Quantum Cascade Laser On Silicon

Advertisement



  quantum cascade laser on silicon: Towards the First Silicon Laser Lorenzo Pavesi, Sergey Gaponenko, Luca Dal Negro, 2003-03-31 Silicon, the leading material in microelectronics during the last four decades, also promises to be the key material in the future. Despite many claims that silicon technology has reached fundamental limits, the performance of silicon microelectronics continues to improve steadily. The same holds for almost all the applications for which Si was considered to be unsuitable. The main exception to this positive trend is the silicon laser, which has not been demonstrated to date. The main reason for this comes from a fundamental limitation related to the indirect nature of the Si band-gap. In the recent past, many different approaches have been taken to achieve this goal: dislocated silicon, extremely pure silicon, silicon nanocrystals, porous silicon, Er doped Si-Ge, SiGe alloys and multiquantum wells, SiGe quantum dots, SiGe quantum cascade structures, shallow impurity centers in silicon and Er doped silicon. All of these are abundantly illustrated in the present book.
  quantum cascade laser on silicon: Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers Louise Jumpertz, 2017-08-31 This thesis presents the first comprehensive analysis of quantum cascade laser nonlinear dynamics and includes the first observation of a temporal chaotic behavior in quantum cascade lasers. It also provides the first analysis of optical instabilities in the mid-infrared range. Mid-infrared quantum cascade lasers are unipolar semiconductor lasers, which have become widely used in applications such as gas spectroscopy, free-space communications or optical countermeasures. Applying external perturbations such as optical feedback or optical injection leads to a strong modification of the quantum cascade laser properties. Optical feedback impacts the static properties of mid-infrared Fabry–Perot and distributed feedback quantum cascade lasers, inducing power increase; threshold reduction; modification of the optical spectrum, which can become either single- or multimode; and enhanced beam quality in broad-area transverse multimode lasers. It also leads to a different dynamical behavior, and a quantum cascade laser subject to optical feedback can oscillate periodically or even become chaotic. A quantum cascade laser under external control could therefore be a source with enhanced properties for the usual mid-infrared applications, but could also address new applications such as tunable photonic oscillators, extreme events generators, chaotic Light Detection and Ranging (LIDAR), chaos-based secured communications or unpredictable countermeasures.
  quantum cascade laser on silicon: Reliability of Semiconductor Lasers and Optoelectronic Devices Robert Herrick, Osamu Ueda, 2021-03-06 Reliability of Semiconductor Lasers and Optoelectronic Devices simplifies complex concepts of optoelectronics reliability with approachable introductory chapters and a focus on real-world applications. This book provides a brief look at the fundamentals of laser diodes, introduces reliability qualification, and then presents real-world case studies discussing the principles of reliability and what occurs when these rules are broken. Then this book comprehensively looks at optoelectronics devices and the defects that cause premature failure in them and how to control those defects. Key materials and devices are reviewed including silicon photonics, vertical-cavity surface-emitting lasers (VCSELs), InGaN LEDs and lasers, and AlGaN LEDs, covering the majority of optoelectronic devices that we use in our everyday lives, powering the Internet, telecommunication, solid-state lighting, illuminators, and many other applications. This book features contributions from experts in industry and academia working in these areas and includes numerous practical examples and case studies.This book is suitable for new entrants to the field of optoelectronics working in R&D. - Includes case studies and numerous examples showing best practices and common mistakes affecting optoelectronics reliability written by experts working in the industry - Features the first wide-ranging and comprehensive overview of fiber optics reliability engineering, covering all elements of the practice from building a reliability laboratory, qualifying new products, to improving reliability on mature products - Provides a look at the reliability issues and failure mechanisms for silicon photonics, VCSELs, InGaN LEDs and lasers, AIGaN LEDs, and more
  quantum cascade laser on silicon: Mid-infrared Optoelectronics Eric Tournié, Laurent Cerutti, 2019-10-19 Mid-infrared Optoelectronics: Materials, Devices, and Applications addresses the new materials, devices and applications that have emerged over the last decade, along with exciting areas of research. Sections cover fundamentals, light sources, photodetectors, new approaches, and the application of mid-IR devices, with sections discussing LEDs, laser diodes, and quantum cascade lasers, mid-infrared optoelectronics, emerging research areas, dilute bismide and nitride alloys, Group-IV materials, gallium nitride heterostructures, and new nonlinear materials. Finally, the most relevant applications of mid-infrared devices are reviewed in industry, gas sensing, spectroscopy, and imaging. This book presents a key reference for materials scientists, engineers and professionals working in R&D in the area of semiconductors and optoelectronics. - Provides a comprehensive overview of mid-infrared photodetectors and light sources and the latest materials and devices - Reviews emerging areas of research in the field of mid-infrared optoelectronics, including new materials, such as wide bandgap materials, chalcogenides and new approaches, like heterogeneous integration - Includes information on the most relevant applications in industry, like gas sensing, spectroscopy and imaging
  quantum cascade laser on silicon: Quantum Cascade Lasers Jérôme Faist, 2013-03-14 This book describes the physics, fabrication technology, and applications of the quantum cascade laser.
