Advertisement
probability and statistics free download: Probability and Statistics Michael J. Evans, Jeffrey S. Rosenthal, 2004 Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students. |
probability and statistics free download: All of Statistics Larry Wasserman, 2004-09-17 This book is for people who want to learn probability and statistics quickly. It brings together many of the main ideas in modern statistics in one place. The book is suitable for students and researchers in statistics, computer science, data mining and machine learning. This book covers a much wider range of topics than a typical introductory text on mathematical statistics. It includes modern topics like nonparametric curve estimation, bootstrapping and classification, topics that are usually relegated to follow-up courses. The reader is assumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. The text can be used at the advanced undergraduate and graduate level. Larry Wasserman is Professor of Statistics at Carnegie Mellon University. He is also a member of the Center for Automated Learning and Discovery in the School of Computer Science. His research areas include nonparametric inference, asymptotic theory, causality, and applications to astrophysics, bioinformatics, and genetics. He is the 1999 winner of the Committee of Presidents of Statistical Societies Presidents' Award and the 2002 winner of the Centre de recherches mathematiques de Montreal–Statistical Society of Canada Prize in Statistics. He is Associate Editor of The Journal of the American Statistical Association and The Annals of Statistics. He is a fellow of the American Statistical Association and of the Institute of Mathematical Statistics. |
probability and statistics free download: A Modern Introduction to Probability and Statistics F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, L.E. Meester, 2006-03-30 Many current texts in the area are just cookbooks and, as a result, students do not know why they perform the methods they are taught, or why the methods work. The strength of this book is that it readdresses these shortcomings; by using examples, often from real life and using real data, the authors show how the fundamentals of probabilistic and statistical theories arise intuitively. A Modern Introduction to Probability and Statistics has numerous quick exercises to give direct feedback to students. In addition there are over 350 exercises, half of which have answers, of which half have full solutions. A website gives access to the data files used in the text, and, for instructors, the remaining solutions. The only pre-requisite is a first course in calculus; the text covers standard statistics and probability material, and develops beyond traditional parametric models to the Poisson process, and on to modern methods such as the bootstrap. |
probability and statistics free download: Probability and Statistics Arak M. Mathai, Hans J. Haubold, 2017-12-18 This book offers an introduction to concepts of probability theory, probability distributions relevant in the applied sciences, as well as basics of sampling distributions, estimation and hypothesis testing. As a companion for classes for engineers and scientists, the book also covers applied topics such as model building and experiment design. Contents Random phenomena Probability Random variables Expected values Commonly used discrete distributions Commonly used density functions Joint distributions Some multivariate distributions Collection of random variables Sampling distributions Estimation Interval estimation Tests of statistical hypotheses Model building and regression Design of experiments and analysis of variance Questions and answers |
probability and statistics free download: Probability and Statistics for Engineering and the Sciences + Enhanced Webassign Access , 2017 |
probability and statistics free download: Probability and Statistics for Computer Science David Forsyth, 2017-12-13 This textbook is aimed at computer science undergraduates late in sophomore or early in junior year, supplying a comprehensive background in qualitative and quantitative data analysis, probability, random variables, and statistical methods, including machine learning. With careful treatment of topics that fill the curricular needs for the course, Probability and Statistics for Computer Science features: • A treatment of random variables and expectations dealing primarily with the discrete case. • A practical treatment of simulation, showing how many interesting probabilities and expectations can be extracted, with particular emphasis on Markov chains. • A clear but crisp account of simple point inference strategies (maximum likelihood; Bayesian inference) in simple contexts. This is extended to cover some confidence intervals, samples and populations for random sampling with replacement, and the simplest hypothesis testing. • A chapter dealing with classification, explaining why it’s useful; how to train SVM classifiers with stochastic gradient descent; and how to use implementations of more advanced methods such as random forests and nearest neighbors. • A chapter dealing with regression, explaining how to set up, use and understand linear regression and nearest neighbors regression in practical