Advertisement
quantum theory by david bohm: Quantum Theory David Bohm, 1989-05-01 This advanced undergraduate-level text presents the quantum theory in terms of qualitative and imaginative concepts, followed by specific applications worked out in mathematical detail. |
quantum theory by david bohm: Quantum Theory , 2023 Bohr and Planck helped shaped the cultural landscape of the world today. Now their work is available here in a digestible, pocket format for the modern reader. Quantum Theory contains foundational works of quantum research from the early years of the 20th Century, representing breakthroughs in science that radically altered the landscape of modern knowledge: Quantum Theory of Line-Spectra by Niels Bohr and The Origin and Development of the Quantum Theory by Max Planck. T. |
quantum theory by david bohm: Wholeness and the Implicate Order David Bohm, 2005-07-12 David Bohm was one of the foremost scientific thinkers and philosophers of our time. Although deeply influenced by Einstein, he was also, more unusually for a scientist, inspired by mysticism. Indeed, in the 1970s and 1980s he made contact with both J. Krishnamurti and the Dalai Lama whose teachings helped shape his work. In both science and philosophy, Bohm's main concern was with understanding the nature of reality in general and of consciousness in particular. In this classic work he develops a theory of quantum physics which treats the totality of existence as an unbroken whole. Writing clearly and without technical jargon, he makes complex ideas accessible to anyone interested in the nature of reality. |
quantum theory by david bohm: Thought as a System Chris Jenks, 2004-01-14 First Published in 1994. Routledge is an imprint of Taylor & Francis, an informa company. |
quantum theory by david bohm: Quantum Implications Basil Hiley, F. David Peat, 2012-06-25 David Bohm is one of the foremost scientific thinkers of today and one of the most distinguished scientists of his generation. His challenge to the conventional understanding of quantum theory has led scientists to reexamine what it is they are going and his ideas have been an inspiration across a wide range of disciplines. Quantum Implications is a collection of original contributions by many of the world' s leading scholars and is dedicated to David Bohm, his work and the issues raised by his ideas. The contributors range across physics, philosophy, biology, art, psychology, and include some of the most distinguished scientists of the day. There is an excellent introduction by the editors, putting Bohm's work in context and setting right some of the misconceptions that have persisted about the work of David Bohm |
quantum theory by david bohm: The Quantum Theory of Motion Peter R. Holland, 1995-01-26 An explanation of how quantum processes may be visualised without ambiguity, in terms of a simple physical model. |
quantum theory by david bohm: The Essential David Bohm Lee Nichol, 2005-06-27 There are few scientists of the twentieth century whose life's work has created more excitement and controversy than that of physicist David Bohm (1917-1992). For the first time in a single volume, The Essential David Bohm offers a comprehensive overview of Bohm's original works from a non-technical perspective. Including three chapters of previously unpublished material, and a forward by the Dalai Lama, each reading has been selected to highlight some aspect of the implicate order process, and to provide an introduction to one of the most provocative thinkers of our time. |
quantum theory by david bohm: David Bohm Olival Freire Junior, 2019-09-05 This authoritative biography addresses the life and work of the quantum physicist David Bohm. Although quantum physics is considered the soundest physical theory, its strange and paradoxical features have challenged - and continue to challenge - even the brightest thinkers. David Bohm dedicated his entire life to enhancing our understanding of quantum mysteries, in particular quantum nonlocality. His work took place at the height of the cultural/political upheaval in the 1950's, which led him to become the most notable American scientist to seek exile in the last century. The story of his life is as fascinating as his ideas on the quantum world are appealing. |
quantum theory by david bohm: Infinite Potential F. David Peat, 1996-11-13 Work that he made Bohm his close collaborator and friend. But Bohm the scientist was also Bohm the courageous human being. Born in a small town in Pennsylvania, he began his career as an American physicist, but was forced to give up his U.S. citizenship and flee America's borders by Tail Gunner Joe McCarthy's anti-communist witch hunters. This book captures the suspense of Bohm's steadfast refusal to bow before McCarthy's inquisitors and betray his colleagues, and the. |
