Advertisement
probability and statistics for computer science forsyth: Probability and Statistics for Computer Science David Forsyth, 2017-12-13 This textbook is aimed at computer science undergraduates late in sophomore or early in junior year, supplying a comprehensive background in qualitative and quantitative data analysis, probability, random variables, and statistical methods, including machine learning. With careful treatment of topics that fill the curricular needs for the course, Probability and Statistics for Computer Science features: • A treatment of random variables and expectations dealing primarily with the discrete case. • A practical treatment of simulation, showing how many interesting probabilities and expectations can be extracted, with particular emphasis on Markov chains. • A clear but crisp account of simple point inference strategies (maximum likelihood; Bayesian inference) in simple contexts. This is extended to cover some confidence intervals, samples and populations for random sampling with replacement, and the simplest hypothesis testing. • A chapter dealing with classification, explaining why it’s useful; how to train SVM classifiers with stochastic gradient descent; and how to use implementations of more advanced methods such as random forests and nearest neighbors. • A chapter dealing with regression, explaining how to set up, use and understand linear regression and nearest neighbors regression in practical problems. • A chapter dealing with principal components analysis, developing intuition carefully, and including numerous practical examples. There is a brief description of multivariate scaling via principal coordinate analysis. • A chapter dealing with clustering via agglomerative methods and k-means, showing how to build vector quantized features for complex signals. Illustrated throughout, each main chapter includes many worked examples and other pedagogical elements such as boxed Procedures, Definitions, Useful Facts, and Remember This (short tips). Problems and Programming Exercises are at the end of each chapter, with a summary of what the reader should know. Instructor resources include a full set of model solutions for all problems, and an Instructor's Manual with accompanying presentation slides. |
probability and statistics for computer science forsyth: Applied Machine Learning David Forsyth, 2019-07-12 Machine learning methods are now an important tool for scientists, researchers, engineers and students in a wide range of areas. This book is written for people who want to adopt and use the main tools of machine learning, but aren’t necessarily going to want to be machine learning researchers. Intended for students in final year undergraduate or first year graduate computer science programs in machine learning, this textbook is a machine learning toolkit. Applied Machine Learning covers many topics for people who want to use machine learning processes to get things done, with a strong emphasis on using existing tools and packages, rather than writing one’s own code. A companion to the author's Probability and Statistics for Computer Science, this book picks up where the earlier book left off (but also supplies a summary of probability that the reader can use). Emphasizing the usefulness ofstandard machinery from applied statistics, this textbook gives an overview of the major applied areas in learning, including coverage of:• classification using standard machinery (naive bayes; nearest neighbor; SVM)• clustering and vector quantization (largely as in PSCS)• PCA (largely as in PSCS)• variants of PCA (NIPALS; latent semantic analysis; canonical correlation analysis)• linear regression (largely as in PSCS)• generalized linear models including logistic regression• model selection with Lasso, elasticnet• robustness and m-estimators• Markov chains and HMM’s (largely as in PSCS)• EM in fairly gory detail; long experience teaching this suggests one detailed example is required, which students hate; but once they’ve been through that, the next one is easy• simple graphical models (in the variational inference section)• classification with neural networks, with a particular emphasis onimage classification• autoencoding with neural networks• structure learning |
probability and statistics for computer science forsyth: Probability and Statistics for Computer Scientists Michael Baron, 2013-08-05 Student-Friendly Coverage of Probability, Statistical Methods, Simulation, and Modeling ToolsIncorporating feedback from instructors and researchers who used the previous edition, Probability and Statistics for Computer Scientists, Second Edition helps students understand general methods of stochastic modeling, simulation, and data analysis; make o |
