Advertisement
probability random variables and stochastic processes: Probability, Random Variables, and Stochastic Processes Athanasios Papoulis, 1991 The Third Edition emphasizes a concentrated revision of Parts II & III (leaving Part I virtually intact). The later sections show greater elaboration of the basic concepts of stochastic processes, typical sequences of random variables, and a greater emphasis on realistic methods of spectral estimation and analysis. There are problems, exercises, and applications throughout. Aimed at senior/graduate students in electrical engineering, math, and physics departments. |
probability random variables and stochastic processes: Probability, Random Variables, and Stochastic Processes Athanasios Papoulis, 1981 |
probability random variables and stochastic processes: Probability, random variables, and stochastic processes Athanasios Papoulis, 2002-01-01 The fourth edition of Probability, Random Variables and Stochastic Processes has been updated significantly from the previous edition, and it now includes co-author S. Unnikrishna Pillai of Polytechnic University. The book is intended for a senior/graduate level course in probability and is aimed at students in electrical engineering, math, and physics departments. The authors' approach is to develop the subject of probability theory and stochastic processes as a deductive discipline and to illustrate the theory with basic applications of engineering interest. Approximately 1/3 of the text is new material--this material maintains the style and spirit of previous editions. In order to bridge the gap between concepts and applications, a number of additional examples have been added for further clarity, as well as several new topics. |
probability random variables and stochastic processes: An Introduction to Probability and Stochastic Processes James L. Melsa, Andrew P. Sage, 2013-01-01 Detailed coverage of probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition. |
probability random variables and stochastic processes: Introduction to Probability and Stochastic Processes with Applications Liliana Blanco Castañeda, Viswanathan Arunachalam, Selvamuthu Dharmaraja, 2014-08-21 An easily accessible, real-world approach to probability and stochastic processes Introduction to Probability and Stochastic Processes with Applications presents a clear, easy-to-understand treatment of probability and stochastic processes, providing readers with a solid foundation they can build upon throughout their careers. With an emphasis on applications in engineering, applied sciences, business and finance, statistics, mathematics, and operations research, the book features numerous real-world examples that illustrate how random phenomena occur in nature and how to use probabilistic techniques to accurately model these phenomena. The authors discuss a broad range of topics, from the basic concepts of probability to advanced topics for further study, including Itô integrals, martingales, and sigma algebras. Additional topical coverage includes: Distributions of discrete and continuous random variables frequently used in applications Random vectors, conditional probability, expectation, and multivariate normal distributions The laws of large numbers, limit theorems, and convergence of sequences of random variables Stochastic processes and related applications, particularly in queueing systems Financial mathematics, including pricing methods such as risk-neutral valuation and the Black-Scholes formula Extensive appendices containing a review of the requisite mathematics and tables of standard distributions for use in applications are provided, and plentiful exercises, problems, and solutions are found throughout. Also, a related website features additional exercises with solutions and supplementary material for classroom use. Introduction to Probability and Stochastic Processes with Applications is an ideal book for probability courses at the upper-undergraduate level. The book is also a valuable reference for researchers and practitioners in the fields of engineering, operations research, and computer science who conduct data analysis to make decisions in their everyday work. |
probability random variables and stochastic processes: Probability and Stochastic Processes Leo Breiman, 1986 |
probability random variables and stochastic processes: Probability and Stochastic Processes Roy D. Yates, David J. Goodman, 2014-01-28 This text introduces engineering students to probability theory and stochastic processes. Along with thorough mathematical development of the subject, the book presents intuitive explanations of key points in order to give students the insights they need to apply math to practical engineering problems. The first five chapters contain the core material that is essential to any introductory course. In one-semester undergraduate courses, instructors can select material from the remaining chapters to meet their individual goals. Graduate courses can cover all chapters in one semester. |
