Advertisement
probability and computing mitzenmacher solutions manual: Probability and Computing Michael Mitzenmacher, Eli Upfal, 2017-07-03 Greatly expanded, this new edition requires only an elementary background in discrete mathematics and offers a comprehensive introduction to the role of randomization and probabilistic techniques in modern computer science. Newly added chapters and sections cover topics including normal distributions, sample complexity, VC dimension, Rademacher complexity, power laws and related distributions, cuckoo hashing, and the Lovasz Local Lemma. Material relevant to machine learning and big data analysis enables students to learn modern techniques and applications. Among the many new exercises and examples are programming-related exercises that provide students with excellent training in solving relevant problems. This book provides an indispensable teaching tool to accompany a one- or two-semester course for advanced undergraduate students in computer science and applied mathematics. |
probability and computing mitzenmacher solutions manual: Probability and Computing Michael Mitzenmacher, Eli Upfal, 2005-01-31 Randomization and probabilistic techniques play an important role in modern computer science, with applications ranging from combinatorial optimization and machine learning to communication networks and secure protocols. This 2005 textbook is designed to accompany a one- or two-semester course for advanced undergraduates or beginning graduate students in computer science and applied mathematics. It gives an excellent introduction to the probabilistic techniques and paradigms used in the development of probabilistic algorithms and analyses. It assumes only an elementary background in discrete mathematics and gives a rigorous yet accessible treatment of the material, with numerous examples and applications. The first half of the book covers core material, including random sampling, expectations, Markov's inequality, Chevyshev's inequality, Chernoff bounds, the probabilistic method and Markov chains. The second half covers more advanced topics such as continuous probability, applications of limited independence, entropy, Markov chain Monte Carlo methods and balanced allocations. With its comprehensive selection of topics, along with many examples and exercises, this book is an indispensable teaching tool. |
probability and computing mitzenmacher solutions manual: Statistics Robin H. Lock, Patti Frazer Lock, Kari Lock Morgan, Eric F. Lock, Dennis F. Lock, 2016-12-01 Statistics: Unlocking the Power of Data, 2nd Edition continues to utilize these intuitive methods like randomization and bootstrap intervals to introduce the fundamental idea of statistical inference. These methods are brought to life through authentically relevant examples, enabled through easy to use statistical software, and are accessible at very early stages of a course. The program includes the more traditional methods like t-tests, chi-square texts, etc. but only after students have developed a strong intuitive understanding of inference through randomization methods. The focus throughout is on data analysis and the primary goal is to enable students to effectively collect data, analyze data, and interpret conclusions drawn from data. The program is driven by real data and real applications. |
probability and computing mitzenmacher solutions manual: Computational Complexity Sanjeev Arora, Boaz Barak, 2009-04-20 New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students. |
probability and computing mitzenmacher solutions manual: The Probabilistic Method Noga Alon, Joel H. Spencer, 2015-11-02 Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley. |
probability and computing mitzenmacher solutions manual: The Algorithm Design Manual Steven S Skiena, 2009-04-05 This newly expanded and updated second edition of the best-selling classic continues to take the mystery out of designing algorithms, and analyzing their efficacy and efficiency. Expanding on the first edition, the book now serves as the primary textbook of choice for algorithm design courses while maintaining its status as the premier practical reference guide to algorithms for programmers, researchers, and students. The reader-friendly Algorithm Design Manual provides straightforward access to combinatorial algorithms technology, stressing design over analysis. The first part, Techniques, provides accessible instruction on methods for designing and analyzing computer algorithms. The second part, Resources, is intended for browsing and reference, and comprises the catalog of algorithmic resources, implementations and an extensive bibliography. NEW to the second edition: • Doubles the tutorial material and exercises over the first edition • Provides full online support for lecturers, and a completely updated and improved website component with lecture slides, audio and video • Contains a unique catalog identifying the 75 algorithmic problems that arise most often in practice, leading the reader down the right path to solve them • Includes several NEW war stories relating experiences from real-world applications • Provides up-to-date links leading to the very best algorithm implementations available in C, C++, and Java |
probability and computing mitzenmacher solutions manual: Information, Physics, and Computation Marc Mézard, Andrea Montanari, 2009-01-22 A very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields. |