probability and statistics for computer science forsyth: Learning Statistics Using R Randall E. Schumacker, 2014-02-03 Providing easy-to-use R script programs that teach descriptive statistics, graphing, and other statistical methods, Learning Statistics Using R shows readers how to run and utilize R, a free integrated statistical suite that has an extensive library of functions. Randall E. Schumacker’s comprehensive book describes in detail the processing of variables in statistical procedures. Covering a wide range of topics, from probability and sampling distribution to statistical theorems and chi-square, this introductory book helps readers learn not only how to use formulae to calculate statistics, but also how specific statistics fit into the overall research process. Learning Statistics Using R covers data input from vectors, arrays, matrices and data frames, as well as the input of data sets from SPSS, SAS, STATA and other software packages. Schumacker’s text provides the freedom to effectively calculate, manipulate, and graphically display data, using R, on different computer operating systems without the expense of commercial software. Learning Statistics Using R places statistics within the framework of conducting research, where statistical research hypotheses can be directly addressed. Each chapter includes discussion and explanations, tables and graphs, and R functions and outputs to enrich readers′ understanding of statistics through statistical computing and modeling. |
probability and statistics for computer science forsyth: Statistics for Criminal Justice and Criminology in Practice and Research Jack Fitzgerald, Jerry Fitzgerald, 2013-01-17 Statistics for Criminal Justice and Criminology in Practice and Research—by Jack Fitzgerald and Jerry Fitzgerald—is an engaging and comprehensive introduction to the study of basic statistics for students pursuing careers as practitioners or researchers in both Criminal Justice and Criminology programs. This student-friendly text shows how to calculate a variety of descriptive and inferential statistics, recognize which statistics are appropriate for particular data analysis situations, and perform hypothesis tests using inferential statistics. But it is much more than a cook book. It encourages readers to think critically about the strengths and limitations of the statistics they are calculating, as well as how they may be misapplied and misleading. Examples of statistics and statistical analyses are drawn from the worlds of the practitioner as well as the policymaker and researcher. Students will also gain a clear understanding of major ethical issues in conducting statistical analyses and reporting results, as well as insight into the realities of the life of researchers and practitioners as they use statistics and statistical analyses in their day-to-day activities. |
probability and statistics for computer science forsyth: Understanding Probability Henk Tijms, 2007-07-26 In this fully revised second edition of Understanding Probability, the reader can learn about the world of probability in an informal way. The author demystifies the law of large numbers, betting systems, random walks, the bootstrap, rare events, the central limit theorem, the Bayesian approach and more. This second edition has wider coverage, more explanations and examples and exercises, and a new chapter introducing Markov chains, making it a great choice for a first probability course. But its easy-going style makes it just as valuable if you want to learn about the subject on your own, and high school algebra is really all the mathematical background you need. |
probability and statistics for computer science forsyth: Computer Vision: A Modern Approach David A. Forsyth, Jean Ponce, 2015-01-23 Appropriate for upper-division undergraduate- and graduate-level courses in computer vision found in departments of Computer Science, Computer Engineering and Electrical Engineering. This textbook provides the most complete treatment of modern computer vision methods by two of the leading authorities in the field. This accessible presentation gives both a general view of the entire computer vision enterprise and also offers sufficient detail for students to be able to build useful applications. Students will learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. |
probability and statistics for computer science forsyth: Interpreting Quantitative Data with SPSS Rachad Antonius, 2003-01-22 This is a textbook for introductory courses in quantitative research methods across the social sciences. It offers a detailed explanation of introductory statistical techniques and presents an overview of the contexts in which they should be applied. |
probability and statistics for computer science forsyth: All of Statistics Larry Wasserman, 2004-09-17 This book is for people who want to learn probability and statistics quickly. It brings together many of the main ideas in modern statistics in one place. The book is suitable for students and researchers in statistics, computer science, data mining and machine learning. This book covers a much wider range of topics than a typical introductory text on mathematical statistics. It includes modern topics like nonparametric curve estimation, bootstrapping and classification, topics that are usually relegated to follow-up courses. The reader is assumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. The text can be used at the advanced undergraduate and graduate level. Larry Wasserman is Professor of Statistics at Carnegie Mellon University. He is also a member of the Center for Automated Learning and Discovery in the School of Computer Science. His research areas include nonparametric inference, asymptotic theory, causality, and applications to astrophysics, bioinformatics, and genetics. He is the 1999 winner of the Committee of Presidents of Statistical Societies Presidents' Award and the 2002 winner of the Centre de recherches mathematiques de Montreal–Statistical Society of Canada Prize in Statistics. He is Associate Editor of The Journal of the American Statistical Association and The Annals of Statistics. He is a fellow of the American Statistical Association and of the Institute of Mathematical Statistics. |