quantum theory by david bohm: Bohmian Mechanics and Quantum Theory: An Appraisal J.T. Cushing, Arthur Fine, S. Goldstein, 2013-04-17 We are often told that quantum phenomena demand radical revisions of our scientific world view and that no physical theory describing well defined objects, such as particles described by their positions, evolving in a well defined way, let alone deterministically, can account for such phenomena. The great majority of physicists continue to subscribe to this view, despite the fact that just such a deterministic theory, accounting for all of the phe nomena of nonrelativistic quantum mechanics, was proposed by David Bohm more than four decades ago and has arguably been around almost since the inception of quantum mechanics itself. Our purpose in asking colleagues to write the essays for this volume has not been to produce a Festschrift in honor of David Bohm (worthy an undertaking as that would have been) or to gather together a collection of papers simply stating uncritically Bohm's views on quantum mechanics. The central theme around which the essays in this volume are arranged is David Bohm's version of quantum mechanics. It has by now become fairly standard practice to refer to his theory as Bohmian mechanics and to the larger conceptual framework within which this is located as the causal quantum theory program. While it is true that one can have reservations about the appropriateness of these specific labels, both do elicit distinc tive images characteristic of the key concepts of these approaches and such terminology does serve effectively to contrast this class of theories with more standard formulations of quantum theory. |
quantum theory by david bohm: The Special Theory of Relativity David Bohm, 1996 The book presents the theory of relativity as a unified whole. By showing that the concepts of this theory are interrelated to form a unified totality David Bohm supplements some of the more specialist courses which have tended to give students a fragmentary impression of the logical and conceptual nature of physics as a whole. |
quantum theory by david bohm: Bohmian Mechanics Detlef Dürr, Stefan Teufel, 2009-04-30 Bohmian Mechanics was formulated in 1952 by David Bohm as a complete theory of quantum phenomena based on a particle picture. It was promoted some decades later by John S. Bell, who, intrigued by the manifestly nonlocal structure of the theory, was led to his famous Bell's inequalities. Experimental tests of the inequalities verified that nature is indeed nonlocal. Bohmian mechanics has since then prospered as the straightforward completion of quantum mechanics. This book provides a systematic introduction to Bohmian mechanics and to the mathematical abstractions of quantum mechanics, which range from the self-adjointness of the Schrödinger operator to scattering theory. It explains how the quantum formalism emerges when Boltzmann's ideas about statistical mechanics are applied to Bohmian mechanics. The book is self-contained, mathematically rigorous and an ideal starting point for a fundamental approach to quantum mechanics. It will appeal to students and newcomers to the field, as well as to established scientists seeking a clear exposition of the theory. |
quantum theory by david bohm: The Essential David Bohm Lee Nichol, 2005-06-27 There are few scientists of the twentieth century whose life's work has created more excitement and controversy than that of physicist David Bohm (1917-1992). For the first time in a single volume, The Essential David Bohm offers a comprehensive overview of Bohm's original works from a non-technical perspective. Including three chapters of previously unpublished material, and a forward by the Dalai Lama, each reading has been selected to highlight some aspect of the implicate order process, and to provide an introduction to one of the most provocative thinkers of our time. |
quantum theory by david bohm: Causality and Chance in Modern Physics David Bohm, 1957 In this classic, David Bohm was the first to offer us his causal interpretation of the quantum theory. Causality and Chance in Modern Physics continues to make possible further insight into the meaning of the quantum theory and to suggest ways of extending the theory into new directions. |
quantum theory by david bohm: David Bohm: Causality and Chance, Letters to Three Women Chris Talbot, 2017-04-17 The letters transcribed in this book were written by physicist David Bohm to three close female acquaintances in the period 1950 to 1956. They provide a background to his causal interpretation of quantum mechanics and the Marxist philosophy that inspired his scientific work in quantum theory, probability and statistical mechanics. In his letters, Bohm reveals the ideas that led to his ground breaking book Causality and Chance in Modern Physics. The political arguments as well as the acute personal problems contained in these letters help to give a rounded, human picture of this leading scientist and twentieth century thinker. |