probability and computing mitzenmacher solutions manual: Mining of Massive Datasets Jure Leskovec, Jurij Leskovec, Anand Rajaraman, Jeffrey David Ullman, 2014-11-13 Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets. |
probability and computing mitzenmacher solutions manual: Data Streams S. Muthukrishnan, 2005 In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerged for reasoning about algorithms that work within these constraints on space, time, and number of passes. Some of the methods rely on metric embeddings, pseudo-random computations, sparse approximation theory and communication complexity. The applications for this scenario include IP network traffic analysis, mining text message streams and processing massive data sets in general. Researchers in Theoretical Computer Science, Databases, IP Networking and Computer Systems are working on the data stream challenges. |
probability and computing mitzenmacher solutions manual: Data Structures and Problem Solving Using Java Mark A. Weiss, 2013-07-23 For the second or third programming course. A practical and unique approach to data structures that separates interface from implementation. This book provides a practical introduction to data structures with an emphasis on abstract thinking and problem solving, as well as the use of Java. It does this through what remains a unique approach that clearly separates each data structure's interface (how to use a data structure) from its implementation (how to actually program that structure). Parts I (Tour of Java), II (Algorithms and Building Blocks), |
probability and computing mitzenmacher solutions manual: Randomized Algorithms Rajeev Motwani, Prabhakar Raghavan, 1995-08-25 For many applications a randomized algorithm is either the simplest algorithm available, or the fastest, or both. This tutorial presents the basic concepts in the design and analysis of randomized algorithms. The first part of the book presents tools from probability theory and probabilistic analysis that are recurrent in algorithmic applications. Algorithmic examples are given to illustrate the use of each tool in a concrete setting. In the second part of the book, each of the seven chapters focuses on one important area of application of randomized algorithms: data structures; geometric algorithms; graph algorithms; number theory; enumeration; parallel algorithms; and on-line algorithms. A comprehensive and representative selection of the algorithms in these areas is also given. This book should prove invaluable as a reference for researchers and professional programmers, as well as for students. |
probability and computing mitzenmacher solutions manual: Handbook of Nature-Inspired and Innovative Computing Albert Y. Zomaya, 2006-01-10 As computing devices proliferate, demand increases for an understanding of emerging computing paradigms and models based on natural phenomena. Neural networks, evolution-based models, quantum computing, and DNA-based computing and simulations are all a necessary part of modern computing analysis and systems development. Vast literature exists on these new paradigms and their implications for a wide array of applications. This comprehensive handbook, the first of its kind to address the connection between nature-inspired and traditional computational paradigms, is a repository of case studies dealing with different problems in computing and solutions to these problems based on nature-inspired paradigms. The Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies is an essential compilation of models, methods, and algorithms for researchers, professionals, and advanced-level students working in all areas of computer science, IT, biocomputing, and network engineering. |
probability and computing mitzenmacher solutions manual: Ecological Models and Data in R Benjamin M. Bolker, 2008-07-01 Ecological Models and Data in R is the first truly practical introduction to modern statistical methods for ecology. In step-by-step detail, the book teaches ecology graduate students and researchers everything they need to know in order to use maximum likelihood, information-theoretic, and Bayesian techniques to analyze their own data using the programming language R. Drawing on extensive experience teaching these techniques to graduate students in ecology, Benjamin Bolker shows how to choose among and construct statistical models for data, estimate their parameters and confidence limits, and interpret the results. The book also covers statistical frameworks, the philosophy of statistical modeling, and critical mathematical functions and probability distributions. It requires no programming background--only basic calculus and statistics. Practical, beginner-friendly introduction to modern statistical techniques for ecology using the programming language R Step-by-step instructions for fitting models to messy, real-world data Balanced view of different statistical approaches Wide coverage of techniques--from simple (distribution fitting) to complex (state-space modeling) Techniques for data manipulation and graphical display Companion Web site with data and R code for all examples |