probability random variables and stochastic processes: Probability, Statistics, and Stochastic Processes Peter Olofsson, Mikael Andersson, 2012-05-04 Praise for the First Edition . . . an excellent textbook . . . well organized and neatly written. —Mathematical Reviews . . . amazingly interesting . . . —Technometrics Thoroughly updated to showcase the interrelationships between probability, statistics, and stochastic processes, Probability, Statistics, and Stochastic Processes, Second Edition prepares readers to collect, analyze, and characterize data in their chosen fields. Beginning with three chapters that develop probability theory and introduce the axioms of probability, random variables, and joint distributions, the book goes on to present limit theorems and simulation. The authors combine a rigorous, calculus-based development of theory with an intuitive approach that appeals to readers' sense of reason and logic. Including more than 400 examples that help illustrate concepts and theory, the Second Edition features new material on statistical inference and a wealth of newly added topics, including: Consistency of point estimators Large sample theory Bootstrap simulation Multiple hypothesis testing Fisher's exact test and Kolmogorov-Smirnov test Martingales, renewal processes, and Brownian motion One-way analysis of variance and the general linear model Extensively class-tested to ensure an accessible presentation, Probability, Statistics, and Stochastic Processes, Second Edition is an excellent book for courses on probability and statistics at the upper-undergraduate level. The book is also an ideal resource for scientists and engineers in the fields of statistics, mathematics, industrial management, and engineering. |
probability random variables and stochastic processes: Probability and Stochastic Processes Ionut Florescu, 2014-12-04 A comprehensive and accessible presentation of probability and stochastic processes with emphasis on key theoretical concepts and real-world applications With a sophisticated approach, Probability and Stochastic Processes successfully balances theory and applications in a pedagogical and accessible format. The book’s primary focus is on key theoretical notions in probability to provide a foundation for understanding concepts and examples related to stochastic processes. Organized into two main sections, the book begins by developing probability theory with topical coverage on probability measure; random variables; integration theory; product spaces, conditional distribution, and conditional expectations; and limit theorems. The second part explores stochastic processes and related concepts including the Poisson process, renewal processes, Markov chains, semi-Markov processes, martingales, and Brownian motion. Featuring a logical combination of traditional and complex theories as well as practices, Probability and Stochastic Processes also includes: Multiple examples from disciplines such as business, mathematical finance, and engineering Chapter-by-chapter exercises and examples to allow readers to test their comprehension of the presented material A rigorous treatment of all probability and stochastic processes concepts An appropriate textbook for probability and stochastic processes courses at the upper-undergraduate and graduate level in mathematics, business, and electrical engineering, Probability and Stochastic Processes is also an ideal reference for researchers and practitioners in the fields of mathematics, engineering, and finance. |
probability random variables and stochastic processes: An Introduction to Probability and Stochastic Processes Marc A. Berger, 2012-12-06 These notes were written as a result of my having taught a nonmeasure theoretic course in probability and stochastic processes a few times at the Weizmann Institute in Israel. I have tried to follow two principles. The first is to prove things probabilistically whenever possible without recourse to other branches of mathematics and in a notation that is as probabilistic as possible. Thus, for example, the asymptotics of pn for large n, where P is a stochastic matrix, is developed in Section V by using passage probabilities and hitting times rather than, say, pulling in Perron Frobenius theory or spectral analysis. Similarly in Section II the joint normal distribution is studied through conditional expectation rather than quadratic forms. The second principle I have tried to follow is to only prove results in their simple forms and to try to eliminate any minor technical com putations from proofs, so as to expose the most important steps. Steps in proofs or derivations that involve algebra or basic calculus are not shown; only steps involving, say, the use of independence or a dominated convergence argument or an assumptjon in a theorem are displayed. For example, in proving inversion formulas for characteristic functions I omit steps involving evaluation of basic trigonometric integrals and display details only where use is made of Fubini's Theorem or the Dominated Convergence Theorem. |
probability random variables and stochastic processes: Introduction to Random Processes E. Wong, 2013-03-09 |
probability random variables and stochastic processes: Probability And Stochastic Processes: Work Examples Odile Pons, 2020-03-13 The book is intended to undergraduate students, it presents exercices and problems with rigorous solutions covering the mains subject of the course with both theory and applications.The questions are solved using simple mathematical methods: Laplace and Fourier transforms provide direct proofs of the main convergence results for sequences of random variables.The book studies a large range of distribution functions for random variables and processes: Bernoulli, multinomial, exponential, Gamma, Beta, Dirichlet, Poisson, Gaussian, Chi2, ordered variables, survival distributions and processes, Markov chains and processes, Brownian motion and bridge, diffusions, spatial processes. |
probability random variables and stochastic processes: Probability Theory and Stochastic Processes with Applications (Second Edition) Oliver Knill, 2017-01-31 This second edition has a unique approach that provides a broad and wide introduction into the fascinating area of probability theory. It starts on a fast track with the treatment of probability theory and stochastic processes by providing short proofs. The last chapter is unique as it features a wide range of applications in other fields like Vlasov dynamics of fluids, statistics of circular data, singular continuous random variables, Diophantine equations, percolation theory, random Schrödinger operators, spectral graph theory, integral geometry, computer vision, and processes with high risk.Many of these areas are under active investigation and this volume is highly suited for ambitious undergraduate students, graduate students and researchers. |