problems. • A chapter dealing with principal components analysis, developing intuition carefully, and including numerous practical examples. There is a brief description of multivariate scaling via principal coordinate analysis. • A chapter dealing with clustering via agglomerative methods and k-means, showing how to build vector quantized features for complex signals. Illustrated throughout, each main chapter includes many worked examples and other pedagogical elements such as boxed Procedures, Definitions, Useful Facts, and Remember This (short tips). Problems and Programming Exercises are at the end of each chapter, with a summary of what the reader should know. Instructor resources include a full set of model solutions for all problems, and an Instructor's Manual with accompanying presentation slides. |
probability and statistics free download: Probability and Statistics Gunnar Blom, 2012-12-06 This is a somewhat extended and modified translation of the third edition of the text, first published in 1969. The Swedish edition has been used for many years at the Royal Institute of Technology in Stockholm, and at the School of Engineering at Link6ping University. It is also used in elementary courses for students of mathematics and science. The book is not intended for students interested only in theory, nor is it suited for those seeking only statistical recipes. Indeed, it is designed to be intermediate between these extremes. I have given much thought to the question of dividing the space, in an appropriate way, between mathematical arguments and practical applications. Mathematical niceties have been left aside entirely, and many results are obtained by analogy. The students I have in mind should have three ingredients in their course: elementary probability theory with applications, statistical theory with applications, and something about the planning of practical investiga tions. When pouring these three ingredients into the soup, I have tried to draw upon my experience as a university teacher and on my earlier years as an industrial statistician. The programme may sound bold, and the reader should not expect too much from this book. Today, probability, statistics and the planning of investigations cover vast areas and, in 356 pages, only the most basic problems can be discussed. If the reader gains a good understanding of probabilistic and statistical reasoning, the main purpose of the book has been fulfilled. |
probability and statistics free download: Introduction to Probability Joseph K. Blitzstein, Jessica Hwang, 2014-07-24 Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment. |
probability and statistics free download: Applied Probability and Statistics Mario Lefebvre, 2007-04-03 This book is based mainly on the lecture notes that I have been using since 1993 for a course on applied probability for engineers that I teach at the Ecole Polytechnique de Montreal. This course is given to electrical, computer and physics engineering students, and is normally taken during the second or third year of their curriculum. Therefore, we assume that the reader has acquired a basic knowledge of differential and integral calculus. The main objective of this textbook is to provide a reference that covers the topics that every student in pure or applied sciences, such as physics, computer science, engineering, etc., should learn in probability theory, in addition to the basic notions of stochastic processes and statistics. It is not easy to find a single work on all these topics that is both succinct and also accessible to non-mathematicians. Because the students, who for the most part have never taken a course on prob ability theory, must do a lot of exercises in order to master the material presented, I included a very large number of problems in the book, some of which are solved in detail. Most of the exercises proposed after each chapter are problems written es pecially for examinations over the years. They are not, in general, routine problems, like the ones found in numerous textbooks. |
probability and statistics free download: Introduction to Probability Charles Miller Grinstead, James Laurie Snell, 2012-10-30 This text is designed for an introductory probability course at the university level for sophomores, juniors, and seniors in mathematics, physical and social sciences, engineering, and computer science. It presents a thorough treatment of ideas and techniques necessary for a firm understanding of the subject. |
probability and statistics free download: Introduction to Probability and Statistics William Mendenhall, Robert J. Beaver, 1994 This classic text, focuses on statistical inference as the objective of statistics, emphasizes inference making, and features a highly polished and meticulous execution, with outstanding exercises. This revision introduces a range of modern ideas, while preserving the overall classical framework.. |
probability and statistics free download: Introductory Statistics 2e Barbara Illowsky, Susan Dean, 2023-12-13 Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License. |