probability and computing mitzenmacher solutions manual: A Guide to Algorithm Design Anne Benoit, Yves Robert, Frédéric Vivien, 2013-08-27 Presenting a complementary perspective to standard books on algorithms, A Guide to Algorithm Design: Paradigms, Methods, and Complexity Analysis provides a roadmap for readers to determine the difficulty of an algorithmic problem by finding an optimal solution or proving complexity results. It gives a practical treatment of algorithmic complexity and guides readers in solving algorithmic problems. Divided into three parts, the book offers a comprehensive set of problems with solutions as well as in-depth case studies that demonstrate how to assess the complexity of a new problem. Part I helps readers understand the main design principles and design efficient algorithms. Part II covers polynomial reductions from NP-complete problems and approaches that go beyond NP-completeness. Part III supplies readers with tools and techniques to evaluate problem complexity, including how to determine which instances are polynomial and which are NP-hard. Drawing on the authors’ classroom-tested material, this text takes readers step by step through the concepts and methods for analyzing algorithmic complexity. Through many problems and detailed examples, readers can investigate polynomial-time algorithms and NP-completeness and beyond. |
probability and computing mitzenmacher solutions manual: Synopses for Massive Data Graham Cormode, Minos Garofalakis, Peter J. Haas, Chris Jermaine, 2012 Describes basic principles and recent developments in approximate query processing. It focuses on four key synopses: random samples, histograms, wavelets, and sketches. It considers issues such as accuracy, space and time efficiency, optimality, practicality, range of applicability, error bounds on query answers, and incremental maintenance. |
probability and computing mitzenmacher solutions manual: Big Data Preprocessing Julián Luengo, Diego García-Gil, Sergio Ramírez-Gallego, Salvador García, Francisco Herrera, 2020-03-16 This book offers a comprehensible overview of Big Data Preprocessing, which includes a formal description of each problem. It also focuses on the most relevant proposed solutions. This book illustrates actual implementations of algorithms that helps the reader deal with these problems. This book stresses the gap that exists between big, raw data and the requirements of quality data that businesses are demanding. This is called Smart Data, and to achieve Smart Data the preprocessing is a key step, where the imperfections, integration tasks and other processes are carried out to eliminate superfluous information. The authors present the concept of Smart Data through data preprocessing in Big Data scenarios and connect it with the emerging paradigms of IoT and edge computing, where the end points generate Smart Data without completely relying on the cloud. Finally, this book provides some novel areas of study that are gathering a deeper attention on the Big Data preprocessing. Specifically, it considers the relation with Deep Learning (as of a technique that also relies in large volumes of data), the difficulty of finding the appropriate selection and concatenation of preprocessing techniques applied and some other open problems. Practitioners and data scientists who work in this field, and want to introduce themselves to preprocessing in large data volume scenarios will want to purchase this book. Researchers that work in this field, who want to know which algorithms are currently implemented to help their investigations, may also be interested in this book. |
probability and computing mitzenmacher solutions manual: Algorithm Design Michael T. Goodrich, Roberto Tamassia, 2001-10-15 Are you looking for something different in your Algorithms text? Are you looking for an Algorithms text that offers theoretical analysis techniques as well as design patterns and experimental methods for the engineering of algorithms? Michael Goodrich and Roberto Tamassia, authors of the successful, Data Structures and Algorithms in Java, 2/e, have written Algorithm Design, a text designed to provide a comprehensive introduction to the design, implementation and analysis of computer algorithms and data structures from a modern perspective. Written for an undergraduate, junior-senior algorithms course this text offers several implementation case studies and uses Internet applications to motivate many topics such as hashing, sorting and searching. |
probability and computing mitzenmacher solutions manual: Enhancing the Power of the Internet Masoud Nikravesh, Ben Azvine, Ronald R. Yager, Lofti A. Zadeh, 2012-09-07 During the last decade significant progress has been made in Internet technology by using computational intelligence methods. This book presents reports from the front of soft computing in the Internet industry and covers important topics in the field such as search engines, fuzzy query, decision analysis and support systems as well as e-business and e-commerce. The articles are selected results from a recent workshop (Fuzzy Logic and the Internet - FLINT 2001) related to the Internet Fuzzy Logic hosted by the Berkeley Initiative in Soft Computing (BISC) program. The main purpose of the Workshop was to draw the attention of the fuzzy logic community as well as the Internet community to the fundamental importance of specific Internet-related problems including search engines, user modeling and personal information provision, e-commerce, e-business, e-health, semantic web/net, web-assistant and agents, knowledge representation for e-learning, content-based information retrieval, information organization, intrusion detection and network management. The book presents a collection of challenging problems and new directions toward the next generation of search engines and the Internet. |