probability random variables and stochastic processes: Elementary Probability Theory Kai Lai Chung, Farid AitSahlia, 2012-11-12 In this edition two new chapters, 9 and 10, on mathematical finance are added. They are written by Dr. Farid AitSahlia, ancien eleve, who has taught such a course and worked on the research staff of several industrial and financial institutions. The new text begins with a meticulous account of the uncommon vocab ulary and syntax of the financial world; its manifold options and actions, with consequent expectations and variations, in the marketplace. These are then expounded in clear, precise mathematical terms and treated by the methods of probability developed in the earlier chapters. Numerous graded and motivated examples and exercises are supplied to illustrate the appli cability of the fundamental concepts and techniques to concrete financial problems. For the reader whose main interest is in finance, only a portion of the first eight chapters is a prerequisite for the study of the last two chapters. Further specific references may be scanned from the topics listed in the Index, then pursued in more detail. |
probability random variables and stochastic processes: Probability, Statistics, and Stochastic Processes for Engineers and Scientists Aliakbar Montazer (Prairie View A&M University Haghighi, Houston Texas), Aliakbar Montazer Haghighi, Indika Rathnathungalage Wickramasinghe, Indika (Prairie View A&M University Wickramasinghe, TX USA), 2022-07 2020 Taylor & Francis Award Winner for Outstanding New Textbook! Featuring recent advances in the field, this new textbook presents probability and statistics, and their applications in stochastic processes. This book presents key information for understanding the essential aspects of basic probability theory and concepts of reliability as an application. The purpose of this book is to provide an option in this field that combines these areas in one book, balances both theory and practical applications, and also keeps the practitioners in mind. Features Includes numerous examples using current technologies with applications in various fields of study Offers many practical applications of probability in queueing models, all of which are related to the appropriate stochastic processes (continuous time such as waiting time, and fuzzy and discrete time like the classic Gambler's Ruin Problem) Presents different current topics like probability distributions used in real-world applications of statistics such as climate control and pollution Different types of computer software such as MATLAB(R), Minitab, MS Excel, and R as options for illustration, programing and calculation purposes and data analysis Covers reliability and its application in network queues |
probability random variables and stochastic processes: Structural Reliability Theory and Its Applications P. Thoft-Cristensen, M.J. Baker, 2012-12-06 Structural reliability theory is concerned with the rational treatment of uncertainties in struc tural engineering and with the methods for assessing the safety and serviceability of civil en gineering and other structures. It is a subject which has grown rapidly during the last decade and has evolved from being a topic for academic research to a set of well-developed or develop ing methodologies with a wide range of practical applications. Uncertainties exist in most areas of civil and structural engineeri'1.g and rational design decisions cannot be made without modelling them and taking them into account. Many structural en gineers are shielded from having to think about such problems, at least when designing simple structures, because of the prescriptive and essentially deterministic nature of most codes of practice. This is an undesirable situation. Most loads and other structural design parameters are rarely known with certainty and should be regarded as random variables or stochastic processes, even if in design calculations they are eventually treated as deterministic. Some problems such as the analysis of load combinations cannot even be formulated without recourse to probabilistic reasoning. |
probability random variables and stochastic processes: Schaum's Outline of Probability, Random Variables, and Random Processes, 3/E (Enhanced Ebook) Hwei P. Hsu, 2014-03-14 The ideal review for the thousands of electrical engineering college students who enroll in probability, variables, and processes courses Schaum's Outline of Probability, Random Variables, and Random Processes mirrors the courses in scope and sequence to help enrolled students understand basic concepts and offer extra practice on topics such as bivariate random variables, joint distribution functions, moment generating functions, Poisson processes, Wiener processes, power spectral densities, and white noise. Coverage will also include response of linear systems to random outputs, Fourier series and Karhunen-Loeve expansions, Fourier transform of random processes, parameter estimation, Bayes' estimation, and mean square estimation. Features Outline format supplies a concise guide to the standard college courses in probability, variables, and processes 405 solved problems New chapter on statistical communication theory Additional material on distributions, the Markov Process, and martingales Supports all the major textbooks for probability, variables, and processes courses |