probability and statistics free download: Introduction to Probability and Statistics for Engineers and Scientists Sheldon M. Ross, 1987 Elements of probability; Random variables and expectation; Special; random variables; Sampling; Parameter estimation; Hypothesis testing; Regression; Analysis of variance; Goodness of fit and nonparametric testing; Life testing; Quality control; Simulation. |
probability and statistics free download: An Introduction to Probability and Statistics Vijay K. Rohatgi, A. K. Md. Ehsanes Saleh, 2015-09-01 A well-balanced introduction to probability theory and mathematical statistics Featuring updated material, An Introduction to Probability and Statistics, Third Edition remains a solid overview to probability theory and mathematical statistics. Divided intothree parts, the Third Edition begins by presenting the fundamentals and foundationsof probability. The second part addresses statistical inference, and the remainingchapters focus on special topics. An Introduction to Probability and Statistics, Third Edition includes: A new section on regression analysis to include multiple regression, logistic regression, and Poisson regression A reorganized chapter on large sample theory to emphasize the growing role of asymptotic statistics Additional topical coverage on bootstrapping, estimation procedures, and resampling Discussions on invariance, ancillary statistics, conjugate prior distributions, and invariant confidence intervals Over 550 problems and answers to most problems, as well as 350 worked out examples and 200 remarks Numerous figures to further illustrate examples and proofs throughout An Introduction to Probability and Statistics, Third Edition is an ideal reference and resource for scientists and engineers in the fields of statistics, mathematics, physics, industrial management, and engineering. The book is also an excellent text for upper-undergraduate and graduate-level students majoring in probability and statistics. |
probability and statistics free download: Probability and Statistics for Particle Physics Carlos Maña, 2017-04-21 This book comprehensively presents the basic concepts of probability and Bayesian inference with sufficient generality to make them applicable to current problems in scientific research. The first chapter provides the fundamentals of probability theory that are essential for the analysis of random phenomena. The second chapter includes a full and pragmatic review of the Bayesian methods that constitute a natural and coherent framework with enough freedom to analyze all the information available from experimental data in a conceptually simple manner. The third chapter presents the basic Monte Carlo techniques used in scientific research, allowing a large variety of problems to be handled difficult to tackle by other procedures. The author also introduces a basic algorithm, which enables readers to simulate samples from simple distribution, and describes useful cases for researchers in particle physics.The final chapter is devoted to the basic ideas of Information Theory, which are important in the Bayesian methodology. This highly readable book is appropriate for graduate-level courses, while at the same time being useful for scientific researches in general and for physicists in particular since most of the examples are from the field of Particle Physics. |
probability and statistics free download: Think Stats Allen B. Downey, 2011-07-01 If you know how to program, you have the skills to turn data into knowledge using the tools of probability and statistics. This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts. Develop your understanding of probability and statistics by writing and testing code Run experiments to test statistical behavior, such as generating samples from several distributions Use simulations to understand concepts that are hard to grasp mathematically Learn topics not usually covered in an introductory course, such as Bayesian estimation Import data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics tools Use statistical inference to answer questions about real-world data |
probability and statistics free download: Probability and Statistics in the Physical Sciences Byron P. Roe, 2020-09-26 This book, now in its third edition, offers a practical guide to the use of probability and statistics in experimental physics that is of value for both advanced undergraduates and graduate students. Focusing on applications and theorems and techniques actually used in experimental research, it includes worked problems with solutions, as well as homework exercises to aid understanding. Suitable for readers with no prior knowledge of statistical techniques, the book comprehensively discusses the topic and features a number of interesting and amusing applications that are often neglected. Providing an introduction to neural net techniques that encompasses deep learning, adversarial neural networks, and boosted decision trees, this new edition includes updated chapters with, for example, additions relating to generating and characteristic functions, Bayes’ theorem, the Feldman-Cousins method, Lagrange multipliers for constraints, estimation of likelihood ratios, and unfolding problems. |
probability and statistics free download: Introduction to Probability and Statistics Henry L. Alder, Edward B. Roessler, 1968 |