  quantum cascade laser on silicon: Mid-infrared Quantum Cascade Lasers for Chaos Secure Communications Olivier Spitz, 2021-05-15 The mid-infrared domain is a promising optical domain because it holds two transparency atmospheric windows, as well as the fingerprint of many chemical compounds. Quantum cascade lasers (QCLs) are one of the available sources in this domain and have already been proven useful for spectroscopic applications and free-space communications. This thesis demonstrates how to implement a private free-space communication relying on mid-infrared optical chaos and this requires an accurate cartography of non-linear phenomena in quantum cascade lasers. This private transmission is made possible by the chaos synchronization of two twin QCLs. Chaos in QCLs can be generated under optical injection or external optical feedback. Depending on the parameters of the optical feedback, QCLs can exhibit several non-linear phenomena in addition to chaos. Similarities exist between QCLs and laser diodes when the chaotic dropouts are synchronized with an external modulation, and this effect is known as the entrainment phenomenon. With a cross-polarization reinjection technique, QCLs can generate all-optical square-waves. Eventually, it is possible to trigger optical extreme events in QCLs with tilted optical feedback. All these experimental results allow a better understanding of the non-linear dynamics of QCLs and will extend the potential applications of this kind of semiconductor lasers.
  quantum cascade laser on silicon: Handbook of Silicon Photonics Laurent Vivien, Lorenzo Pavesi, 2013-04-26 The development of integrated silicon photonic circuits has recently been driven by the Internet and the push for high bandwidth as well as the need to reduce power dissipation induced by high data-rate signal transmission. To reach these goals, efficient passive and active silicon photonic devices, including waveguide, modulators, photodetectors, multiplexers, light sources, and various subsystems, have been developed that take advantage of state-of-the-art silicon technology. Suitable for both specialists and newcomers, Handbook of Silicon Photonics presents a coherent and comprehensive overview of this field from the fundamentals to integrated systems and applications. It covers a broad spectrum of materials and applications, emphasizing passive and active photonic devices, fabrication, integration, and the convergence with CMOS technology. The book’s self-contained chapters are written by international experts from academia and various photonics-related industries. The handbook starts with the basics of silicon as an optical material. It then describes the building blocks needed to drive integrated silicon photonic circuits and explains how these building blocks are incorporated in complex photonic/electronic circuits. The book also presents applications of silicon photonics in numerous fields, including biophotonics and photovoltaics. With many illustrations, including some in color, this handbook provides an up-to-date reference to the broad and rapidly changing area of silicon photonics. It shows how basic science and innovative technological applications are pushing the field forward.
  quantum cascade laser on silicon: Handbook of Semiconductors Ram K. Gupta, 2024-07-10 This book provides readers with state-of-the-art knowledge of established and emerging semiconducting materials, their processing, and the fabrication of chips and microprocessors. In addition to covering the fundamentals of these materials, it details the basics and workings of many semiconducting devices and their role in modern electronics and explores emerging semiconductors and their importance in future devices. • Provides readers with latest advances in semiconductors. • Covers diodes, transistors, and other devices using semiconducting materials. • Covers advances and challenges in semiconductors and their technological applications. • Discusses fundamentals and characteristics of emerging semiconductors for chip manufacturing. This book provides directions to scientists, engineers, and researchers in materials engineering and related disciplines to help them better understand the physics, characteristics, and applications of modern semiconductors.
  quantum cascade laser on silicon: Physics of Semiconductors 2002 J.H Davies, A.R Long, 2003-05-01 The 26th International Conference on the Physics of Semiconductors was held from 29 July to 2 August 2002 at the Edinburgh International Conference Centre. It is the premier meeting in the field of semiconductor physics and attracted over 1000 participants from leading academic, governmental and industrial institutions in some 50 countries around the world. Plenary and invited papers (34) have been printed in the paper volume, and all submitted papers (742) are included on the CD-ROM. These proceedings provide an international perspective on the latest research and a review of recent developments in semiconductor physics. Topics range from growth and properties of bulk semiconductors to the optical and transport properties of semiconductor nanostructures. There are 742 papers, mostly arranged in chapters on Bulk, dynamics, defects and impurities, growth (147); Heterostructures, quantum wells, superlattices - optical (138); Heterostructures, quantum wells, superlattices - transport (97); Quantum nanostructures - optical (120); Quantum nanostructures - transport (85); New materials and concepts (52); Novel devices (43); and Spin and magnetic effects (48). A number of trends were identified in setting up the overall programme of the conference. There were significant contributions from new directions of research such as nanostructures and one-dimensional physics; spin effects and ferromagnetism; and terahertz and subband physics. These complemented areas in which the conference has traditional strengths, such as defects and bulk materials; crystal growth; quantum transport; and optical properties. As a record of a conference that covers the whole range of semiconductor physics, this book is an essential reference for researchers working on semiconductor physics, device physics, materials science, chemistry, and electronic and electrical engineering.