probability random variables and stochastic processes: Random Processes for Engineers Bruce Hajek, 2015-03-12 This engaging introduction to random processes provides students with the critical tools needed to design and evaluate engineering systems that must operate reliably in uncertain environments. A brief review of probability theory and real analysis of deterministic functions sets the stage for understanding random processes, whilst the underlying measure theoretic notions are explained in an intuitive, straightforward style. Students will learn to manage the complexity of randomness through the use of simple classes of random processes, statistical means and correlations, asymptotic analysis, sampling, and effective algorithms. Key topics covered include: • Calculus of random processes in linear systems • Kalman and Wiener filtering • Hidden Markov models for statistical inference • The estimation maximization (EM) algorithm • An introduction to martingales and concentration inequalities. Understanding of the key concepts is reinforced through over 100 worked examples and 300 thoroughly tested homework problems (half of which are solved in detail at the end of the book). |
probability random variables and stochastic processes: An Introduction to Stochastic Modeling Howard M. Taylor, Samuel Karlin, 2014-05-10 An Introduction to Stochastic Modeling, Revised Edition provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful. |
probability random variables and stochastic processes: Stochastic Processes and Applications Grigorios A. Pavliotis, 2014-11-19 This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes. |
probability random variables and stochastic processes: Theory of Probability and Random Processes Leonid Koralov, Yakov G. Sinai, 2007-08-10 A one-year course in probability theory and the theory of random processes, taught at Princeton University to undergraduate and graduate students, forms the core of this book. It provides a comprehensive and self-contained exposition of classical probability theory and the theory of random processes. The book includes detailed discussion of Lebesgue integration, Markov chains, random walks, laws of large numbers, limit theorems, and their relation to Renormalization Group theory. It also includes the theory of stationary random processes, martingales, generalized random processes, and Brownian motion. |
probability random variables and stochastic processes: Probability Theory and Stochastic Processes Pierre Brémaud, 2020-04-08 The ultimate objective of this book is to present a panoramic view of the main stochastic processes which have an impact on applications, with complete proofs and exercises. Random processes play a central role in the applied sciences, including operations research, insurance, finance, biology, physics, computer and communications networks, and signal processing. In order to help the reader to reach a level of technical autonomy sufficient to understand the presented models, this book includes a reasonable dose of probability theory. On the other hand, the study of stochastic processes gives an opportunity to apply the main theoretical results of probability theory beyond classroom examples and in a non-trivial manner that makes this discipline look more attractive to the applications-oriented student. One can distinguish three parts of this book. The first four chapters are about probability theory, Chapters 5 to 8 concern random sequences, or discrete-time stochastic processes, and the rest of the book focuses on stochastic processes and point processes. There is sufficient modularity for the instructor or the self-teaching reader to design a course or a study program adapted to her/his specific needs. This book is in a large measure self-contained. |
probability random variables and stochastic processes: Probability and Stochastic Processes for Physicists Nicola Cufaro Petroni, 2020-06-25 This book seeks to bridge the gap between the parlance, the models, and even the notations used by physicists and those used by mathematicians when it comes to the topic of probability and stochastic processes. The opening four chapters elucidate the basic concepts of probability, including probability spaces and measures, random variables, and limit theorems. Here, the focus is mainly on models and ideas rather than the mathematical tools. The discussion of limit theorems serves as a gateway to extensive coverage of the theory of stochastic processes, including, for example, stationarity and ergodicity, Poisson and Wiener processes and their trajectories, other Markov processes, jump-diffusion processes, stochastic calculus, and stochastic differential equations. All these conceptual tools then converge in a dynamical theory of Brownian motion that compares the Einstein–Smoluchowski and Ornstein–Uhlenbeck approaches, highlighting the most important ideas that finally led to a connection between the Schrödinger equation and diffusion processes along the lines of Nelson’s stochastic mechanics. A series of appendices cover particular details and calculations, and offer concise treatments of particular thought-provoking topics. |
probability random variables and stochastic processes: Discrete Stochastic Processes Robert G. Gallager, 2012-12-06 Stochastic processes are found in probabilistic systems that evolve with time. Discrete stochastic processes change by only integer time steps (for some time scale), or are characterized by discrete occurrences at arbitrary times. Discrete Stochastic Processes helps the reader develop the understanding and intuition necessary to apply stochastic process theory in engineering, science and operations research. The book approaches the subject via many simple examples which build insight into the structure of stochastic processes and the general effect of these phenomena in real systems. The book presents mathematical ideas without recourse to measure theory, using only minimal mathematical analysis. In the proofs and explanations, clarity is favored over formal rigor, and simplicity over generality. Numerous examples are given to show how results fail to hold when all the conditions are not satisfied. Audience: An excellent textbook for a graduate level course in engineering and operations research. Also an invaluable reference for all those requiring a deeper understanding of the subject. |