probability and statistics free download: Fundamentals of Mathematical Statistics S.C. Gupta, V.K. Kapoor, 2020-09-10 Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Some prominent additions are given below: 1. Variance of Degenerate Random Variable 2. Approximate Expression for Expectation and Variance 3. Lyapounov’s Inequality 4. Holder’s Inequality 5. Minkowski’s Inequality 6. Double Expectation Rule or Double-E Rule and many others |
probability and statistics free download: Think Stats Allen B. Downey, 2014-10-16 If you know how to program, you have the skills to turn data into knowledge, using tools of probability and statistics. This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. By working with a single case study throughout this thoroughly revised book, you’ll learn the entire process of exploratory data analysis—from collecting data and generating statistics to identifying patterns and testing hypotheses. You’ll explore distributions, rules of probability, visualization, and many other tools and concepts. New chapters on regression, time series analysis, survival analysis, and analytic methods will enrich your discoveries. Develop an understanding of probability and statistics by writing and testing code Run experiments to test statistical behavior, such as generating samples from several distributions Use simulations to understand concepts that are hard to grasp mathematically Import data from most sources with Python, rather than rely on data that’s cleaned and formatted for statistics tools Use statistical inference to answer questions about real-world data |
probability and statistics free download: Probability and Statistics in Experimental Physics Byron P. Roe, 2013-03-09 This book is meant to be a practical introduction into the use of probability and statistics in experimental physics for advanced undergraduate students and for graduate students. I have attempted to write a short book. It is not intended as a comprehensive text in probability and statistics. I have tried to emphasize areas I have found to be useful when doing experimental physics. Except for the first two chapters the emphasis is on applications and understanding. I have omitted proofs of formal theorems in the interests of brevity unless I felt the proof added to one's intuition in understanding and applying the theorem. Since, however, this is a field in which there are often a number of misunderstandings, it is necessary to state some things with reasonable precision. I have tried to do this when necessary. I assume the student is familiar with partial derivatives and with ele mentary matrix manipulation. A computer is a needed tool for probability and statistics in experimental physics. We will introduce its use in this subject in some of the homework problems. One may interact with a computer in a batch mode or an inter active mode. In a batch mode, one submits FORTRAN or other language programs, the computer processes them, and returns the end results. In the interactive mode, one gives the computer an instruction, the computer processes it, indicates what it has done, and waits for the next instruction. |
probability and statistics free download: Introduction to Probability and Statistics for Engineers Milan Holický, 2013-08-04 The theory of probability and mathematical statistics is becoming an indispensable discipline in many branches of science and engineering. This is caused by increasing significance of various uncertainties affecting performance of complex technological systems. Fundamental concepts and procedures used in analysis of these systems are often based on the theory of probability and mathematical statistics. The book sets out fundamental principles of the probability theory, supplemented by theoretical models of random variables, evaluation of experimental data, sampling theory, distribution updating and tests of statistical hypotheses. Basic concepts of Bayesian approach to probability and two-dimensional random variables, are also covered. Examples of reliability analysis and risk assessment of technological systems are used throughout the book to illustrate basic theoretical concepts and their applications. The primary audience for the book includes undergraduate and graduate students of science and engineering, scientific workers and engineers and specialists in the field of reliability analysis and risk assessment. Except basic knowledge of undergraduate mathematics no special prerequisite is required. |
probability and statistics free download: Probability: A Graduate Course Allan Gut, 2006-03-16 I know it's trivial, but I have forgotten why. This is a slightly exaggerated characterization of the unfortunate attitude of many mathematicians toward the surrounding world. The point of departure of this book is the opposite. This textbook on the theory of probability is aimed at graduate students, with the ideology that rather than being a purely mathematical discipline, probability theory is an intimate companion of statistics. The book starts with the basic tools, and goes on to chapters on inequalities, characteristic functions, convergence, followed by the three main subjects, the law of large numbers, the central limit theorem, and the law of the iterated logarithm. After a discussion of generalizations and extensions, the book concludes with an extensive chapter on