  quantum cascade laser on silicon: SiGe-based Re-engineering of Electronic Warfare Subsystems Wynand Lambrechts, Saurabh Sinha, 2016-10-19 This book provides readers a thorough understanding of the applicability of new-generation silicon-germanium (SiGe) electronic subsystems for electronic warfare and defensive countermeasures in military contexts. It explains in detail the theoretical and technical background, and addresses all aspects of the integration of SiGe as an enabling technology for maritime, land, and airborne / spaceborne electronic warfare, including research, design, development, and implementation. The coverage is supported by mathematical derivations, informative illustrations, practical examples, and case studies. While SiGe technology provides speed, performance, and price advantages in many markets, to date only limited information has been available on its use in electronic warfare systems, especially in developing nations. Addressing that need, this book offers essential engineering guidelines that especially focus on the speed and reliability of current-generation SiGe circuits and highlight emerging innovations that help to ensure the sustainable long-term integration of SiGe into electronic warfare systems.
  quantum cascade laser on silicon: THz for CBRN and Explosives Detection and Diagnosis Mauro F. Pereira, Oleksiy Shulika, 2017-08-02 This work is intended to jointly address the development, realization and applications of emitters and detectors of terahertz (THz-0.3 THz up to 10 THz) and their application to diagnostics of CBRN effects and detection of explosives and CBRN. Hazardous substances typically exhibit rotational and vibrational transitions in this region, hence giving access to spectroscopic analysis of a large variety of molecules which play a key role in security as well as various other areas, e.g. air pollution, climate research, industrial process control, agriculture, food industry, workplace safety and medical diagnostics can be monitored by sensing and identifying them via THz (0.3 to 10 THz) and mid infrared (MIR-10 THz to 100 THz) absorption “finger prints”. Most plastics, textiles and paper are nearly transparent for THz radiation.
  quantum cascade laser on silicon: Terahertz Sensing Technology - Vol 1: Electronic Devices And Advanced Systems Technology Michael S Shur, Dwight L Woolard, William R Loerop, 2003-07-14 The last research frontier in high frequency electronics now lies in the so-called THz (or submillimeter-wave) regime between the traditional microwave and infrared domains. Significant scientific and technical challenges within the terahertz (THz) frequency regime have recently motivated an array of new research activities. During the last few years, major research programs have emerged that are focused on advancing the state of the art in THz frequency electronic technology and on investigating novel applications of THz frequency sensing. This book serves as a detailed reference for the new THz frequency technological advances that are emerging across a wide spectrum of sensing and technology areas.
  quantum cascade laser on silicon: Applied Nanophotonics Sergey V. Gaponenko, Hilmi Volkan Demir, 2018-11-22 With full color throughout, this unique text provides an accessible yet rigorous introduction to the basic principles, technology, and applications of nanophotonics. It explains key physical concepts such as quantum confinement in semiconductors, light confinement in metal and dielectric nanostructures, and wave coupling in nanostructures, and describes how they can be applied in lighting sources, lasers, photonic circuitry, and photovoltaic systems. Readers will gain an intuitive insight into the commercial implementation of nanophotonic components, in both current and potential future devices, as well as challenges facing the field. The fundamentals of semiconductor optics, optical material properties, and light propagation are included, and new and emerging fields such as colloidal photonics, Si-based photonics, nanoplasmonics, and bioinspired photonics are all discussed. This is the 'go-to' guide for graduate students and researchers in electrical engineering who are interested in nanophotonics, and students taking nanophotonics courses.
  quantum cascade laser on silicon: Terahertz Sensing Technology: Electronic devices and advanced systems technology Dwight L. Woolard, William R. Loerop, Michael Shur, 2003 The last research frontier in high frequency electronics now lies in the so-called THz (or submillimeter-wave) regime between the traditional microwave and infrared domains. Significant scientific and technical challenges within the terahertz (THz) frequency regime have recently motivated an array of new research activities. During the last few years, major research programs have emerged that are focused on advancing the state of the art in THz frequency electronic technology and on investigating novel applications of THz frequency sensing. This book serves as a detailed reference for the new THz frequency technological advances that are emerging across a wide spectrum of sensing and technology areas.
  quantum cascade laser on silicon: Fundamentals of Terahertz Devices and Applications Dimitris Pavlidis, 2021-08-02 An authoritative and comprehensive guide to the devices and applications of Terahertz technology Terahertz (THz) technology relates to applications that span in frequency from a few hundred GHz to more than 1000 GHz. Fundamentals of Terahertz Devices and Applications offers a comprehensive review of the devices and applications of Terahertz technology. With contributions from a range of experts on the topic, this book contains in a single volume an inclusive review of THz devices for signal generation, detection and treatment. Fundamentals of Terahertz Devices and Applications offers an exploration and addresses key categories and aspects of Terahertz Technology such as: sources, detectors, transmission, electronic considerations and applications, optical (photonic) considerations and applications. Worked examplesbased on the contributors extensive experience highlight the chapter material presented. The text is designed for use by novices and professionals who want a better understanding of device operation and use, and is suitable for instructional purposes This important book: Offers the most relevant up-to-date research information and insight into the future developments in the technology Addresses a wide-range of categories and aspects of Terahertz technology Includes material to support courses on Terahertz Technology and more Contains illustrative worked examples Written for researchers, students, and professional engineers, Fundamentals of Terahertz Devices and Applications offers an in-depth exploration of the topic that is designed for both novices and professionals and can be adopted for instructional purposes.