probability and computing mitzenmacher solutions manual: Pseudorandomness Salil P. Vadhan, 2012 A survey of pseudorandomness, the theory of efficiently generating objects that look random despite being constructed using little or no randomness. This theory has significance for areas in computer science and mathematics, including computational complexity, algorithms, cryptography, combinatorics, communications, and additive number theory. |
probability and computing mitzenmacher solutions manual: Frontiers in Massive Data Analysis National Research Council, Division on Engineering and Physical Sciences, Board on Mathematical Sciences and Their Applications, Committee on Applied and Theoretical Statistics, Committee on the Analysis of Massive Data, 2013-09-03 Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data. |
probability and computing mitzenmacher solutions manual: Real-Time Analytics Byron Ellis, 2014-06-23 Construct a robust end-to-end solution for analyzing and visualizing streaming data Real-time analytics is the hottest topic in data analytics today. In Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data, expert Byron Ellis teaches data analysts technologies to build an effective real-time analytics platform. This platform can then be used to make sense of the constantly changing data that is beginning to outpace traditional batch-based analysis platforms. The author is among a very few leading experts in the field. He has a prestigious background in research, development, analytics, real-time visualization, and Big Data streaming and is uniquely qualified to help you explore this revolutionary field. Moving from a description of the overall analytic architecture of real-time analytics to using specific tools to obtain targeted results, Real-Time Analytics leverages open source and modern commercial tools to construct robust, efficient systems that can provide real-time analysis in a cost-effective manner. The book includes: A deep discussion of streaming data systems and architectures Instructions for analyzing, storing, and delivering streaming data Tips on aggregating data and working with sets Information on data warehousing options and techniques Real-Time Analytics includes in-depth case studies for website analytics, Big Data, visualizing streaming and mobile data, and mining and visualizing operational data flows. The book's recipe layout lets readers quickly learn and implement different techniques. All of the code examples presented in the book, along with their related data sets, are available on the companion website. |
probability and computing mitzenmacher solutions manual: Random Graphs and Complex Networks Remco van der Hofstad, 2017 This classroom-tested text is the definitive introduction to the mathematics of network science, featuring examples and numerous exercises. |
probability and computing mitzenmacher solutions manual: The Design of Approximation Algorithms David P. Williamson, David B. Shmoys, 2011-04-26 Discrete optimization problems are everywhere, from traditional operations research planning problems, such as scheduling, facility location, and network design; to computer science problems in databases; to advertising issues in viral marketing. Yet most such problems are NP-hard. Thus unless P = NP, there are no efficient algorithms to find optimal solutions to such problems. This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. The book is organized around central algorithmic techniques for designing approximation algorithms, including greedy and local search algorithms, dynamic programming, linear and semidefinite programming, and randomization. Each chapter in the first part of the book is devoted to a single algorithmic technique, which is then applied to several different problems. The second part revisits the techniques but offers more sophisticated treatments of them. The book also covers methods for proving that optimization problems are hard to approximate. Designed as a textbook for graduate-level algorithms courses, the book will also serve as a reference for researchers interested in the heuristic solution of discrete optimization problems. |
probability and computing mitzenmacher solutions manual: Blown to Bits Hal Abelson, Ken Ledeen, Harry Lewis, 2012-09-25 This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Every day, billions of photographs, news stories, songs, X-rays, TV shows, phone calls, and emails are being scattered around the world as sequences of zeroes and ones: bits. We can’t escape this explosion of digital information and few of us want to–the benefits are too seductive. The technology has enabled unprecedented innovation, collaboration, entertainment, and democratic participation. But the same engineering marvels are shattering centuries-old assumptions about privacy, identity, free expression, and personal control as more and more details of our lives are captured as digital data. Can you control who sees all that personal information about you? Can email be truly confidential, when nothing seems to be private? Shouldn’t the Internet be censored the way radio and TV are? Is it really a federal crime to download music? When you use Google or Yahoo! to search for something, how do they decide which sites to show you? Do you still have free speech in the digital world? Do you have a voice in shaping government or corporate policies about any of this? Blown to Bits offers provocative answers to these questions and tells intriguing real-life stories. This book is a wake-up call to the human consequences of the digital explosion. |