probability and statistics for computer science forsyth: The Physics of Gamma-Ray Bursts Bing Zhang, 2019 A complete text on the physics of gamma-ray bursts, the most brilliant explosions since the Big Bang. |
probability and statistics for computer science forsyth: Designing for Virtual Communities in the Service of Learning Sasha Barab, Rob Kling, James H. Gray, 2004-03-29 Publisher Description |
probability and statistics for computer science forsyth: The Cambridge Companion to Paradise Lost Louis Schwartz, 2014-04-28 Short, accessible essays from fifteen recognized Milton specialists touching on the most important topics and themes in Paradise Lost. |
probability and statistics for computer science forsyth: Paediatric Neurology Rob Forsyth, Richard W. Newton, 2012-07-26 Paediatric Neurology contains all the necessary guidance to investigate, diagnose and treat many of the common and rare neurological conditions in paediatrics. Each condition is covered by its own topic providing information on symptoms and signs, complications and emergency intervention. Other contents include: anatomical diagrams for quick and easy reference; expert guidance on drug usage in paediatric neurology; highlighted emergencies section; and, North American perspectives on management. |
probability and statistics for computer science forsyth: Markov Chains J. R. Norris, 1998-07-28 Markov chains are central to the understanding of random processes. This is not only because they pervade the applications of random processes, but also because one can calculate explicitly many quantities of interest. This textbook, aimed at advanced undergraduate or MSc students with some background in basic probability theory, focuses on Markov chains and quickly develops a coherent and rigorous theory whilst showing also how actually to apply it. Both discrete-time and continuous-time chains are studied. A distinguishing feature is an introduction to more advanced topics such as martingales and potentials in the established context of Markov chains. There are applications to simulation, economics, optimal control, genetics, queues and many other topics, and exercises and examples drawn both from theory and practice. It will therefore be an ideal text either for elementary courses on random processes or those that are more oriented towards applications. |
probability and statistics for computer science forsyth: OpenIntro Statistics David Diez, Christopher Barr, Mine Çetinkaya-Rundel, 2015-07-02 The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources. |
probability and statistics for computer science forsyth: Statistical Rethinking Richard McElreath, 2016-01-05 Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas. |
probability and statistics for computer science forsyth: Business and Consumer Analytics: New Ideas Pablo Moscato, Natalie Jane de Vries, 2019-05-30 This two-volume handbook presents a collection of novel methodologies with applications and illustrative examples in the areas of data-driven computational social sciences. Throughout this handbook, the focus is kept specifically on business and consumer-oriented applications with interesting sections ranging from clustering and network analysis, meta-analytics, memetic algorithms, machine learning, recommender systems methodologies, parallel pattern mining and data mining to specific applications in market segmentation, travel, fashion or entertainment analytics. A must-read for anyone in data-analytics, marketing, behavior modelling and computational social science, interested in the latest applications of new computer science methodologies. The chapters are contributed by leading experts in the associated fields.The chapters cover technical aspects at different levels, some of which are introductory and could be used for teaching. Some chapters aim at building a common understanding of the methodologies and recent application areas including the introduction of new theoretical results in the complexity of core problems. Business and marketing professionals may use the book to familiarize themselves with some important foundations of data science. The work is a good starting point to establish an open dialogue of communication between professionals and researchers from different fields. Together, the two volumes present a number of different new directions in Business and Customer Analytics with an emphasis in personalization of services, the development of new mathematical models and new algorithms, heuristics and metaheuristics applied to the challenging problems in the field. Sections of the book have introductory material to more specific and advanced themes in some of the chapters, allowing the volumes to be used as an advanced textbook. Clustering, Proximity Graphs, Pattern Mining, Frequent Itemset Mining, Feature Engineering, Network and Community