  quantum cascade laser on silicon: Laser and Fiber Optic Gas Absorption Spectroscopy George Stewart, 2021-04-08 A rigorous account of the physics and engineering of diode and fibre laser gas sensor design, with key applications.
  quantum cascade laser on silicon: Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures Against Explosives and CBRN Mauro Fernandes Pereira, Apostolos Apostolakis, 2021-04-30 Critical infrastructures are targets for terrorism and deliver a valuable vector through which the proliferation of CBRN and explosive precursors can be detected. Recent technological breakthroughs, notably in the field of near infrared (NIR), mid infrared (MIR), Terahertz (THz) and Gigahertz (GHz) sources and detectors, have led to rugged commercial devices, capable of standoff sensing a range of these dangerous substances. However, at the same time criminal and terrorist organizations have also benefited from the availability of technologies to increase the threat they pose to the security of citizens and a concerted effort is needed to improve early detection measures to identify activities, such as the production of homemade explosives or CBRN that can be potentially dangerous to society. The key global technological bottleneck to be overcome is the current lack of integration and networking of mature detection technology into early warning systems for critical infrastructures. Thus, this book brings together complementary information connecting the research of leading teams working on critical Infrastructure protection with academic developers and industrial producers of state of the art sensors.
  quantum cascade laser on silicon: Technology of Quantum Devices Manijeh Razeghi, 2009-12-11 Technology of Quantum Devices offers a multi-disciplinary overview of solid state physics, photonics and semiconductor growth and fabrication. Readers will find up-to-date coverage of compound semiconductors, crystal growth techniques, silicon and compound semiconductor device technology, in addition to intersubband and semiconductor lasers. Recent findings in quantum tunneling transport, quantum well intersubband photodetectors (QWIP) and quantum dot photodetectors (QWDIP) are described, along with a thorough set of sample problems.
  quantum cascade laser on silicon: Semiconductor Lasers Alexei Baranov, Eric Tournié, 2013-04-23 Semiconductor lasers have important applications in numerous fields, including engineering, biology, chemistry and medicine. They form the backbone of the optical telecommunications infrastructure supporting the internet, and are used in information storage devices, bar-code scanners, laser printers and many other everyday products. Semiconductor lasers: Fundamentals and applications is a comprehensive review of this vital technology.Part one introduces the fundamentals of semiconductor lasers, beginning with key principles before going on to discuss photonic crystal lasers, high power semiconductor lasers and laser beams, and the use of semiconductor lasers in ultrafast pulse generation. Part two then reviews applications of visible and near-infrared emitting lasers. Nonpolar and semipolar GaN-based lasers, advanced self-assembled InAs quantum dot lasers and vertical cavity surface emitting lasers are all considered, in addition to semiconductor disk and hybrid silicon lasers. Finally, applications of mid- and far-infrared emitting lasers are the focus of part three. Topics covered include GaSb-based type I quantum well diode lasers, interband cascade and terahertz quantum cascade lasers, whispering gallery mode lasers and tunable mid-infrared laser absorption spectroscopy.With its distinguished editors and international team of expert contributors, Semiconductor lasers is a valuable guide for all those involved in the design, operation and application of these important lasers, including laser and telecommunications engineers, scientists working in biology and chemistry, medical practitioners, and academics working in this field. - Provides a comprehensive review of semiconductor lasers and their applications in engineering, biology, chemistry and medicine - Discusses photonic crystal lasers, high power semiconductor lasers and laser beams, and the use of semiconductor lasers in ultrafast pulse generation - Reviews applications of visible and near-infrared emitting lasers and mid- and far-infrared emitting lasers
  quantum cascade laser on silicon: Vibrational Spectroscopy in Protein Research Yukihiro Ozaki, Malgorzata Baranska, Igor K. Lednev, Bayden R. Wood, 2020-05-19 Vibrational Spectroscopy in Protein Research offers a thorough discussion of vibrational spectroscopy in protein research, providing researchers with clear, practical guidance on methods employed, areas of application, and modes of analysis. With chapter contributions from international leaders in the field, the book addresses basic principles of vibrational spectroscopy in protein research, instrumentation and technologies available, sampling methods, quantitative analysis, origin of group frequencies, and qualitative interpretation. In addition to discussing vibrational spectroscopy for the analysis of purified proteins, chapter authors also examine its use in studying complex protein systems, including protein aggregates, fibrous proteins, membrane proteins and protein assemblies. Emphasis throughout the book is placed on applications in human tissue, cell development, and disease analysis, with chapters dedicated to studies of molecular changes that occur during disease progression, as well as identifying changes in tissues and cells in disease studies. - Provides thorough guidance in implementing cutting-edge vibrational spectroscopic methods from international leaders in the field - Emphasizes in vivo, in situ and non-invasive analysis of proteins in biomedical and life science research more broadly - Contains chapters that address vibrational spectroscopy for the study of simple purified proteins and protein aggregates, fibrous proteins, membrane proteins and protein assemblies