quantum theory by david bohm: What Is Real? Adam Becker, 2018-03-20 A thorough, illuminating exploration of the most consequential controversy raging in modern science. --New York Times Book Review An Editor's Choice, New York Times Book Review Longlisted for PEN/E.O. Wilson Prize for Literary Science Writing Longlisted for Goodreads Choice Award Every physicist agrees quantum mechanics is among humanity's finest scientific achievements. But ask what it means, and the result will be a brawl. For a century, most physicists have followed Niels Bohr's solipsistic and poorly reasoned Copenhagen interpretation. Indeed, questioning it has long meant professional ruin, yet some daring physicists, such as John Bell, David Bohm, and Hugh Everett, persisted in seeking the true meaning of quantum mechanics. What Is Real? is the gripping story of this battle of ideas and the courageous scientists who dared to stand up for truth. An excellent, accessible account. --Wall Street Journal Splendid. . . . Deeply detailed research, accompanied by charming anecdotes about the scientists. --Washington Post |
quantum theory by david bohm: The Undivided Universe David Bohm, Basil J. Hiley, 2006-01-16 First published in 1995. Routledge is an imprint of Taylor & Francis, an informa company. |
quantum theory by david bohm: Unfolding Meaning David Bohm, 2006-11-22 First published in 1987. In Unfolding Meaning, the author, one of the most provocative and original thinkers of our time, argues that there are other ways of thinking to bring about a different, more harmonious reality. Our fragmented, mechanistic notion of order derives from the modem conception that our earth is only part, not - as it was with the Greeks - the centre, of the immense universe of material bodies. The implications of this idea permeate modem science and technology today and also our general attitude to life. |
quantum theory by david bohm: Quantum Ontology Peter J. Lewis, 2016 Metaphysicians should pay attention to quantum mechanics. Why? Not because it provides definitive answers to many metaphysical questions-the theory itself is remarkably silent on the nature of the physical world, and the various interpretations of the theory on offer present conflicting ontological pictures. Rather, quantum mechanics is essential to the metaphysician because it reshapes standard metaphysical debates and opens up unforeseen new metaphysical possibilities. Even if quantum mechanics provides few clear answers, there are good reasons to think that any adequate understanding of the quantum world will result in a radical reshaping of our classical world-view in some way or other. Whatever the world is like at the atomic scale, it is almost certainly not the swarm of particles pushed around by forces that is often presupposed. This book guides readers through the theory of quantum mechanics and its implications for metaphysics in a clear and accessible way. The theory and its various interpretations are presented with a minimum of technicality. The consequences of these interpretations for metaphysical debates concerning realism, indeterminacy, causation, determinism, holism, and individuality (among other topics) are explored in detail, stressing the novel form that the debates take given the empirical facts in the quantum domain. While quantum mechanics may not deliver unconditional pronouncements on these issues, the range of possibilities consistent with our knowledge of the empirical world is relatively small-and each possibility is metaphysically revisionary in some way. This book will appeal to researchers, students, and anybody else interested in how science informs our world-view. |
quantum theory by david bohm: After Physics David Z Albert, 2015 Here the philosopher and physicist David Z Albert argues, among other things, that the difference between past and future can be understood as a mechanical phenomenon of nature and that quantum mechanics makes it impossible to present the entirety of what can be said about the world as a narrative of “befores” and “afters.” |
quantum theory by david bohm: On Dialogue David Bohm, 2013-04-15 Never before has there been a greater need for deeper listening and more open communication to cope with the complex problems facing our organizations, businesses and societies. Renowned scientist David Bohm believed there was a better way for humanity to discover meaning and to achieve harmony. He identified creative dialogue, a sharing of assumptions and understanding, as a means by which the individual, and society as a whole, can learn more about themselves and others, and achieve a renewed sense of purpose. |