probability and computing mitzenmacher solutions manual: Introduction to Information Retrieval Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze, 2008-07-07 Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures. |
probability and computing mitzenmacher solutions manual: Proceedings of International Conference on Advances in Computing Aswatha Kumar M., Selvarani R., T V Suresh Kumar, 2012-09-03 This is the first International Conference on Advances in Computing (ICAdC-2012). The scope of the conference includes all the areas of New Theoretical Computer Science, Systems and Software, and Intelligent systems. Conference Proceedings is a culmination of research results, papers and the theory related to all the three major areas of computing mentioned above. Helps budding researchers, graduates in the areas of Computer Science, Information Science, Electronics, Telecommunication, Instrumentation, Networking to take forward their research work based on the reviewed results in the paper by mutual interaction through e-mail contacts in the proceedings. |
probability and computing mitzenmacher solutions manual: Algorithm Design Jon Kleinberg, Éva Tardos, 2012-02-28 This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Algorithm Design introduces algorithms by looking at the real-world problems that motivate them. The book teaches students a range of design and analysis techniques for problems that arise in computing applications. The text encourages an understanding of the algorithm design process and an appreciation of the role of algorithms in the broader field of computer science. August 6, 2009 Author, Jon Kleinberg, was recently cited in the New York Times for his statistical analysis research in the Internet age. |
probability and computing mitzenmacher solutions manual: The Atlas for the Aspiring Network Scientist Michele Coscia, 2021-01-11 Network science is the field dedicated to the investigation and analysis of complex systems via their representations as networks. We normally model such networks as graphs: sets of nodes connected by sets of edges and a number of node and edge attributes. This deceptively simple object is the starting point of never-ending complexity, due to its ability to represent almost every facet of reality: chemical interactions, protein pathways inside cells, neural connections inside the brain, scientific collaborations, financial relations, citations in art history, just to name a few examples. If we hope to make sense of complex networks, we need to master a large analytic toolbox: graph and probability theory, linear algebra, statistical physics, machine learning, combinatorics, and more. This book aims at providing the first access to all these tools. It is intended as an Atlas, because its interest is not in making you a specialist in using any of these techniques. Rather, after reading this book, you will have a general understanding about the existence and the mechanics of all these approaches. You can use such an understanding as the starting point of your own career in the field of network science. This has been, so far, an interdisciplinary endeavor. The founding fathers of this field come from many different backgrounds: mathematics, sociology, computer science, physics, history, digital humanities, and more. This Atlas is charting your path to be something different from all of that: a pure network scientist. |
probability and computing mitzenmacher solutions manual: Channel Codes William Ryan, Shu Lin, 2009-09-17 Channel coding lies at the heart of digital communication and data storage, and this detailed introduction describes the core theory as well as decoding algorithms, implementation details, and performance analyses. In this book, Professors Ryan and Lin provide clear information on modern channel codes, including turbo and low-density parity-check (LDPC) codes. They also present detailed coverage of BCH codes, Reed-Solomon codes, convolutional codes, finite geometry codes, and product codes, providing a one-stop resource for both classical and modern coding techniques. Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then extend to advanced topics such as code ensemble performance analyses and algebraic code design. 250 varied and stimulating end-of-chapter problems are also included to test and enhance learning, making this an essential resource for students and practitioners alike. |
probability and computing mitzenmacher solutions manual: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes Marc Fossorier, 2006-02-03 This book constitutes the refereed proceedings of the 16th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, AAECC-16, held in Las Vegas, NV, USA in February 2006. The 25 revised full papers presented together with 7 invited papers were carefully reviewed and selected from 32 submissions. Among the subjects addressed are block codes; algebra and codes: rings, fields, and AG codes; cryptography; sequences; decoding algorithms; and algebra: constructions in algebra, Galois groups, differential algebra, and polynomials. |