probability random variables and stochastic processes: Radically Elementary Probability Theory. (AM-117), Volume 117 Edward Nelson, 2016-03-02 Using only the very elementary framework of finite probability spaces, this book treats a number of topics in the modern theory of stochastic processes. This is made possible by using a small amount of Abraham Robinson's nonstandard analysis and not attempting to convert the results into conventional form. |
probability random variables and stochastic processes: Introduction to Stochastic Processes Erhan Cinlar, 2013-02-01 This clear presentation of themost fundamental models ofrandom phenomena employsmethods that recognize computerrelatedaspects of theory. Topicsinclude probability spaces andrandom variables, expectationsand independence, Bernoulliprocesses and sums of independentrandom variables, Poisson processes, Markov chainsand processes, and renewal theory. Assuming only a backgroundin calculus, this outstanding text includes an introductionto basic stochastic processes.Reprint of the Prentice-Hall Publishers, Englewood Cliffs,New Jersey, 1975 edition. |
probability random variables and stochastic processes: Fundamentals of Applied Probability and Random Processes Oliver Ibe, 2014-06-23 The long-awaited revision of Fundamentals of Applied Probability and Random Processes expands on the central components that made the first edition a classic. The title is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability to real-world problems, and introduce the basics of statistics. The book's clear writing style and homework problems make it ideal for the classroom or for self-study. |
probability random variables and stochastic processes: Probability, Stochastic Processes, and Queueing Theory Randolph Nelson, 1995-06-13 This textbook provides a comprehensive introduction to probability and stochastic processes, and shows how these subjects may be applied in computer performance modelling. The author's aim is to derive the theory in a way that combines its formal, intuitive, and applied aspects so that students may apply this indispensable tool in a variety of different settings. Readers are assumed to be familiar with elementary linear algebra and calculus, including the concept of limit, but otherwise this book provides a self-contained approach suitable for graduate or advanced undergraduate students. The first half of the book covers the basic concepts of probability including expectation, random variables, and fundamental theorems. In the second half of the book the reader is introduced to stochastic processes. Subjects covered include renewal processes, queueing theory, Markov processes, and reversibility as it applies to networks of queues. Examples and applications are drawn from problems in computer performance modelling. |
probability random variables and stochastic processes: Introduction to Stochastic Processes with R Robert P. Dobrow, 2016-03-07 An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of the popular statistical software R, makes theoretical results come alive with practical, hands-on demonstrations. Written by a highly-qualified expert in the field, the author presents numerous examples from a wide array of disciplines, which are used to illustrate concepts and highlight computational and theoretical results. Developing readers’ problem-solving skills and mathematical maturity, Introduction to Stochastic Processes with R features: More than 200 examples and 600 end-of-chapter exercises A tutorial for getting started with R, and appendices that contain review material in probability and matrix algebra Discussions of many timely and stimulating topics including Markov chain Monte Carlo, random walk on graphs, card shuffling, Black–Scholes options pricing, applications in biology and genetics, cryptography, martingales, and stochastic calculus Introductions to mathematics as needed in order to suit readers at many mathematical levels A companion web site that includes relevant data files as well as all R code and scripts used throughout the book Introduction to Stochastic Processes with R is an ideal textbook for an introductory course in stochastic processes. The book is aimed at undergraduate and beginning graduate-level students in the science, technology, engineering, and mathematics disciplines. The book is also an excellent reference for applied mathematicians and statisticians who are interested in a review of the topic. |
probability random variables and stochastic processes: Probability and Stochastic Processes Roy D. Yates, David J. Goodman, 1998-08-13 What Does Winning the Lottery Have To do with Engineering? Whether you're trying to win millions in the lottery or designing a complex computer network, you're applying probability theory. Although you encounter probability applications everywhere, the theory can be deceptively difficult to learn and apply correctly. This text will help you grasp the concepts of probability and stochastic processes and apply them throughout your careers. These concepts are clearly presented throughout the book as a sequence of building blocks that are clearly identified as either an axiom, definition, or theorem. This approach provides you with a better understanding of the material which you'll be able to use to solve practical problems. Key Features: * The text follows a single model that begins with an experiment consisting of a procedure and observations. * The mathematics of discrete random variables appears separately from the mathematics of continuous random variables. * Stochastic processes are introduced in Chapter 6, immediately after the presentation of discrete and continuous random variables. Subsequent material, including central limit theorem approximations, laws of large numbers, and statistical inference, then use examples that reinforce stochastic process concepts. * An abundance of exercises are provided that help students learn how to put the theory to use. |