quantum theory by david bohm: Applied Bohmian Mechanics Xavier Oriols Pladevall, Jordi Mompart, 2019-05-24 Most textbooks explain quantum mechanics as a story where each step follows naturally from the one preceding it. However, the development of quantum mechanics was exactly the opposite. It was a zigzag route, full of personal disputes where scientists were forced to abandon well-established classical concepts and to explore new and imaginative pathways. Some of the explored routes were successful in providing new mathematical formalisms capable of predicting experiments at the atomic scale. However, even such successful routes were painful enough, so that relevant scientists like Albert Einstein and Erwin Schrödinger decided not to support them. In this book, the authors demonstrate the huge practical utility of another of these routes in explaining quantum phenomena in many different research fields. Bohmian mechanics, the formulation of the quantum theory pioneered by Louis de Broglie and David Bohm, offers an alternative mathematical formulation of quantum phenomena in terms of quantum trajectories. Novel computational tools to explore physical scenarios that are currently computationally inaccessible, such as many-particle solutions of the Schrödinger equation, can be developed from it. |
quantum theory by david bohm: Quantum Theory: A Two-Time Success Story Daniele C. Struppa, Jeffrey M. Tollaksen, 2013-09-12 Yakir Aharonov is one of the leading figures in the foundations of quantum physics. His contributions range from the celebrated Aharonov-Bohm effect (1959), to the more recent theory of weak measurements (whose experimental confirmations were recently ranked as the two most important results of physics in 2011). This volume will contain 27 original articles, contributed by the most important names in quantum physics, in honor of Aharonov's 80-th birthday. Sections include Quantum mechanics and reality, with contributions from Nobel Laureates David Gross and Sir Anthony Leggett and Yakir Aharonov, S. Popescu and J. Tollaksen; Building blocks of Nature with contributions from Francois Englert (co-proposer of the scalar boson along with Peter Higgs); Time and Cosmology with contributions from Leonard Susskind, P.C.W. Davies and James Hartle; Universe as a Wavefunction, with contributions from Phil Pearle, Sean Carroll and David Albert; Nonlocality, with contributions from Nicolas Gisin, Daniel Rohrlich, Ray Chiao and Lev Vaidman; and finishing with multiple sections on weak values with contributions from A. Jordan, A. Botero, A.D. Parks, L. Johansen, F. Colombo, I. Sabadini, D.C. Struppa, M.V. Berry, B. Reznik, N. Turok, G.A.D. Briggs, Y. Gefen, P. Kwiat, and A. Pines, among others. |
quantum theory by david bohm: The Emergent Multiverse David Wallace, 2012-05-24 The Emergent Multiverse presents a striking new account of the 'many worlds' approach to quantum theory. The point of science, it is generally accepted, is to tell us how the world works and what it is like. But quantum theory seems to fail to do this: taken literally as a theory of the world, it seems to make crazy claims: particles are in two places at once; cats are alive and dead at the same time. So physicists and philosophers have often been led either to give up on the idea that quantum theory describes reality, or to modify or augment the theory. The Everett interpretation of quantum mechanics takes the apparent craziness seriously, and asks, 'what would it be like if particles really were in two places at once, if cats really were alive and dead at the same time'? The answer, it turns out, is that if the world were like that—if it were as quantum theory claims—it would be a world that, at the macroscopic level, was constantly branching into copies—hence the more sensationalist name for the Everett interpretation, the 'many worlds theory'. But really, the interpretation is not sensationalist at all: it simply takes quantum theory seriously, literally, as a description of the world. Once dismissed as absurd, it is now accepted by many physicists as the best way to make coherent sense of quantum theory. David Wallace offers a clear and up-to-date survey of work on the Everett interpretation in physics and in philosophy of science, and at the same time provides a self-contained and thoroughly modern account of it—an account which is accessible to readers who have previously studied quantum theory at undergraduate level, and which will shape the future direction of research by leading experts in the field. |
quantum theory by david bohm: On Creativity Lee Nichol, 2003-08-29 Creativity is fundamental to human experience. In On Creativity David Bohm, the world-renowned scientist, investigates the phenomenon from all sides: not only the creativity of invention and of imagination but also that of perception and of discovery. This is a remarkable and life-affirming book by one of the most far-sighted thinkers of modern times. |