probability and computing mitzenmacher solutions manual: Handbook of Optimization in Complex Networks My T. Thai, Panos M. Pardalos, 2011-11-25 Complex Social Networks is a newly emerging (hot) topic with applications in a variety of domains, such as communication networks, engineering networks, social networks, and biological networks. In the last decade, there has been an explosive growth of research on complex real-world networks, a theme that is becoming pervasive in many disciplines, ranging from mathematics and computer science to the social and biological sciences. Optimization of complex communication networks requires a deep understanding of the interplay between the dynamics of the physical network and the information dynamics within the network. Although there are a few books addressing social networks or complex networks, none of them has specially focused on the optimization perspective of studying these networks. This book provides the basic theory of complex networks with several new mathematical approaches and optimization techniques to design and analyze dynamic complex networks. A wide range of applications and optimization problems derived from research areas such as cellular and molecular chemistry, operations research, brain physiology, epidemiology, and ecology. |
probability and computing mitzenmacher solutions manual: Evolutionary Optimization Algorithms Dan Simon, 2013-04-29 A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear—but theoretically rigorous—understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs—including opposition-based learning, artificial fish swarms, bacterial foraging, and many others— and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science. |
probability and computing mitzenmacher solutions manual: Auction Theory Vijay Krishna, 2002-03-13 Vijay Krishna's book provides a very thorough and patient presentation of auction theory, starting from the most basic analysis and graduating to sophisticated, state of the art theory, including multi-unit auctions. This book covers a very wide range of auction topics, providing a clear and accessible treatment. The theory is presented in a careful and easily understood style accessible to honors undergraduates as well as all economics graduate students. Krishna's book will certainly become the central book on auction theory. --R. Preston McAfee, Murray S. Johnson Chair in Economics, University of Texas This book not only sets out much of the theoretical literature on auctions-including results that are very recent-but does so with a clarity, elegance, and rigor that is characteristic of Vijay Krishna's work. --Eric Maskin, A.O. Hirschman Professor of Social Science, Institute for Advanced Study, Princeton, New Jersey The book gives a superb presentation of auction theory, with clear and concise proofs of all results. It is essential reading for any serious student of auctions. --Peter Cramton, Professor of Economics, University of Maryland This is the book we have been waiting for: a high level treatment of auction theory that carefully presents the technical details necessary for an in depth understanding of the main themes of auction theory, ideal as a basis for a graduate course, and by an author who has himself made important contributions to the subject. --Paul Klemperer, Edgeworth Professor of Economics, Nuffield College, University of Oxford, United Kingdom Through accessible, detailed examinations of themes central to auction theory, Vijay Krishna explores auctions and competitive bidding as games of incomplete information. His results on bidding strategies, efficiency, and revenue maximization and his clear proofs for each proposition make this book both the standard reference on auctions and the first source of authoritative information about multiunit auctions. Well organized and featuring straightforward intuition, Auction Theory's depth and breadth lay bare the complexity and utility of this growing field. |
probability and computing mitzenmacher solutions manual: Introduction to Probability Joseph K. Blitzstein, Jessica Hwang, 2014-07-24 Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment. |
probability and computing mitzenmacher solutions manual: Concentration of Measure Inequalities in Information Theory, Communications, and Coding Maxim Raginsky, Igal Sason, 2014 Concentration of Measure Inequalities in Information Theory, Communications, and Coding focuses on some of the key modern mathematical tools that are used for the derivation of concentration inequalities, on their links to information theory, and on their various applications to communications and coding. |
probability and computing mitzenmacher solutions manual: Bandit problems Donald A. Berry, Bert Fristedt, 2013-04-17 Our purpose in writing this monograph is to give a comprehensive treatment of the subject. We define bandit problems and give the necessary foundations in Chapter 2. Many of the important results that have appeared in the literature are presented in later chapters; these are interspersed with new results. We give proofs unless they are very easy or the result is not used in the sequel. We have simplified a number of arguments so many of the proofs given tend to be conceptual rather than calculational. All results given have been incorporated into our style and notation. The exposition is aimed at a variety of types of readers. Bandit problems and the associated mathematical and technical issues are developed from first principles. Since we have tried to be comprehens ive the mathematical level is sometimes advanced; for example, we use measure-theoretic notions freely in Chapter 2. But the mathema tically uninitiated reader can easily sidestep such discussion when it occurs in Chapter 2 and elsewhere. We have tried to appeal to graduate students and professionals in engineering, biometry, econ omics, management science, and operations research, as well as those in mathematics and statistics. The monograph could serve as a reference for professionals or as a telA in a semester or year-long graduate level course. |