martingales. The main feature of this book is the combination of rigor and detail. Instead of being sketchy and leaving lots of technicalities to be filled in by the reader or as easy exercises, a more solid foundation is obtained by providing more of those not so trivial matters and by integrating some of those not so simple exercises and problems into the body of text. Some results have been given more than one proof in order to illustrate the pros and cons of different approaches. On occasion we invite the reader to minor extensions, for which the proofs reduce to minor modifications of existing ones, with the aim of creating an atmosphere of a dialogue with the reader (instead of the more typical monologue), in order to put the reader in the position to approach any other text for which a solid probabilistic foundation is necessary. Allan Gut is a professor of Mathematical Statistics at Uppsala University, Uppsala, Sweden. He is the author of the Springer monograph Stopped Random Walks (1988), the Springer textbook An Intermediate Course in Probability (1995), and has published around 60 articles in probability theory. His interest in attracting amore general audience to the beautiful world of probability has been manifested in his Swedish popular science book Sant eller Sannolikt (True or Probable), Norstedts förlag (2002). From the reviews: This is more substantial than the usual graduate course in probability; it contains many useful and interesting details that previously were scattered around the literature and gives clear evidence that the writer has a great deal of experience in the area. Short Book Reviews of the International Statistical Institute, December 2005 ...This book is a readable, comprehensive, and up-to-date introductory textbook to probability theory with emphasis on limit theorems for sums and extremes of random variables. The purchase is worth its price. Journal of the American Statistical Association, June 2006 |
probability and statistics free download: Probability and Statistics for Computer Scientists Michael Baron, 2013-08-05 Student-Friendly Coverage of Probability, Statistical Methods, Simulation, and Modeling ToolsIncorporating feedback from instructors and researchers who used the previous edition, Probability and Statistics for Computer Scientists, Second Edition helps students understand general methods of stochastic modeling, simulation, and data analysis; make o |
probability and statistics free download: Free Probability and Random Matrices James A. Mingo, Roland Speicher, 2017-06-24 This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics. |
probability and statistics free download: Introduction to Probability Dimitri Bertsekas, John N. Tsitsiklis, 2008-07-01 An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems. |
probability and statistics free download: E.T. Jaynes Edwin T. Jaynes, 1989-04-30 The first six chapters of this volume present the author's 'predictive' or information theoretic' approach to statistical mechanics, in which the basic probability distributions over microstates are obtained as distributions of maximum entropy (Le. , as distributions that are most non-committal with regard to missing information among all those satisfying the macroscopically given constraints). There is then no need to make additional assumptions of ergodicity or metric transitivity; the theory proceeds entirely by inference from macroscopic measurements and the underlying dynamical assumptions. Moreover, the method of maximizing the entropy is completely general and applies, in particular, to irreversible processes as well as to reversible ones. The next three chapters provide a broader framework - at once Bayesian and objective - for maximum entropy inference. The basic principles of inference, including the usual axioms of probability, are seen to rest on nothing more than requirements of consistency, above all, the requirement that in two problems where we have the same information we must assign the same probabilities. Thus, statistical mechanics is viewed as a branch of a general theory of inference, and the latter as an extension of the ordinary logic of consistency. Those who are familiar with the literature of statistics and statistical mechanics will recognize in both of these steps a genuine 'scientific revolution' - a complete reversal of earlier conceptions - and one of no small significance. |
probability and statistics free download: OpenIntro Statistics David Diez, Christopher Barr, Mine Çetinkaya-Rundel, 2015-07-02 The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources. |
probability and statistics free download: Linear Algebra A. M. Mathai, Hans J. Haubold, 2017 In order not to intimidate students by a too abstract approach, this textbook on linear algebra is written to be easy to digest by non-mathematicians. It is also designed such that no other material is required for an understanding of the topics cov |