Detection, Network-based Recommending Systems and Visualization, are some of the topics in the first volume. Techniques on Memetic Algorithms and their applications to Business Analytics and Data Science are surveyed in the second volume; applications in Team Orienteering, Competitive Facility-location, and Visualization of Products and Consumers are also discussed. The second volume also includes an introduction to Meta-Analytics, and to the application areas of Fashion and Travel Analytics. Overall, the two-volume set helps to describe some fundamentals, acts as a bridge between different disciplines, and presents important results in a rapidly moving field combining powerful optimization techniques allied to new mathematical models critical for personalization of services. Academics and professionals working in the area of business anyalytics, data science, operations research and marketing will find this handbook valuable as a reference. Students studying these fields will find this handbook useful and helpful as a secondary textbook. |
probability and statistics for computer science forsyth: Statistical Analysis and Data Display Richard M. Heiberger, Burt Holland, 2013-06-29 1 Audience Students seeking master's degrees in applied statistics in the late 1960s and 1970s typically took a year-long sequence in statistical methods. Popular choices of the course text book in that period prior to the availability of high speed computing and graphics capability were those authored by Snedecor and Cochran, and Steel and Torrie. By 1980, the topical coverage in these classics failed to include a great many new and important elementary techniques in the data analyst's toolkit. In order to teach the statistical methods sequence with adequate coverage of topics, it became necessary to draw material from each of four or five text sources. Obviously, such a situation makes life difficult for both students and instructors. In addition, statistics students need to become proficient with at least one high-quality statistical software package. This book can serve as a standalone text for a contemporary year-long course in statistical methods at a level appropriate for statistics majors at the master's level or other quantitatively oriented disciplines at the doctoral level. The topics include both concepts and techniques developed many years ago and a variety of newer tools not commonly found in textbooks. |
probability and statistics for computer science forsyth: Human Rights in International Relations David P. Forsythe, 2006-05-01 This new edition of David Forsythe's successful textbook provides an authoritative overview of the place of human rights in international politics in an age of terrorism. The book focuses on four central themes: the resilience of human rights norms, the importance of 'soft' law, the key role of non-governmental organizations, and the changing nature of state sovereignty. Human rights standards are examined according to global, regional, and national levels of analysis with a separate chapter dedicated to transnational corporations. This second edition has been updated to reflect recent events, notably the creation of the ICC and events in Iraq and Guantanamo Bay, and new sections have been added on subjects such as the correlation between world conditions and the fate of universal human rights. Containing chapter-by-chapter guides to further reading and discussion questions, this book will be of interest to undergraduate and graduate students of human rights, and their teachers. David Forsythe received the Distinguished Scholar Award for 2007 from the Human Rights Section of the American Political Science Association. |
probability and statistics for computer science forsyth: Humble Pi Matt Parker, 2020-01-21 #1 INTERNATIONAL BESTSELLER AN ADAM SAVAGE BOOK CLUB PICK The book-length answer to anyone who ever put their hand up in math class and asked, “When am I ever going to use this in the real world?” “Fun, informative, and relentlessly entertaining, Humble Pi is a charming and very readable guide to some of humanity's all-time greatest miscalculations—that also gives you permission to feel a little better about some of your own mistakes.” —Ryan North, author of How to Invent Everything Our whole world is built on math, from the code running a website to the equations enabling the design of skyscrapers and bridges. Most of the time this math works quietly behind the scenes . . . until it doesn’t. All sorts of seemingly innocuous mathematical mistakes can have significant consequences. Math is easy to ignore until a misplaced decimal point upends the stock market, a unit conversion error causes a plane to crash, or someone divides by zero and stalls a battleship in the middle of the ocean. Exploring and explaining a litany of glitches, near misses, and mathematical mishaps involving the internet, big data, elections, street signs, lotteries, the Roman Empire, and an Olympic team, Matt Parker uncovers the bizarre ways math trips us up, and what this reveals about its essential place in our world. Getting it wrong has never been more fun. |