probability and computing mitzenmacher solutions manual: A Primer on Pseudorandom Generators Oded Goldreich, A fresh look at the question of randomness was taken in the theory of computing: A distribution is pseudorandom if it cannot be distinguished from the uniform distribution by any efficient procedure. This paradigm, originally associating efficient procedures with polynomial-time algorithms, has been applied with respect to a variety of natural classes of distinguishing procedures. The resulting theory of pseudorandomness is relevant to science at large and is closely related to central areas of computer science, such as algorithmic design, complexity theory, and cryptography. This primer surveys the theory of pseudorandomness, starting with the general paradigm, and discussing various incarnations while emphasizing the case of general-purpose pseudorandom generators (withstanding any polynomial-time distinguisher). Additional topics include the derandomization of arbitrary probabilistic polynomial-time algorithms, pseudorandom generators withstanding space-bounded distinguishers, and serveral natural notions of special-purpose pseudorandom generators. The primer assumes basic familiarity with the notion of efficient algorithms and with elementary probability theory, but provides a basic introduction to all notions that are actually used. as a result, the primer is essentially self-contained, although the interested reader is at times referred to other sources for more detail. |
probability and computing mitzenmacher solutions manual: Data Structures and Algorithm Analysis in C++ Mark Allen Weiss, 2006 Mark Allen Weiss' innovative approach to algorithms and data structures teaches the simultaneous development of sound analytical and programming skills for the advanced data structures course. Readers learn how to reduce time constraints and develop programs efficiently by analyzing the feasibility of an algorithm before it is coded. The C++ language is brought up-to-date and simplified, and the Standard Template Library is now fully incorporated throughout the text. This Third Edition also features significantly revised coverage of lists, stacks, queues, and trees and an entire chapter dedicated to amortized analysis and advanced data structures such as the Fibonacci heap. Known for its clear and friendly writing style, Data Structures and Algorithm Analysis in C++ is logically organized to cover advanced data structures topics from binary heaps to sorting to NP-completeness. Figures and examples illustrating successive stages of algorithms contribute to Weiss' careful, rigorous and in-depth analysis of each type of algorithm. |
probability and computing mitzenmacher solutions manual: Handbook of Computability and Complexity in Analysis Vasco Brattka, Peter Hertling, 2022-06-06 Computable analysis is the modern theory of computability and complexity in analysis that arose out of Turing's seminal work in the 1930s. This was motivated by questions such as: which real numbers and real number functions are computable, and which mathematical tasks in analysis can be solved by algorithmic means? Nowadays this theory has many different facets that embrace topics from computability theory, algorithmic randomness, computational complexity, dynamical systems, fractals, and analog computers, up to logic, descriptive set theory, constructivism, and reverse mathematics. In recent decades computable analysis has invaded many branches of analysis, and researchers have studied computability and complexity questions arising from real and complex analysis, functional analysis, and the theory of differential equations, up to (geometric) measure theory and topology. This handbook represents the first coherent cross-section through most active research topics on the more theoretical side of the field. It contains 11 chapters grouped into parts on computability in analysis; complexity, dynamics, and randomness; and constructivity, logic, and descriptive complexity. All chapters are written by leading experts working at the cutting edge of the respective topic. Researchers and graduate students in the areas of theoretical computer science and mathematical logic will find systematic introductions into many branches of computable analysis, and a wealth of information and references that will help them to navigate the modern research literature in this field. |
