account at Principal.
Principal Financial Group - Welcome
Welcome, we're so glad you're here. In just a few steps, you'll be on your way to planning for retirement. Welcome, we're so glad you're here. In just a few steps, you'll be on your way to …
An app for quick check-ins or big plans. - Principal.com
The Principal® app–built to manage your retirement future and make the most of your time. The app is available in both English and Spanish.
Retirement, Investments, and Insurance | Principal
Apex Clearing Corporation is not affiliated with any member of the Principal Financial Group ®.Principal ® SimpleInvest portfolios are comprised primarily of Principal ® products, including …
Help with online access to your personal Principal
Multi-factor authentication, a security measure, helps prevent cybercriminals from accessing your account, even if they have your password. Here’s how it works: If you log in from an …
Contact Us | Principal
For login assistance, please call us toll-free at 800-986-3343, Monday through Friday, 7:00 AM - 7:00 PM Central Standard Time.
Self-registration page | Principal
Businesses and auditors “I manage retirement or insurance plans at my company.” To create an employer or plan sponsor account, watch for an email from your Principal representative and …
401(k) & 403(b) retirement plans | Principal
If your employer offers a 401 (k), 403(b), or a governmental 457(b) plan with services through Principal ®, enroll online now.
Retirement, Investments, & Insurance for Individuals | Principal
Disability insurance has limitations and exclusions. For costs and coverage details, contact your Principal ® representative. Disability insurance from Principal ® is issued by Principal Life …
Start activation. - Principal Financial Group
Welcome to the account activation process. To begin creating your account please click proceed. You must also consent to doing business electronically.
Help for individuals | Principal
Find answers to common questions about retirement plans, insurance claims, and accessing your online account at Principal.
Principal Financial Group - Welcome
Welcome, we're so glad you're here. In just a few steps, you'll be on your way to planning for retirement. Welcome, we're so glad you're here. In just a few steps, you'll be on your way to …
An app for quick check-ins or big plans. - Principal.com
The Principal® app–built to manage your retirement future and make the most of your time. The app is available in both English and Spanish.