quantum theory by david bohm: The Ghost in the Atom P. C. W. Davies, Julian R. Brown, 1993-07-30 In this book, which has its origin in a series of radio broadcasts, Paul Davies interviews eight physicists involved in debating and testing quantum theory, with radically different views of its significance. |
quantum theory by david bohm: Quantum Mechanics James T. Cushing, 1994-11 Why does one theory succeed while another, possibly clearer interpretation, fails? By exploring two observationally equivalent yet conceptually incompatible views of quantum mechanics, James T. Cushing shows how historical contingency can be crucial to determining a theory's construction and its position among competing views. Since the late 1920s, the theory formulated by Niels Bohr and his colleagues at Copenhagen has been the dominant interpretation of quantum mechanics. Yet an alternative interpretation, rooted in the work of Louis de Broglie in the early 1920s and reformulated and extended by David Bohm in the 1950s, equally well explains the observational data. Through a detailed historical and sociological study of the physicists who developed different theories of quantum mechanics, the debates within and between opposing camps, and the receptions given to each theory, Cushing shows that despite the preeminence of the Copenhagen view, the Bohm interpretation cannot be ignored. Cushing contends that the Copenhagen interpretation became widely accepted not because it is a better explanation of subatomic phenomena than is Bohm's, but because it happened to appear first. Focusing on the philosophical, social, and cultural forces that shaped one of the most important developments in modern physics, this provocative book examines the role that timing can play in the establishment of theory and explanation. |
quantum theory by david bohm: The Quantum Dissidents Olival Freire Junior, 2014-12-26 This book tells the fascinating story of the people and events behind the turbulent changes in attitudes to quantum theory in the second half of the 20th century. The huge success of quantum mechanics as a predictive theory has been accompanied, from the very beginning, by doubts and controversy about its foundations and interpretation. This book looks in detail at how research on foundations evolved after WWII, when it was revived, until the mid 1990s, when most of this research merged into the technological promise of quantum information. It is the story of the quantum dissidents, the scientists who brought this subject from the margins of physics into its mainstream. It is also a history of concepts, experiments, and techniques, and of the relationships between physics and the world at large, touching on themes such as the Cold War, McCarthyism, Zhdanovism, and the unrest of the late 1960s. |
quantum theory by david bohm: Science, Order and Creativity David Bohm, F. David Peat, 2010-10-04 One of the foremost scientists and thinkers of our time, David Bohm worked alongside Oppenheimer and Einstein. In Science, Order and Creativity he and physicist F. David Peat propose a return to greater creativity and communication in the sciences. They ask for a renewed emphasis on ideas rather than formulae, on the whole rather than fragments, and on meaning rather than mere mechanics. Tracing the history of science from Aristotle to Einstein, from the Pythagorean theorem to quantum mechanics, the authors offer intriguing new insights into how scientific theories come into being, how to eliminate blocks to creativity and how science can lead to a deeper understanding of society, the human condition and the human mind itself. Science, Order and Creativity looks to the future of science with elegance, hope and enthusiasm. |
quantum theory by david bohm: The Quantum Hall Effect Richard E. Prange, Steven M. Girvin, 2012-12-06 After a foreword by Klaus von Klitzing, the first chapters of this book discuss the prehistory and the theoretical basis as well as the implications of the discovery of the Quantum Hall effect on superconductivity, superfluidity, and metrology, including experimentation. The second half of this volume is concerned with the theory of and experiments on the many body problem posed by fractional effect. Specific unsolved problems are mentioned throughout the book and a summary is made in the final chapter. The quantum Hall effect was discovered on about the hundredth anniversary of Hall's original work, and the finding was announced in 1980 by von Klitzing, Dorda and Pepper. Klaus von KIitzing was awarded the 1985 Nobel prize in physics for this discovery. |