probability and statistics free download: Cambridge International AS and a Level Mathematics Probability and Statistics 1 Sophie Goldie, 2018 Exam board: Cambridge Assessment International Education Level: A-level Subject: Mathematics First teaching: September 2018 First exams: Summer 2020 Endorsed by Cambridge Assessment International Education to provide full support for Paper 5 of the syllabus for examination from 2020. Take mathematical understanding to the next level with this accessible series, written by experienced authors, examiners and teachers. - Improve confidence as a mathematician with clear explanations, worked examples, diverse activities and engaging discussion points. - Advance problem-solving, interpretation and communication skills through a wealth of questions that promote higher-order thinking. - Prepare for further study or life beyond the classroom by applying mathematics to other subjects and modelling real-world situations. - Reinforce learning with opportunities for digital practice via links to the Mathematics in Education and Industry's (MEI) Integral platform in the eTextbooks.* *To have full access to the eTextbooks and Integral resources you must be subscribed to both Dynamic Learning and Integral. To trial our eTextbooks and/or subscribe to Dynamic Learning, visit: www.hoddereducation.co.uk/dynamic-learning; to view samples of the Integral resources and/or subscribe to Integral, visit integralmaths.org/international Please note that the Integral resources have not been through the Cambridge International endorsement process. This book covers the syllabus content for Probability and Statistics 1, including representation of data, permutations and combinations, probability, discrete random variables and the normal distribution. Available in this series: Five textbooks fully covering the latest Cambridge International AS & A Level Mathematics syllabus (9709) are accompanied by a Workbook, and Student and Whiteboard eTextbooks. Pure Mathematics 1: Student Textbook (ISBN 9781510421721), Student eTextbook (ISBN 9781510420762), Whiteboard eTextbook (ISBN 9781510420779), Workbook (ISBN 9781510421844) Pure Mathematics 2 and 3: Student Textbook (ISBN 9781510421738), Student eTextbook (ISBN 9781510420854), Whiteboard eTextbook (ISBN 9781510420878), Workbook (ISBN 9781510421851) Mechanics: Student Textbook (ISBN 9781510421745), Student eTextbook (ISBN 9781510420953), Whiteboard eTextbook (ISBN 9781510420977), Workbook (ISBN 9781510421837) Probability & Statistics 1: Student Textbook (ISBN 9781510421752), Student eTextbook (ISBN 9781510421066), Whiteboard eTextbook (ISBN 9781510421097), Workbook (ISBN 9781510421875) Probability & Statistics 2: Student Textbook (ISBN 9781510421776), Student eTextbook (ISBN 9781510421158), Whiteboard eTextbook (ISBN 9781510421165), Workbook (9781510421882) |
probability and statistics free download: Fundamentals of Probability and Statistics for Engineers T. T. Soong, 2004-06-25 This textbook differs from others in the field in that it has been prepared very much with students and their needs in mind, having been classroom tested over many years. It is a true “learner’s book” made for students who require a deeper understanding of probability and statistics. It presents the fundamentals of the subject along with concepts of probabilistic modelling, and the process of model selection, verification and analysis. Furthermore, the inclusion of more than 100 examples and 200 exercises (carefully selected from a wide range of topics), along with a solutions manual for instructors, means that this text is of real value to students and lecturers across a range of engineering disciplines. Key features: Presents the fundamentals in probability and statistics along with relevant applications. Explains the concept of probabilistic modelling and the process of model selection, verification and analysis. Definitions and theorems are carefully stated and topics rigorously treated. Includes a chapter on regression analysis. Covers design of experiments. Demonstrates practical problem solving throughout the book with numerous examples and exercises purposely selected from a variety of engineering fields. Includes an accompanying online Solutions Manual for instructors containing complete step-by-step solutions to all problems. |
probability and statistics free download: Statistics and Probability with Applications for Engineers and Scientists Bhisham C Gupta, Irwin Guttman, 2014-03-06 Introducing the tools of statistics and probability from the ground up An understanding of statistical tools is essential for engineers and scientists who often need to deal with data analysis over the course of their work. Statistics and Probability with Applications for Engineers and Scientists walks readers through a wide range of popular statistical techniques, explaining step-by-step how to generate, analyze, and interpret data for diverse applications in engineering and the natural sciences. Unique among books of this kind, Statistics and Probability with Applications for Engineers and Scientists covers descriptive statistics first, then goes on to discuss the fundamentals of probability theory. Along with case studies, examples, and real-world data sets, the book incorporates clear instructions on how to use the statistical packages Minitab® and Microsoft® Office Excel® to analyze various data sets. The book also features: • Detailed discussions on sampling distributions, statistical estimation of population parameters, hypothesis testing, reliability theory, statistical quality control including Phase I and