probability and statistics for computer science forsyth: The Cambridge Companion to Shakespeare on Film Russell Jackson, 2007-03-29 This companion is a collection of critical and historical essays on the films adapted from, and inspired by, Shakespeare's plays. The emphasis is on feature films for cinema with strong coverage Hamlet, Richard III, Macbeth, King Lear and Romeo and Juliet. |
probability and statistics for computer science forsyth: The Caucasus James Forsyth, 2015-11-26 For the first time, this major new survey of the Caucasus traces a unified narrative history of this complex and turbulent region at the borderlands of Europe, Asia and the Middle East, from prehistory to the present. For thousands of years the Caucasus has formed the intersection of routes of migration, invasion, trade and culture, and a geographical bridge between Europe and Asia, subject to recurring imperial invasion. Drawing on sources in English, Russian, Persian and Arabic, amongst others, this authoritative study centres on the region's many indigenous peoples, including Abkhazians, Armenians, Azerbaijanis, Chechens and Circassians, and their relations with outsiders who still play an important part in the life of the region today. The book presents a critical view of the historical role of Russian imperialism in events in the Caucasian countries, and the violent struggle of some of these peoples in their efforts to establish a precarious independence. |
probability and statistics for computer science forsyth: Multivariate analysis Kantilal Varichand Mardia, J.M. Bibby, J.T. Kent, 1982 |
probability and statistics for computer science forsyth: Introduction to Modern Time Series Analysis Gebhard Kirchgässner, Jürgen Wolters, 2008-08-27 This book presents modern developments in time series econometrics that are applied to macroeconomic and financial time series. It contains the most important approaches to analyze time series which may be stationary or nonstationary. |
probability and statistics for computer science forsyth: Critical Political Ecology Tim Forsyth, 2003 Describes new ways of looking at environmental science and politics, and discusses the problems of formulating and implementing environmental policy, particularly in the global arena and in developing countries. |
probability and statistics for computer science forsyth: Computer Vision - ECCV 2002 Anders Heyden, Gunnar Sparr, Mads Nielsen, Peter Johansen, 2002-05-17 Premiering in 1990 in Antibes, France, the European Conference on Computer Vision, ECCV, has been held biennially at venues all around Europe. These conferences have been very successful, making ECCV a major event to the computer vision community. ECCV 2002 was the seventh in the series. The privilege of organizing it was shared by three universities: The IT University of Copenhagen, the University of Copenhagen, and Lund University, with the conference venue in Copenhagen. These universities lie ̈ geographically close in the vivid Oresund region, which lies partly in Denmark and partly in Sweden, with the newly built bridge (opened summer 2000) crossing the sound that formerly divided the countries. We are very happy to report that this year’s conference attracted more papers than ever before, with around 600 submissions. Still, together with the conference board, we decided to keep the tradition of holding ECCV as a single track conference. Each paper was anonymously refereed by three different reviewers. For the ?nal selection, for the ?rst time for ECCV, a system with area chairs was used. These met with the program chairsinLundfortwodaysinFebruary2002toselectwhatbecame45oralpresentations and 181 posters.Also at this meeting the selection was made without knowledge of the authors’identity. |
probability and statistics for computer science forsyth: Occult Knowledge, Science, and Gender on the Shakespearean Stage Mary Floyd-Wilson, 2013-07-11 Belief in spirits, demons and the occult was commonplace in the early modern period, as was the view that these forces could be used to manipulate nature and produce new knowledge. In this groundbreaking study, Mary Floyd-Wilson explores these beliefs in relation to women and scientific knowledge, arguing that the early modern English understood their emotions and behavior to be influenced by hidden sympathies and antipathies in the natural world. Focusing on Twelfth Night, Arden of Faversham, A Warning for Fair Women, All's Well That Ends Well, The Changeling and The Duchess of Malfi, she demonstrates how these plays stage questions about whether women have privileged access to nature's secrets and whether their bodies possess hidden occult qualities. Discussing the relationship between scientific discourse and the occult, she goes on to argue that as experiential evidence gained scientific ground, women's presumed intimacy with nature's secrets was either diminished or demonized. |