quantum theory by david bohm: The Physics of Quantum Mechanics James Binney, David Skinner, 2013-12 This title gives students a good understanding of how quantum mechanics describes the material world. The text stresses the continuity between the quantum world and the classical world, which is merely an approximation to the quantum world. |
quantum theory by david bohm: Changing Consciousness David Bohm, Mark Edwards, 1991 Direct, visceral, sometimes startling photographs from all over the world provide a striking expression of the pressing crises of our day. Accompanying the photo essay by Mark Edwards is a dailogue with preeminent, theoretical physicist David Bohm. 65 black-and-white photographs. |
quantum theory by david bohm: Quantum Implications Basil Hiley, F. David Peat, 2012-06-25 David Bohm is one of the foremost scientific thinkers of today and one of the most distinguished scientists of his generation. His challenge to the conventional understanding of quantum theory has led scientists to reexamine what it is they are going and his ideas have been an inspiration across a wide range of disciplines. Quantum Implications is a collection of original contributions by many of the world' s leading scholars and is dedicated to David Bohm, his work and the issues raised by his ideas. The contributors range across physics, philosophy, biology, art, psychology, and include some of the most distinguished scientists of the day. There is an excellent introduction by the editors, putting Bohm's work in context and setting right some of the misconceptions that have persisted about the work of David Bohm |
quantum theory by david bohm: Quantum Theory and Measurement John Archibald Wheeler, Wojciech Hubert Zurek, 2014-07 The forty-nine papers collected here illuminate the meaning of quantum theory as it is disclosed in the measurement process. Together with an introduction and a supplemental annotated bibliography, they discuss issues that make quantum theory, overarching principle of twentieth-century physics, appear to many to prefigure a new revolution in science. Originally published in 1983. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905. |
quantum theory by david bohm: Quantum Theory David Bohm, 1963 |
quantum theory by david bohm: Emergent Quantum Mechanics Jan Walleczek, Gerhard Grössing, Paavo Pylkkänen, Basil Hiley, 2019-04-02 Emergent quantum mechanics explores the possibility of an ontology for quantum mechanics. The resurgence of interest in deeper-level theories for quantum phenomena challenges the standard, textbook interpretation. The book presents expert views that critically evaluate the significance—for 21st century physics—of ontological quantum mechanics, an approach that David Bohm helped pioneer. The possibility of a deterministic quantum theory was first introduced with the original de Broglie-Bohm theory, which has also been developed as Bohmian mechanics. The wide range of perspectives that were contributed to this book on the occasion of David Bohm’s centennial celebration provide ample evidence for the physical consistency of ontological quantum mechanics. The book addresses deeper-level questions such as the following: Is reality intrinsically random or fundamentally interconnected? Is the universe local or nonlocal? Might a radically new conception of reality include a form of quantum causality or quantum ontology? What is the role of the experimenter agent? As the book demonstrates, the advancement of ‘quantum ontology’—as a scientific concept—marks a clear break with classical reality. The search for quantum reality entails unconventional causal structures and non-classical ontology, which can be fully consistent with the known record of quantum observations in the laboratory. |
quantum theory by david bohm: Particle Physics Frank Close, 2023-10-24 Very Short Introductions: Brilliant, Sharp, Inspiring Following the discovery of the Higgs boson, Frank Close has produced this major revision to his classic and compelling introduction to the fundamental particles that make up the universe. Frank Close takes us on a journey into the atom to examine known particles such as quarks, electrons, and the ghostly neutrino, and explains the key role and significance of the Higgs boson. Along the way he provides fascinating insights into how discoveries in particle physics have actually been made, and discusses how our picture of the world has been radically revised in the light of these developments. He concludes by looking ahead to new ideas about the mystery of antimatter and massive neutrinos, and to what the next 50 years of research might reveal about the nature of the Higgs field which moulds the fundamental particles and forces. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable. |