Phase II control charts, and process capability indices • A clear presentation of nonparametric methods and simple and multiple linear regression methods, as well as a brief discussion on logistic regression method • Comprehensive guidance on the design of experiments, including randomized block designs, one- and two-way layout designs, Latin square designs, random effects and mixed effects models, factorial and fractional factorial designs, and response surface methodology • A companion website containing data sets for Minitab and Microsoft Office Excel, as well as JMP ® routines and results Assuming no background in probability and statistics, Statistics and Probability with Applications for Engineers and Scientists features a unique, yet tried-and-true, approach that is ideal for all undergraduate students as well as statistical practitioners who analyze and illustrate real-world data in engineering and the natural sciences. |
probability and statistics free download: Probability Rick Durrett, 2010-08-30 This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject. |
probability and statistics free download: 40 Puzzles and Problems in Probability and Mathematical Statistics Wolf Schwarz, 2007-11-25 This book is based on the view that cognitive skills are best acquired by solving challenging, non-standard probability problems. Many puzzles and problems presented here are either new within a problem solving context (although as topics in fundamental research they are long known) or are variations of classical problems which follow directly from elementary concepts. A small number of particularly instructive problems is taken from previous sources which in this case are generally given. This book will be a handy resource for professors looking for problems to assign, for undergraduate math students, and for a more general audience of amateur scientists. |
probability and statistics free download: Probability and Statistics with R Maria Dolores Ugarte, Ana F. Militino, Alan T. Arnholt, 2008-04-11 Designed for an intermediate undergraduate course, Probability and Statistics with R shows students how to solve various statistical problems using both parametric and nonparametric techniques via the open source software R. It provides numerous real-world examples, carefully explained proofs, end-of-chapter problems, and illuminating graphs |
probability and statistics free download: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site. |
probability and statistics free download: Statistics and Probability with Applications (High School) Daren Starnes, Josh Tabor, 2016-10-07 Statistics and Probability with Applications, Third Edition is the only introductory statistics text written by high school teachers for high school teachers and students. Daren Starnes, Josh Tabor, and the extended team of contributors bring their in-depth understanding of statistics and the challenges faced by high school students and teachers to development of the text and its accompanying suite of print and interactive resources for learning and instruction. A complete re-envisioning of the authors’ Statistics Through Applications, this new text covers the core content for the course in a series of brief, manageable lessons, making it easy for students and teachers to stay on pace. Throughout, new pedagogical tools and lively real-life examples help captivate students and prepare them to use statistics in college courses and in any career. |
probability and statistics free download: Probability and Statistical Inference Robert V. Hogg, Elliot A. Tanis, 1988 This user-friendly introduction to the mathematics of probability and statistics (for readers with a background in calculus) uses numerous applications--drawn from biology, education, economics, engineering, environmental studies, exercise science, health science, manufacturing, opinion polls, psychology, sociology, and sports--to help explain and motivate the concepts. A review of selected mathematical techniques is included, and an accompanying CD-ROM contains many of the figures (many animated), and the data included in the examples and exercises (stored in both Minitab compatible format and ASCII). Empirical and Probability Distributions. Probability. Discrete Distributions. Continuous Distributions. Multivariable Distributions. Sampling Distribution Theory. Importance of Understanding Variability. Estimation. Tests of Statistical Hypotheses. Theory of Statistical Inference. Quality Improvement Through Statistical Methods. For anyone interested in the Mathematics of Probability and Statistics. |
probability and statistics free download: Elements of Probability and Statistics Francesca Biagini, Massimo Campanino, 2016-02-10 This book provides an introduction to elementary probability and to Bayesian mathematical statistics using de Finetti's subjectivistic approach. One of the features of this approach is that it does not require the introduction of sample space - a non-intrinsic concept that makes usual treatment of elementary probability unnecessarily heavy - but it introduces as fundamental the concept of random numbers directly related to its interpretation in applications. Events become a particular case of random numbers and probability a particular case of expectation when it is applied to events. The subjective evaluation of expectation and of conditional expectation is based on an economic choice of an acceptable bet or penalty. The properties of expectation and conditional expectation are derived by a coherence criterium that the evaluation has to follow. The book is suitable for all introductory courses in probability and statistics for students in Mathematics, Informatics, Engineering, Physics. |