probability and statistics for computer science forsyth: Probabilistic Graphical Models Luis Enrique Sucar, 2020-12-23 This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. It features new material on partially observable Markov decision processes, causal graphical models, causal discovery and deep learning, as well as an even greater number of exercises; it also incorporates a software library for several graphical models in Python. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Topics and features: Presents a unified framework encompassing all of the main classes of PGMs Explores the fundamental aspects of representation, inference and learning for each technique Examines new material on partially observable Markov decision processes, and graphical models Includes a new chapter introducing deep neural networks and their relation with probabilistic graphical models Covers multidimensional Bayesian classifiers, relational graphical models, and causal models Provides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projects Describes classifiers such as Gaussian Naive Bayes, Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian Networks Outlines the practical application of the different techniques Suggests possible course outlines for instructors This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference. Dr. Luis Enrique Sucar is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico. He received the National Science Prize en 2016. |
probability and statistics for computer science forsyth: Java Programming Ralph Bravaco, Shai Simonson, 2009-02-01 Java Programming, From The Ground Up, with its flexible organization, teaches Java in a way that is refreshing, fun, interesting and still has all the appropriate programming pieces for students to learn. The motivation behind this writing is to bring a logical, readable, entertaining approach to keep your students involved. Each chapter has a Bigger Picture section at the end of the chapter to provide a variety of interesting related topics in computer science. The writing style is conversational and not overly technical so it addresses programming concepts appropriately. Because of the flexibile organization of the text, it can be used for a one or two semester introductory Java programming class, as well as using Java as a second language. The text contains a large variety of carefully designed exercises that are more effective than the competition. |
probability and statistics for computer science forsyth: Probability, Information, And Physics: Problems With Quantum Mechanics In The Context Of A Novel Probability Theory Paolo Rocchi, 2023-08-29 This book deals with two main topics. The first is a theory that aims to unify the many interpretations of probability presented in the literature. The second uses this comprehensive theory of probability to answer the questions of quantum mechanics that have long been debated. The entire book proposes original solutions that several experimental cases substantiate. |
probability and statistics for computer science forsyth: Introduction to Business Statistics through R software Editor IJSMI, 2023-07-02 Statistical methods are now widely used in different fields such as Business and Management, Economics, Biological, Physical sciences and including the new fields such as Data Science and Machine Learning. The data which form the basis for the statistical methods helps us to take scientific and informed decisions. Statistical methods deal with the collection, compilation, analysis and making inference from the data. This book deals with the statistical methods which are useful in Business and Management decision making. The methods include Probability, Sampling, Correlation, Regression and Hypothesis Testing, Time Series, Forecasting and Non-Parametric tests and advanced statistical models. The book uses open source R statistical software to carry out different statistical analysis with sample datasets. This book is third in series of Statistics books by the Author. Some of the contents are adopted from the author’s previous statistical book introduction to statistical methods and non-parametric methods. |
probability and statistics for computer science forsyth: Data Warehousing and Analytics David Taniar, Wenny Rahayu, 2022-02-04 This textbook covers all central activities of data warehousing and analytics, including transformation, preparation, aggregation, integration, and analysis. It discusses the full spectrum of the journey of data from operational/transactional databases, to data warehouses and data analytics; as well as the role that data warehousing plays in the data processing lifecycle. It also explains in detail how data warehouses may be used by data engines, such as BI tools and analytics algorithms to produce reports, dashboards, patterns, and other useful information and knowledge. The book is divided into six parts, ranging from the basics of data warehouse design (Part I - Star Schema, Part II - Snowflake and Bridge Tables, Part III - Advanced Dimensions, and Part IV - Multi-Fact and Multi-Input), to more advanced data warehousing concepts (Part V - Data Warehousing and Evolution) and data analytics (Part VI - OLAP, BI, and Analytics). This textbook approaches data warehousing from the case study angle. Each chapter presents one or more case studies to thoroughly explain the concepts and has different levels of difficulty, hence learning is incremental. In addition, every chapter has also a section on further readings which give pointers and references to research papers related to the chapter. All these features make the book ideally suited for either introductory courses on data warehousing and data analytics, or even for self-studies by professionals. The book is accompanied by a web page that includes all the used datasets and codes as well as slides and solutions to exercises. |