  quantum cascade laser on silicon: Solid-State Mid-Infrared Laser Sources Irina T. Sorokina, Konstantin L. Vodopyanov, 2014-10-08 This collection of authoritative reviews by leading experts provides a broad and instructive introduction to the most advanced techniques for generating coherent light in the mid-infrared region of the spectrum. With a wealth of up-to-date references – also available online.
  quantum cascade laser on silicon: Mid-Infrared and Terahertz Quantum Cascade Lasers Dan Botez, Mikhail A. Belkin, 2023-09-14 A state-of-the-art overview of this rapidly expanding field, featuring fundamental theory, practical applications, and real-life examples.
  quantum cascade laser on silicon: Integrated Nanophotonics Peng Yu, Hongxing Xu, Zhiming Wang, 2023-05-31 Integrated Nanophotonics Helps readers understand the important advances in nanophotonics materials development and their latest applications This book introduces the current state of and emerging trends in the development of integrated nanophotonics. Written by three well-qualified authors, it systematically reviews the knowledge of integrated nanophotonics from theory to the most recent technological developments. It also covers the applications of integrated nanophotonics in essential areas such as neuromorphic computing, biosensing, and optical communications. Lastly, it brings together the latest advancements in the key principles of photonic integrated circuits, plus the recent advances in tackling the barriers in photonic integrated circuits. Sample topics included in this comprehensive resource include: Platforms for integrated nanophotonics, including lithium niobate nanophotonics, indium phosphide nanophotonics, silicon nanophotonics, and nonlinear optics for integrated photonics The devices and technologies for integrated nanophotonics in on-chip light sources, optical packaging of photonic integrated circuits, optical interconnects, and light processing devices Applications on neuromorphic computing, biosensing, LIDAR, and computing for AI and artificial neural network and deep learning Materials scientists, physicists, and physical chemists can use this book to understand the totality of cutting-edge theory, research, and applications in the field of integrated nanophotonics.
  quantum cascade laser on silicon: SiGe and Ge David Louis Harame, 2006 The second International SiGe & Ge: Materials, Processing, and Devices Symposium was part of the 2006 ECS conference held in Cancun, Mexico from October 29-Nov 3, 2006. This meeting provided a forum for reviewing and discussing all materials and device related aspects of SiGe & Ge. The hardcover edition includes a bonus CD-ROM containing the PDF of the entire issue.
  quantum cascade laser on silicon: Lasers and Their Applications Phoenix Walsh, 2018-11-26 A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The term e;lasere; originated as an acronym for e;light amplification by stimulated emission of radiatione;. Laser Applications provides a firm grounding in the fundamental concepts over governing the field on Optics. This reference book is useful for the students of B.E., B.Tech. and M.Tech., courses. The present book is an attempt to treat the subject of Laser as an introductory course. With recent major breakthroughs in ultrafast laser technology and femtosecond nonlinear spectroscopic techiques, Femtosecond Laser Spectroscopy is currently a burgeoning field in many branches of science, including physics, chemistry, biology, and materials science. Attempts have also been made to cover the frontline areas in the subject. The development of Laser and its various applications in Communications, Radiation, medicine, Holography etc., has been given due importance.
  quantum cascade laser on silicon: Handbook of Optoelectronics John P. Dakin, Robert Brown, 2017-10-10 Handbook of Optoelectronics offers a self-contained reference from the basic science and light sources to devices and modern applications across the entire spectrum of disciplines utilizing optoelectronic technologies. This second edition gives a complete update of the original work with a focus on systems and applications. Volume I covers the details of optoelectronic devices and techniques including semiconductor lasers, optical detectors and receivers, optical fiber devices, modulators, amplifiers, integrated optics, LEDs, and engineered optical materials with brand new chapters on silicon photonics, nanophotonics, and graphene optoelectronics. Volume II addresses the underlying system technologies enabling state-of-the-art communications, imaging, displays, sensing, data processing, energy conversion, and actuation. Volume III is brand new to this edition, focusing on applications in infrastructure, transport, security, surveillance, environmental monitoring, military, industrial, oil and gas, energy generation and distribution, medicine, and free space. No other resource in the field comes close to its breadth and depth, with contributions from leading industrial and academic institutions around the world. Whether used as a reference, research tool, or broad-based introduction to the field, the Handbook offers everything you need to get started. (The previous edition of this title was published as Handbook of Optoelectronics, 9780750306461.) John P. Dakin, PhD, is professor (emeritus) at the Optoelectronics Research Centre, University of Southampton, UK. Robert G. W. Brown, PhD, is chief executive officer of the American Institute of Physics and an adjunct full professor in the Beckman Laser Institute and Medical Clinic at the University of California, Irvine.
  quantum cascade laser on silicon: Lasers and Electro-optics Christopher C. Davis, 2014-03-20 This book contains comprehensive coverage of topics in optical physics and engineering for undergraduate students studying laser physics, optoelectronics, photonics and optical engineering.
  quantum cascade laser on silicon: Nanofabrication Using Focused Ion and Electron Beams Ivo Utke, Stanislav Moshkalev, Phillip Russell, 2012-05 This book comprehensively reviews the achievements and potentials of a minimally invasive, three-dimensional, and maskless surface structuring technique operating at nanometer scale by using the interaction of focused ion and electron beams (FIB/FEB) with surfaces and injected molecules.