probability and statistics free download: Probability and Statistics for Engineers and Scientists Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, 2016 MyStatLabTM is not included. Students, if MyStatLab is a recommended/mandatory component of the course, please ask your instructor for the correct ISBN and course ID. MyStatLab should only be purchased when required by an instructor. Instructors, contact your Pearson representative for more information. |
Probability - Wikipedia
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 …
Probability - Math is Fun
How likely something is to happen. Many events can't be predicted with total certainty. The best we can say is how likely they are to happen, using the idea of probability. When a coin is …
Probability - Formula, Calculating, Find, Theorems, Examples
Probability is all about how likely is an event to happen. For a random experiment with sample space S, the probability of happening of an event A is calculated by the probability formula n …
7.5: Basic Concepts of Probability - Mathematics LibreTexts
Define probability including impossible and certain events. Calculate basic theoretical probabilities. Calculate basic empirical probabilities. Distinguish among theoretical, empirical, …
Probability Definition in Math - BYJU'S
Probability is a measure of the likelihood of an event to occur. Many events cannot be predicted with total certainty. We can predict only the chance of an event to occur i.e., how likely they are …
How To Calculate Probability - Math Steps, Examples & Questions
Free how to calculate probability math topic guide, including step-by-step examples, free practice questions, teaching tips and more!
What is Probability? Definition, Types, Formula, & Examples
Apr 7, 2025 · Probability is defined as the measure of how likely an event is to happen, usually expressed as a value between zero and one. A Probability of zero indicates that the event is …
Probability in Maths - GeeksforGeeks
May 16, 2025 · In this section, you will explore the fundamental concepts of probability, key formulas, conditional probability, and Bayes' Theorem. By the end, you'll have a clear …
Probability | Brilliant Math & Science Wiki
A probability is a number that represents the likelihood of an uncertain event. Probabilities are always between 0 and 1, inclusive. The larger the probability, the more likely the event is to …
Probability - Definition, Formula, Types, Terms, Solved Problems
Jan 15, 2021 · Probability is defined as the possibility of an event to occur. The formula for Probability is given as the ratio of the number of favorable events to the total number of …
Probability - Wikipedia
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 …
Probability - Math is Fun
How likely something is to happen. Many events can't be predicted with total certainty. The best we can say is how likely they are to happen, using the idea of probability. When a coin is …
Probability - Formula, Calculating, Find, Theorems, Examples
Probability is all about how likely is an event to happen. For a random experiment with sample space S, the probability of happening of an event A is calculated by the probability formula n …
7.5: Basic Concepts of Probability - Mathematics LibreTexts
Define probability including impossible and certain events. Calculate basic theoretical probabilities. Calculate basic empirical probabilities. Distinguish among theoretical, empirical, …
Probability Definition in Math - BYJU'S
Probability is a measure of the likelihood of an event to occur. Many events cannot be predicted with total certainty. We can predict only the chance of an event to occur i.e., how likely they are …
How To Calculate Probability - Math Steps, Examples & Questions
Free how to calculate probability math topic guide, including step-by-step examples, free practice questions, teaching tips and more!
What is Probability? Definition, Types, Formula, & Examples
Apr 7, 2025 · Probability is defined as the measure of how likely an event is to happen, usually expressed as a value between zero and one. A Probability of zero indicates that the event is …
Probability in Maths - GeeksforGeeks
May 16, 2025 · In this section, you will explore the fundamental concepts of probability, key formulas, conditional probability, and Bayes' Theorem. By the end, you'll have a clear …
Probability | Brilliant Math & Science Wiki
A probability is a number that represents the likelihood of an uncertain event. Probabilities are always between 0 and 1, inclusive. The larger the probability, the more likely the event is to …
Probability - Definition, Formula, Types, Terms, Solved Problems
Jan 15, 2021 · Probability is defined as the possibility of an event to occur. The formula for Probability is given as the ratio of the number of favorable events to the total number of …