quantum theory by david bohm: Philosophy of Physics Tim Maudlin, 2019-03-19 A sophisticated and original introduction to the philosophy of quantum mechanics from one of the world’s leading philosophers of physics In this book, Tim Maudlin, one of the world’s leading philosophers of physics, offers a sophisticated, original introduction to the philosophy of quantum mechanics. The briefest, clearest, and most refined account of his influential approach to the subject, the book will be invaluable to all students of philosophy and physics. Quantum mechanics holds a unique place in the history of physics. It has produced the most accurate predictions of any scientific theory, but, more astonishing, there has never been any agreement about what the theory implies about physical reality. Maudlin argues that the very term “quantum theory” is a misnomer. A proper physical theory should clearly describe what is there and what it does—yet standard textbooks present quantum mechanics as a predictive recipe in search of a physical theory. In contrast, Maudlin explores three proper theories that recover the quantum predictions: the indeterministic wavefunction collapse theory of Ghirardi, Rimini, and Weber; the deterministic particle theory of deBroglie and Bohm; and the conceptually challenging Many Worlds theory of Everett. Each offers a radically different proposal for the nature of physical reality, but Maudlin shows that none of them are what they are generally taken to be. |
Quantum - Wikipedia
In physics, a quantum (pl.: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". [1]
Quantum | Definition & Facts | Britannica
May 31, 2025 · Quantum, in physics, discrete natural unit, or packet, of energy, charge, angular momentum, or other physical property. Light, for example, appearing in some respects as a continuous electromagnetic wave, on the submicroscopic level is emitted and absorbed in discrete …
What Is Quantum Physics? - Caltech Science Exchange
Quantum physics is the study of matter and energy at the most fundamental level. It aims to uncover the properties and behaviors of the very building blocks of nature. While many quantum experiments examine very small objects, such as electrons and photons, quantum phenomena are all around …
Demystifying Quantum: It’s Here, There and Everywhere
Apr 10, 2024 · Quantum, often called quantum mechanics, deals with the granular and fuzzy nature of the universe and the physical behavior of its smallest particles. The idea of physical granularity is like your TV image.
Quantum mechanics: Definitions, axioms, and key concepts of quantum ...
Apr 29, 2024 · Quantum mechanics, or quantum physics, is the body of scientific laws that describe the wacky behavior of photons, electrons and the other subatomic particles that make up the universe.
Quantum - Wikipedia
In physics, a quantum (pl.: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" …
Quantum | Definition & Facts | Britannica
May 31, 2025 · Quantum, in physics, discrete natural unit, or packet, of energy, charge, angular momentum, or other physical property. Light, for example, appearing in some respects as a …
What Is Quantum Physics? - Caltech Science Exchange
Quantum physics is the study of matter and energy at the most fundamental level. It aims to uncover the properties and behaviors of the very building blocks of nature. While many …
Demystifying Quantum: It’s Here, There and Everywhere
Apr 10, 2024 · Quantum, often called quantum mechanics, deals with the granular and fuzzy nature of the universe and the physical behavior of its smallest particles. The idea of physical …
Quantum mechanics: Definitions, axioms, and key concepts of quantum …
Apr 29, 2024 · Quantum mechanics, or quantum physics, is the body of scientific laws that describe the wacky behavior of photons, electrons and the other subatomic particles that make …
What is quantum in physics and computing? - TechTarget
Feb 27, 2025 · A quantum, the singular form of quanta, is the smallest discrete unit of any physical entity. For example, a quantum of light is a photon, and a quantum of electricity is an …
Science 101: Quantum Mechanics - Argonne National Laboratory
So, what is quantum? In a more general sense, the word “ quantum” can refer to the smallest possible amount of something. The field of quantum mechanics deals with the most …
DOE Explains...Quantum Mechanics | Department of Energy
Quantum mechanics is the field of physics that explains how extremely small objects simultaneously have the characteristics of both particles (tiny pieces of matter) and waves (a …
Quantum for dummies: the basics explained | Engineering and …
Apr 16, 2019 · Professor Alan Woodward from the University of Surrey attempts to demystify the quantum world by explaining key terminology and theory. Which atoms and particles does …
Quantum - definition of quantum by The Free Dictionary
A unit of energy, especially electromagnetic energy, that is the smallest physical quantity that can exist on its own. A quantum acts both like a particle and like an energy wave. Photons are …