  quantum cascade laser on silicon: Official Gazette of the United States Patent and Trademark Office , 1998
  quantum cascade laser on silicon: Advances in Lasers and Electro Optics Nelson Costa, Adolfo Cartaxo, 2010-04-01 Lasers and electro-optics is a field of research leading to constant breakthroughs. Indeed, tremendous advances have occurred in optical components and systems since the invention of laser in the late 50s, with applications in almost every imaginable field of science including control, astronomy, medicine, communications, measurements, etc. If we focus on lasers, for example, we find applications in quite different areas. We find lasers, for instance, in industry, emitting power level of several tens of kilowatts for welding and cutting; in medical applications, emitting power levels from few milliwatt to tens of Watt for various types of surgeries; and in optical fibre telecommunication systems, emitting power levels of the order of one milliwatt. This book is divided in four sections. The book presents several physical effects and properties of materials used in lasers and electro-optics in the first chapter and, in the three remaining chapters, applications of lasers and electro-optics in three different areas are presented
  quantum cascade laser on silicon: Comprehensive Semiconductor Science and Technology , 2011-01-28 Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology, Six Volume Set captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts
  quantum cascade laser on silicon: IEEE ... International Conference on Terahertz Electronics Proceedings , 2002
  quantum cascade laser on silicon: Nanophotonics Hongxing Xu, 2017-11-09 The manipulation of light at the nanometer scale is highly pursued for both fundamental sciences and wide applications. The diffraction limit of light sets the limit for the smallest size of photonic devices to the scale of light wavelength. Fortunately, the peculiar properties of surface plasmons in metal nanostructures make it possible to squeeze light into nanoscale volumes and enable the manipulation of light and light–matter interactions beyond the diffraction limit. Studies on surface plasmons have led to the creation of a booming research field called plasmonics. Because of its various scientific and practical applications, plasmonics attracts researchers from different fields, making it a truly interdisciplinary subject. Nanophotonics: Manipulating Light with Plasmons starts with the general physics of surface plasmons and a brief introduction to the most prominent research topics, followed by a discussion of computational techniques for light scattering by small particles. Then, a few special topics are highlighted, including surfaceenhanced Raman scattering, optical nanoantennas, optical forces, plasmonic waveguides and circuits, and gain-assisted plasmon resonances and propagation. The book discusses the fundamental and representative properties of both localized surface plasmons and propagating surface plasmons. It explains various phenomena and mechanisms using elegant model systems with well-defined structures, is illustrated throughout with excellent figures, and contains an extensive list of references at the end of each chapter. It will help graduate-level students and researchers in nanophotonics, physics, chemistry, materials science, nanoscience and nanotechnology, and electrical and electronic engineering get a quick introduction to this field.
  quantum cascade laser on silicon: Minerals Yearbook , 2006
  quantum cascade laser on silicon: Nanophotonics Paras N. Prasad, 2004-09-21 The only comprehensive treatment of nanophotonics currently available Photonics is an all-encompassing optical science and technology which has impacted a diverse range of fields, from information technology to health care. Nanophotonics is photonic science and technology that utilizes light-matter interactions on the nanoscale, where researchers are discovering new phenomena and developing technologies that go well beyond what is possible with conventional photonics and electronics. These new technologies could include efficient solar power generation, high-bandwidth and high-speed communications, high-capacity data storage, and flexible- and high-contrast displays. In addition, nanophotonics will continue to impact biomedical technologies by providing new and powerful diagnostic techniques, as well as light-guided and activated therapies. Nanophotonics provides the only available comprehensive treatment of this exciting, multidisciplinary field, offering a wide range of topics covering: * Foundations * Materials * Applications * Theory * Fabrication Nanophotonics introduces students to important and timely concepts and provides scientists and engineers with a cutting-edge reference. The book is intended for anyone who wishes to learn about light-matter interactions on the nanoscale, as well as applications of photonics for nanotechnology and nanobiotechnology. Written by an acknowledged leader in the field, this text provides an essential resource for those interested in the future of materials science and engineering, nanotechnology, and photonics.
  quantum cascade laser on silicon: Diode Lasers and Photonic Integrated Circuits Larry A. Coldren, Scott W. Corzine, Milan L. Mashanovitch, 2012-03-02 Diode Lasers and Photonic Integrated Circuits, Second Edition provides a comprehensive treatment of optical communication technology, its principles and theory, treating students as well as experienced engineers to an in-depth exploration of this field. Diode lasers are still of significant importance in the areas of optical communication, storage, and sensing. Using the the same well received theoretical foundations of the first edition, the Second Edition now introduces timely updates in the technology and in focus of the book. After 15 years of development in the field, this book will offer brand new and updated material on GaN-based and quantum-dot lasers, photonic IC technology, detectors, modulators and SOAs, DVDs and storage, eye diagrams and BER concepts, and DFB lasers. Appendices will also be expanded to include quantum-dot issues and more on the relation between spontaneous emission and gain.