probability and statistics for computer science forsyth: Machine Learning and Security Clarence Chio, David Freeman, 2018-01-26 Can machine learning techniques solve our computer security problems and finally put an end to the cat-and-mouse game between attackers and defenders? Or is this hope merely hype? Now you can dive into the science and answer this question for yourself. With this practical guide, you’ll explore ways to apply machine learning to security issues such as intrusion detection, malware classification, and network analysis. Machine learning and security specialists Clarence Chio and David Freeman provide a framework for discussing the marriage of these two fields, as well as a toolkit of machine-learning algorithms that you can apply to an array of security problems. This book is ideal for security engineers and data scientists alike. Learn how machine learning has contributed to the success of modern spam filters Quickly detect anomalies, including breaches, fraud, and impending system failure Conduct malware analysis by extracting useful information from computer binaries Uncover attackers within the network by finding patterns inside datasets Examine how attackers exploit consumer-facing websites and app functionality Translate your machine learning algorithms from the lab to production Understand the threat attackers pose to machine learning solutions |
probability and statistics for computer science forsyth: Artificial Intelligence in Highway Safety Subasish Das, 2022-09-29 Artificial Intelligence in Highway Safety provides cutting-edge advances in highway safety using AI. The author is a highway safety expert. He pursues highway safety within its contexts, while drawing attention to the predictive powers of AI techniques in solving complex problems for safety improvement. This book provides both theoretical and practical aspects of highway safety. Each chapter contains theory and its contexts in plain language with several real-life examples. It is suitable for anyone interested in highway safety and AI and it provides an illuminating and accessible introduction to this fast-growing research trend. Material supplementing the book can be found at https://github.com/subasish/AI_in_HighwaySafety. It offers a variety of supplemental materials, including data sets and R codes. |
probability and statistics for computer science forsyth: Computer Fundamentals Anita Goel, 2010-09 Computer Fundamentals is specifically designed to be used at the beginner level. It covers all the basic hardware and software concepts in computers and its peripherals in a very lucid manner. |
probability and statistics for computer science forsyth: Introduction to Machine Learning Ethem Alpaydin, 2014-08-22 Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments. |
probability and statistics for computer science forsyth: Technologies and Innovation Rafael Valencia-García, Martha Bucaram-Leverone, Javier Del Cioppo-Morstadt, Néstor Vera-Lucio, Emma Jácome-Murillo, 2022-10-22 This book constitutes the refereed proceedings of the 8th International Conference, CITI 2022, held in Guayaquil, Ecuador, during November 14–17, 2022. The 19 full papers included in this book were carefully reviewed and selected from 48 submissions. They were organized in topical sections as follows: machine Learning; knowledge based systems; computer vision and image analysis; networks, monitoring and collaborative systems; apps and user interfaces. |
probability and statistics for computer science forsyth: Pattern Recognition Efrén Mezura-Montes, Héctor Gabriel Acosta-Mesa, Jesús Ariel Carrasco-Ochoa, José Francisco Martínez-Trinidad, José Arturo Olvera-López, 2024-06-16 This book constitutes the proceedings of the 16th Mexican Conference on Pattern Recognition, MCPR 2024, held in Xalapa, Mexico, during June 19–22, 2024, Proceedings. The 36 full papers were carefully reviewed and selected from 68 submissions. The papers are organized in subject areas as follows: Pattern Recognition and Machine Learning Techniques; Computer Vision; Medical Applications of Pattern Recognition; Language Processing and Recognition; Deep Learning and Neural Networks. |
probability and statistics for computer science forsyth: Robot Vision Berthold Horn, 1986 This book presents a coherent approach to the fast moving field of machine vision, using a consistent notation based on a detailed understanding of the image formation process. It covers even the most recent research and will provide a useful and current reference for professionals working in the fields of machine vision, image processing, and pattern recognition. An outgrowth of the author's course at MIT, Robot Vision presents a solid framework for understanding existing work and planning future research. Its coverage includes a great deal of material that important to engineers applying machine vision methods in the real world. The chapters on binary image processing, for example, help explain and suggest how to improve the many commercial devices now available. And the material on photometric stereo and the extended Gaussian image points the way to what may be the next thrust in commercialization of the results in this