probability and computing mitzenmacher solutions manual: Introduction to the Theory of Computation Michael Sipser, 2012-06-27 Now you can clearly present even the most complex computational theory topics to your students with Sipser’s distinct, market-leading INTRODUCTION TO THE THEORY OF COMPUTATION, 3E. The number one choice for today’s computational theory course, this highly anticipated revision retains the unmatched clarity and thorough coverage that make it a leading text for upper-level undergraduate and introductory graduate students. This edition continues author Michael Sipser’s well-known, approachable style with timely revisions, additional exercises, and more memorable examples in key areas. A new first-of-its-kind theoretical treatment of deterministic context-free languages is ideal for a better understanding of parsing and LR(k) grammars. This edition’s refined presentation ensures a trusted accuracy and clarity that make the challenging study of computational theory accessible and intuitive to students while maintaining the subject’s rigor and formalism. Readers gain a solid understanding of the fundamental mathematical properties of computer hardware, software, and applications with a blend of practical and philosophical coverage and mathematical treatments, including advanced theorems and proofs. INTRODUCTION TO THE THEORY OF COMPUTATION, 3E’s comprehensive coverage makes this an ideal ongoing reference tool for those studying theoretical computing. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version. |
Probability - Wikipedia
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 …
Probability - Math is Fun
How likely something is to happen. Many events can't be predicted with total certainty. The best we can say is how likely they are to happen, using the idea of probability. When a coin is …
Probability - Formula, Calculating, Find, Theorems, Examples
Probability is all about how likely is an event to happen. For a random experiment with sample space S, the probability of happening of an event A is calculated by the probability formula n …
7.5: Basic Concepts of Probability - Mathematics LibreTexts
Define probability including impossible and certain events. Calculate basic theoretical probabilities. Calculate basic empirical probabilities. Distinguish among theoretical, empirical, …
Probability Definition in Math - BYJU'S
Probability is a measure of the likelihood of an event to occur. Many events cannot be predicted with total certainty. We can predict only the chance of an event to occur i.e., how likely they …
How To Calculate Probability - Math Steps, Examples & Questions
Free how to calculate probability math topic guide, including step-by-step examples, free practice questions, teaching tips and more!
What is Probability? Definition, Types, Formula, & Examples
Apr 7, 2025 · Probability is defined as the measure of how likely an event is to happen, usually expressed as a value between zero and one. A Probability of zero indicates that the event is …
Probability in Maths - GeeksforGeeks
May 16, 2025 · In this section, you will explore the fundamental concepts of probability, key formulas, conditional probability, and Bayes' Theorem. By the end, you'll have a clear …
Probability | Brilliant Math & Science Wiki
A probability is a number that represents the likelihood of an uncertain event. Probabilities are always between 0 and 1, inclusive. The larger the probability, the more likely the event is to …
Probability - Definition, Formula, Types, Terms, Solved Problems
Jan 15, 2021 · Probability is defined as the possibility of an event to occur. The formula for Probability is given as the ratio of the number of favorable events to the total number of …
Probability - Wikipedia
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 …
Probability - Math is Fun
How likely something is to happen. Many events can't be predicted with total certainty. The best we can say is how likely they are to happen, using the idea of probability. When a coin is …
Probability - Formula, Calculating, Find, Theorems, Examples
Probability is all about how likely is an event to happen. For a random experiment with sample space S, the probability of happening of an event A is calculated by the probability formula n …
7.5: Basic Concepts of Probability - Mathematics LibreTexts
Define probability including impossible and certain events. Calculate basic theoretical probabilities. Calculate basic empirical probabilities. Distinguish among theoretical, empirical, …
Probability Definition in Math - BYJU'S
Probability is a measure of the likelihood of an event to occur. Many events cannot be predicted with total certainty. We can predict only the chance of an event to occur i.e., how likely they …
How To Calculate Probability - Math Steps, Examples & Questions
Free how to calculate probability math topic guide, including step-by-step examples, free practice questions, teaching tips and more!
What is Probability? Definition, Types, Formula, & Examples
Apr 7, 2025 · Probability is defined as the measure of how likely an event is to happen, usually expressed as a value between zero and one. A Probability of zero indicates that the event is …
Probability in Maths - GeeksforGeeks
May 16, 2025 · In this section, you will explore the fundamental concepts of probability, key formulas, conditional probability, and Bayes' Theorem. By the end, you'll have a clear …
Probability | Brilliant Math & Science Wiki
A probability is a number that represents the likelihood of an uncertain event. Probabilities are always between 0 and 1, inclusive. The larger the probability, the more likely the event is to …
Probability - Definition, Formula, Types, Terms, Solved Problems
Jan 15, 2021 · Probability is defined as the possibility of an event to occur. The formula for Probability is given as the ratio of the number of favorable events to the total number of …