  quantum cascade laser on silicon: Anticipating Future Innovation Pathways Through Large Data Analysis Tugrul U. Daim, Denise Chiavetta, Alan L. Porter, Ozcan Saritas, 2016-07-25 This book aims to identify promising future developmental opportunities and applications for Tech Mining. Specifically, the enclosed contributions will pursue three converging themes: The increasing availability of electronic text data resources relating to Science, Technology and Innovation (ST&I). The multiple methods that are able to treat this data effectively and incorporate means to tap into human expertise and interests. Translating those analyses to provide useful intelligence on likely future developments of particular emerging S&T targets. Tech Mining can be defined as text analyses of ST&I information resources to generate Competitive Technical Intelligence (CTI). It combines bibliometrics and advanced text analytic, drawing on specialized knowledge pertaining to ST&I. Tech Mining may also be viewed as a special form of “Big Data” analytics because it searches on a target emerging technology (or key organization) of interest in global databases. One then downloads, typically, thousands of field-structured text records (usually abstracts), and analyses those for useful CTI. Forecasting Innovation Pathways (FIP) is a methodology drawing on Tech Mining plus additional steps to elicit stakeholder and expert knowledge to link recent ST&I activity to likely future development. A decade ago, we demeaned Management of Technology (MOT) as somewhat self-satisfied and ignorant. Most technology managers relied overwhelmingly on casual human judgment, largely oblivious of the potential of empirical analyses to inform R&D management and science policy. CTI, Tech Mining, and FIP are changing that. The accumulation of Tech Mining research over the past decade offers a rich resource of means to get at emerging technology developments and organizational networks to date. Efforts to bridge from those recent histories of development to project likely FIP, however, prove considerably harder. One focus of this volume is to extend the repertoire of information resources; that will enrich FIP. Featuring cases of novel approaches and applications of Tech Mining and FIP, this volume will present frontier advances in ST&I text analytics that will be of interest to students, researchers, practitioners, scholars and policy makers in the fields of R&D planning, technology management, science policy and innovation strategy.
  quantum cascade laser on silicon: Laser-Based Measurements for Time and Frequency Domain Applications Pasquale Maddaloni, Marco Bellini, Paolo De Natale, 2016-04-19 Foreword by Nobel laureate Professor Theodor W. Hch of Ludwig-Maximilians-UniversitätMunchenBased on the authors' experimental work over the last 25 years, Laser-Based Measurements for Time and Frequency Domain Applications: A Handbook presents basic concepts, state-of-the-art applications, and future trends in optical, atomic, and molecular physic
  quantum cascade laser on silicon: Nanotechnology and Nanoelectronics Wolfgang Fahrner, 2005-12-05 Split a human hair thirty thousand times, and you have the equivalent of a nanometer. The aim of this work is to provide an introduction into nanotechnology for the s- entifically interested. However, such an enterprise requires a balance between comprehensibility and scientific accuracy. In case of doubt, preference is given to the latter. Much more than in microtechnology – whose fundamentals we assume to be known – a certain range of engineering and natural sciences are interwoven in nanotechnology. For instance, newly developed tools from mechanical engine- ing are essential in the production of nanoelectronic structures. Vice versa, - chanical shifts in the nanometer range demand piezoelectric-operated actuators. Therefore, special attention is given to a comprehensive presentation of the matter. In our time, it is no longer sufficient to simply explain how an electronic device operates; the materials and procedures used for its production and the measuring instruments used for its characterization are equally important. The main chapters as well as several important sections in this book end in an evaluation of future prospects. Unfortunately, this way of separating coherent - scription from reflection and speculation could not be strictly maintained. So- times, the complete description of a device calls for discussion of its inherent - tential; the hasty reader in search of the general perspective is therefore advised to study this work’s technical chapters as well.
  quantum cascade laser on silicon: Handbook of Laser Technology and Applications Chunlei Guo, Chandra Subhash Singh, 2021-06-23 This comprehensive handbook gives a fully updated guide to lasers and laser technologies, including the complete range of their technical applications. This forth volume covers laser applications in the medical, metrology and communications fields. Key Features: • Offers a complete update of the original, bestselling work, including many brand-new chapters. • Deepens the introduction to fundamentals, from laser design and fabrication to host matrices for solid-state lasers, energy level diagrams, hosting materials, dopant energy levels, and lasers based on nonlinear effects. • Covers new laser types, including quantum cascade lasers, silicon-based lasers, titanium sapphire lasers, terahertz lasers, bismuth-doped fiber lasers, and diode-pumped alkali lasers. • Discusses the latest applications, e.g., lasers in microscopy, high-speed imaging, attosecond metrology, 3D printing, optical atomic clocks, time-resolved spectroscopy, polarization and profile measurements, pulse measurements, and laser-induced fluorescence detection. • Adds new sections on laser materials processing, laser spectroscopy, lasers in imaging, lasers in environmental sciences, and lasers in communications. This handbook is the ideal companion for scientists, engineers, and students working with lasers, including those in optics, electrical engineering, physics, chemistry, biomedicine, and other relevant areas.
Quantum - Wikipedia
In physics, a quantum (pl.: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred …

Quantum | Definition & Facts | Britannica
May 31, 2025 · Quantum, in physics, discrete natural unit, or packet, of energy, charge, angular momentum, or other physical property. Light, for example, appearing in some respects as a …

What Is Quantum Physics? - Caltech Science Exchange
Quantum physics is the study of matter and energy at the most fundamental level. It aims to uncover the properties and behaviors of the very building blocks of nature. While many quantum …

Demystifying Quantum: It’s Here, There and Everywhere
Apr 10, 2024 · Quantum, often called quantum mechanics, deals with the granular and fuzzy nature of the universe and the physical behavior of its smallest particles. The idea of physical granularity …

Quantum mechanics: Definitions, axioms, and key concepts of quantum …
Apr 29, 2024 · Quantum mechanics, or quantum physics, is the body of scientific laws that describe the wacky behavior of photons, electrons and the other subatomic particles that make up the …

What is quantum in physics and computing? - TechTarget
Feb 27, 2025 · A quantum, the singular form of quanta, is the smallest discrete unit of any physical entity. For example, a quantum of light is a photon, and a quantum of electricity is an electron. …

Science 101: Quantum Mechanics - Argonne National Laboratory
So, what is quantum? In a more general sense, the word “ quantum” can refer to the smallest possible amount of something. The field of quantum mechanics deals with the most fundamental …

DOE Explains...Quantum Mechanics | Department of Energy
Quantum mechanics is the field of physics that explains how extremely small objects simultaneously have the characteristics of both particles (tiny pieces of matter) and waves (a disturbance or …

Quantum for dummies: the basics explained | Engineering and …
Apr 16, 2019 · Professor Alan Woodward from the University of Surrey attempts to demystify the quantum world by explaining key terminology and theory. Which atoms and particles does …

Quantum - definition of quantum by The Free Dictionary
A unit of energy, especially electromagnetic energy, that is the smallest physical quantity that can exist on its own. A quantum acts both like a particle and like an energy wave. Photons are …

Quantum - Wikipedia
In physics, a quantum (pl.: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" …

Quantum | Definition & Facts | Britannica
May 31, 2025 · Quantum, in physics, discrete natural unit, or packet, of energy, charge, angular momentum, or other physical property. Light, for example, appearing in some respects as a …

What Is Quantum Physics? - Caltech Science Exchange
Quantum physics is the study of matter and energy at the most fundamental level. It aims to uncover the properties and behaviors of the very building blocks of nature. While many …

Demystifying Quantum: It’s Here, There and Everywhere
Apr 10, 2024 · Quantum, often called quantum mechanics, deals with the granular and fuzzy nature of the universe and the physical behavior of its smallest particles. The idea of physical …

Quantum mechanics: Definitions, axioms, and key concepts of quantum ...
Apr 29, 2024 · Quantum mechanics, or quantum physics, is the body of scientific laws that describe the wacky behavior of photons, electrons and the other subatomic particles that make …

What is quantum in physics and computing? - TechTarget
Feb 27, 2025 · A quantum, the singular form of quanta, is the smallest discrete unit of any physical entity. For example, a quantum of light is a photon, and a quantum of electricity is an …

Science 101: Quantum Mechanics - Argonne National Laboratory
So, what is quantum? In a more general sense, the word “ quantum” can refer to the smallest possible amount of something. The field of quantum mechanics deals with the most …

DOE Explains...Quantum Mechanics | Department of Energy
Quantum mechanics is the field of physics that explains how extremely small objects simultaneously have the characteristics of both particles (tiny pieces of matter) and waves (a …

Quantum for dummies: the basics explained | Engineering and …
Apr 16, 2019 · Professor Alan Woodward from the University of Surrey attempts to demystify the quantum world by explaining key terminology and theory. Which atoms and particles does …

Quantum - definition of quantum by The Free Dictionary
A unit of energy, especially electromagnetic energy, that is the smallest physical quantity that can exist on its own. A quantum acts both like a particle and like an energy wave. Photons are …