probability random variables and stochastic processes: Theory of Stochastic Objects Athanasios Christou Micheas, 2018-01-19 This book defines and investigates the concept of a random object. To accomplish this task in a natural way, it brings together three major areas; statistical inference, measure-theoretic probability theory and stochastic processes. This point of view has not been explored by existing textbooks; one would need material on real analysis, measure and probability theory, as well as stochastic processes - in addition to at least one text on statistics- to capture the detail and depth of material that has gone into this volume. Presents and illustrates ‘random objects’ in different contexts, under a unified framework, starting with rudimentary results on random variables and random sequences, all the way up to stochastic partial differential equations. Reviews rudimentary probability and introduces statistical inference, from basic to advanced, thus making the transition from basic statistical modeling and estimation to advanced topics more natural and concrete. Compact and comprehensive presentation of the material that will be useful to a reader from the mathematics and statistical sciences, at any stage of their career, either as a graduate student, an instructor, or an academician conducting research and requiring quick references and examples to classic topics. Includes 378 exercises, with the solutions manual available on the book's website. 121 illustrative examples of the concepts presented in the text (many including multiple items in a single example). The book is targeted towards students at the master’s and Ph.D. levels, as well as, academicians in the mathematics, statistics and related disciplines. Basic knowledge of calculus and matrix algebra is required. Prior knowledge of probability or measure theory is welcomed but not necessary. |
probability random variables and stochastic processes: Probability, Random Processes, and Statistical Analysis Hisashi Kobayashi, Brian L. Mark, William Turin, 2011-12-15 Together with the fundamentals of probability, random processes and statistical analysis, this insightful book also presents a broad range of advanced topics and applications. There is extensive coverage of Bayesian vs. frequentist statistics, time series and spectral representation, inequalities, bound and approximation, maximum-likelihood estimation and the expectation-maximization (EM) algorithm, geometric Brownian motion and Itô process. Applications such as hidden Markov models (HMM), the Viterbi, BCJR, and Baum–Welch algorithms, algorithms for machine learning, Wiener and Kalman filters, and queueing and loss networks are treated in detail. The book will be useful to students and researchers in such areas as communications, signal processing, networks, machine learning, bioinformatics, econometrics and mathematical finance. With a solutions manual, lecture slides, supplementary materials and MATLAB programs all available online, it is ideal for classroom teaching as well as a valuable reference for professionals. |
probability random variables and stochastic processes: Probability and Random Processes Venkatarama Krishnan, 2006-06-27 A resource for probability AND random processes, with hundreds ofworked examples and probability and Fourier transform tables This survival guide in probability and random processes eliminatesthe need to pore through several resources to find a certainformula or table. It offers a compendium of most distributionfunctions used by communication engineers, queuing theoryspecialists, signal processing engineers, biomedical engineers,physicists, and students. Key topics covered include: * Random variables and most of their frequently used discrete andcontinuous probability distribution functions * Moments, transformations, and convergences of randomvariables * Characteristic, generating, and moment-generating functions * Computer generation of random variates * Estimation theory and the associated orthogonalityprinciple * Linear vector spaces and matrix theory with vector and matrixdifferentiation concepts * Vector random variables * Random processes and stationarity concepts * Extensive classification of random processes * Random processes through linear systems and the associated Wienerand Kalman filters * Application of probability in single photon emission tomography(SPECT) More than 400 figures drawn to scale assist readers inunderstanding and applying theory. Many of these figures accompanythe more than 300 examples given to help readers visualize how tosolve the problem at hand. In many instances, worked examples aresolved with more than one approach to illustrate how differentprobability methodologies can work for the same problem. Several probability tables with accuracy up to nine decimal placesare provided in the appendices for quick reference. A specialfeature is the graphical presentation of the commonly occurringFourier transforms, where both time and frequency functions aredrawn to scale. This book is of particular value to undergraduate and graduatestudents in electrical, computer, and civil engineering, as well asstudents in physics and applied mathematics. Engineers, computerscientists, biostatisticians, and researchers in communicationswill also benefit from having a single resource to address mostissues in probability and random processes. |
probability random variables and stochastic processes: Statistics of Random Processes II Robert Shevilevich Lipt︠s︡er, Alʹbert Nikolaevich Shiri︠a︡ev, 2001 Written by two renowned experts in the field, the books under review contain a thorough and insightful treatment of the fundamental underpinnings of various aspects of stochastic processes as well as a wide range of applications. Providing clear exposition, deep mathematical results, and superb technical representation, they are masterpieces of the subject of stochastic analysis and nonlinear filtering....These books...will become classics. --SIAM REVIEW |