area. The many exercises complement and extend the material in the text, and an extensive bibliography will serve as a useful guide to current research. Contents: Image Formation and Image Sensing. Binary Images: Geometrical Properties; Topological Properties. Regions and Image Segmentation. Image Processing: Continuous Images; Discrete Images. Edges and Edge Finding. Lightness and Color. Reflectance Map: Photometric Stereo Reflectance Map; Shape from Shading. Motion Field and Optical Flow. Photogrammetry and Stereo. Pattern Classification. Polyhedral Objects. Extended Gaussian Images. Passive Navigation and Structure from Motion. Picking Parts out of a Bin. Berthold Klaus Paul Horn is Associate Professor, Department of Electrical Engineering and Computer Science, MIT. Robot Vision is included in the MIT Electrical Engineering and Computer Science Series. |
Probability - Wikipedia
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 …
Probability - Math is Fun
How likely something is to happen. Many events can't be predicted with total certainty. The best we can say is how likely they are to happen, using the idea of probability. When a coin is …
Probability - Formula, Calculating, Find, Theorems, Examples
Probability is all about how likely is an event to happen. For a random experiment with sample space S, the probability of happening of an event A is calculated by the probability formula n …
7.5: Basic Concepts of Probability - Mathematics LibreTexts
Define probability including impossible and certain events. Calculate basic theoretical probabilities. Calculate basic empirical probabilities. Distinguish among theoretical, empirical, …
Probability Definition in Math - BYJU'S
Probability is a measure of the likelihood of an event to occur. Many events cannot be predicted with total certainty. We can predict only the chance of an event to occur i.e., how likely they are …
How To Calculate Probability - Math Steps, Examples & Questions
Free how to calculate probability math topic guide, including step-by-step examples, free practice questions, teaching tips and more!
What is Probability? Definition, Types, Formula, & Examples
Apr 7, 2025 · Probability is defined as the measure of how likely an event is to happen, usually expressed as a value between zero and one. A Probability of zero indicates that the event is …
Probability in Maths - GeeksforGeeks
May 16, 2025 · In this section, you will explore the fundamental concepts of probability, key formulas, conditional probability, and Bayes' Theorem. By the end, you'll have a clear …
Probability | Brilliant Math & Science Wiki
A probability is a number that represents the likelihood of an uncertain event. Probabilities are always between 0 and 1, inclusive. The larger the probability, the more likely the event is to …
Probability - Definition, Formula, Types, Terms, Solved Problems
Jan 15, 2021 · Probability is defined as the possibility of an event to occur. The formula for Probability is given as the ratio of the number of favorable events to the total number of …
Probability - Wikipedia
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the …
Probability - Math is Fun
How likely something is to happen. Many events can't be predicted with total certainty. The best we can say is how likely they are to happen, using the idea of probability. When a coin is tossed, …
Probability - Formula, Calculating, Find, Theorems, Examples
Probability is all about how likely is an event to happen. For a random experiment with sample space S, the probability of happening of an event A is calculated by the probability formula n (A)/n (S).
7.5: Basic Concepts of Probability - Mathematics LibreTexts
Define probability including impossible and certain events. Calculate basic theoretical probabilities. Calculate basic empirical probabilities. Distinguish among theoretical, empirical, and subjective …
Probability Definition in Math - BYJU'S
Probability is a measure of the likelihood of an event to occur. Many events cannot be predicted with total certainty. We can predict only the chance of an event to occur i.e., how likely they are …
How To Calculate Probability - Math Steps, Examples & Questions
Free how to calculate probability math topic guide, including step-by-step examples, free practice questions, teaching tips and more!
What is Probability? Definition, Types, Formula, & Examples
Apr 7, 2025 · Probability is defined as the measure of how likely an event is to happen, usually expressed as a value between zero and one. A Probability of zero indicates that the event is …
Probability in Maths - GeeksforGeeks
May 16, 2025 · In this section, you will explore the fundamental concepts of probability, key formulas, conditional probability, and Bayes' Theorem. By the end, you'll have a clear …
Probability | Brilliant Math & Science Wiki
A probability is a number that represents the likelihood of an uncertain event. Probabilities are always between 0 and 1, inclusive. The larger the probability, the more likely the event is to …
Probability - Definition, Formula, Types, Terms, Solved Problems
Jan 15, 2021 · Probability is defined as the possibility of an event to occur. The formula for Probability is given as the ratio of the number of favorable events to the total number of possible …