probability random variables and stochastic processes: Applied Probability and Stochastic Processes Frank Beichelt, 2016-04-05 Applied Probability and Stochastic Processes, Second Edition presents a self-contained introduction to elementary probability theory and stochastic processes with a special emphasis on their applications in science, engineering, finance, computer science, and operations research. It covers the theoretical foundations for modeling time-dependent random phenomena in these areas and illustrates applications through the analysis of numerous practical examples. The author draws on his 50 years of experience in the field to give your students a better understanding of probability theory and stochastic processes and enable them to use stochastic modeling in their work. New to the Second Edition Completely rewritten part on probability theory—now more than double in size New sections on time series analysis, random walks, branching processes, and spectral analysis of stationary stochastic processes Comprehensive numerical discussions of examples, which replace the more theoretically challenging sections Additional examples, exercises, and figures Presenting the material in a student-friendly, application-oriented manner, this non-measure theoretic text only assumes a mathematical maturity that applied science students acquire during their undergraduate studies in mathematics. Many exercises allow students to assess their understanding of the topics. In addition, the book occasionally describes connections between probabilistic concepts and corresponding statistical approaches to facilitate comprehension. Some important proofs and challenging examples and exercises are also included for more theoretically interested readers. |
probability random variables and stochastic processes: Probability Gregory K. Miller, 2006-08-25 Improve Your Probability of Mastering This Topic This book takes an innovative approach to calculus-based probability theory, considering it within a framework for creating models of random phenomena. The author focuses on the synthesis of stochastic models concurrent with the development of distribution theory while also introducing the reader to basic statistical inference. In this way, the major stochastic processes are blended with coverage of probability laws, random variables, and distribution theory, equipping the reader to be a true problem solver and critical thinker. Deliberately conversational in tone, Probability is written for students in junior- or senior-level probability courses majoring in mathematics, statistics, computer science, or engineering. The book offers a lucid and mathematicallysound introduction to how probability is used to model random behavior in the natural world. The text contains the following chapters: Modeling Sets and Functions Probability Laws I: Building on the Axioms Probability Laws II: Results of Conditioning Random Variables and Stochastic Processes Discrete Random Variables and Applications in Stochastic Processes Continuous Random Variables and Applications in Stochastic Processes Covariance and Correlation Among Random Variables Included exercises cover a wealth of additional concepts, such as conditional independence, Simpson's paradox, acceptance sampling, geometric probability, simulation, exponential families of distributions, Jensen's inequality, and many non-standard probability distributions. |
probability random variables and stochastic processes: Basic Stochastic Processes Zdzislaw Brzezniak, Tomasz Zastawniak, 2000-07-26 Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation. |
probability random variables and stochastic processes: Spectrum Estimation and System Identification S.Unnikrishna Pillai, Theodore I. Shim, 2012-12-06 Spectrum estimation refers to analyzing the distribution of power or en ergy with frequency of the given signal, and system identification refers to ways of characterizing the mechanism or system behind the observed sig nal/data. Such an identification allows one to predict the system outputs, and as a result this has considerable impact in several areas such as speech processing, pattern recognition, target identification, seismology, and signal processing. A new outlook to spectrum estimation and system identification is pre sented here by making use of the powerful concepts of positive functions and bounded functions. An indispensable tool in classical network analysis and synthesis problems, positive functions and bounded functions are well and their intimate one-to-one connection with power spectra understood, makes it possible to study many of the signal processing problems from a new viewpoint. Positive functions have been used to study interpolation problems in the past, and although the spectrum extension problem falls within this scope, surprisingly the system identification problem can also be analyzed in this context in an interesting manner. One useful result in this connection is regarding rational and stable approximation of nonrational transfer functions both in the single-channel case and the multichannel case. Such an approximation has important applications in distributed system theory, simulation of systems governed by partial differential equations, and analysis of differential equations with delays. This book is intended as an introductory graduate level textbook and as a reference book for engineers and researchers. |
probability random variables and stochastic processes: Probability and Random Processes Scott Miller, Donald Childers, 2012-01-11 Miller and Childers have focused on creating a clear presentation of foundational concepts with specific applications to signal processing and communications, clearly the two areas of most interest to students and instructors in this course. It is aimed at graduate students as well as practicing engineers, and includes unique chapters on narrowband random processes and simulation techniques. The appendices provide a refresher in such areas as linear algebra, set theory, random variables, and more. Probability and Random Processes also includes applications in digital communications, information theory, coding theory, image processing, speech analysis, synthesis and recognition, and other fields. * Exceptional exposition and numerous worked out problems make the book extremely readable and accessible * The authors connect the applications discussed in class to the textbook * The new edition contains more real world signal processing and communications applications * Includes an entire chapter devoted to simulation techniques. |
probability random variables and stochastic processes: Probability & Statistics Athanasios Papoulis, 1990 A developed, complete treatment of undergraduate probability and statistics by a very well known author. The approach develops a unified theory presented with clarity and economy. Included many examples and applications. Appropriate for an introductory undergraduate course in probability and statistics for students in engineering, math, the physical sciences, and computer science.(vs. Walpole/Myers, Miller/Freund, Devore, Scheaffer/McClave, Milton/Arnold) |
Probability - Wikipedia
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 …
Probability - Math is Fun
How likely something is to happen. Many events can't be predicted with total certainty. The best we can say is how likely they are to happen, using the idea of probability. When a coin is …
Probability - Formula, Calculating, Find, Theorems, Examples
Probability is all about how likely is an event to happen. For a random experiment with sample space S, the probability of happening of an event A is calculated by the probability formula n …
7.5: Basic Concepts of Probability - Mathematics LibreTexts
Define probability including impossible and certain events. Calculate basic theoretical probabilities. Calculate basic empirical probabilities. Distinguish among theoretical, empirical, …
Probability Definition in Math - BYJU'S
Probability is a measure of the likelihood of an event to occur. Many events cannot be predicted with total certainty. We can predict only the chance of an event to occur i.e., how likely they …
How To Calculate Probability - Math Steps, Examples & Questions
Free how to calculate probability math topic guide, including step-by-step examples, free practice questions, teaching tips and more!
What is Probability? Definition, Types, Formula, & Examples
Apr 7, 2025 · Probability is defined as the measure of how likely an event is to happen, usually expressed as a value between zero and one. A Probability of zero indicates that the event is …
Probability in Maths - GeeksforGeeks
May 16, 2025 · In this section, you will explore the fundamental concepts of probability, key formulas, conditional probability, and Bayes' Theorem. By the end, you'll have a clear …
Probability | Brilliant Math & Science Wiki
A probability is a number that represents the likelihood of an uncertain event. Probabilities are always between 0 and 1, inclusive. The larger the probability, the more likely the event is to …
Probability - Definition, Formula, Types, Terms, Solved Problems
Jan 15, 2021 · Probability is defined as the possibility of an event to occur. The formula for Probability is given as the ratio of the number of favorable events to the total number of …
Probability - Wikipedia
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 …
Probability - Math is Fun
How likely something is to happen. Many events can't be predicted with total certainty. The best we can say is how likely they are to happen, using the idea of probability. When a coin is …
Probability - Formula, Calculating, Find, Theorems, Examples
Probability is all about how likely is an event to happen. For a random experiment with sample space S, the probability of happening of an event A is calculated by the probability formula n …
7.5: Basic Concepts of Probability - Mathematics LibreTexts
Define probability including impossible and certain events. Calculate basic theoretical probabilities. Calculate basic empirical probabilities. Distinguish among theoretical, empirical, …
Probability Definition in Math - BYJU'S
Probability is a measure of the likelihood of an event to occur. Many events cannot be predicted with total certainty. We can predict only the chance of an event to occur i.e., how likely they …
How To Calculate Probability - Math Steps, Examples & Questions
Free how to calculate probability math topic guide, including step-by-step examples, free practice questions, teaching tips and more!
What is Probability? Definition, Types, Formula, & Examples
Apr 7, 2025 · Probability is defined as the measure of how likely an event is to happen, usually expressed as a value between zero and one. A Probability of zero indicates that the event is …
Probability in Maths - GeeksforGeeks
May 16, 2025 · In this section, you will explore the fundamental concepts of probability, key formulas, conditional probability, and Bayes' Theorem. By the end, you'll have a clear …
Probability | Brilliant Math & Science Wiki
A probability is a number that represents the likelihood of an uncertain event. Probabilities are always between 0 and 1, inclusive. The larger the probability, the more likely the event is to …
Probability - Definition, Formula, Types, Terms, Solved Problems
Jan 15, 2021 · Probability is defined as the possibility of an event to occur. The formula for Probability is given as the ratio of the number of favorable events to the total number of …