Advertisement
probability solved problems: Probability Through Problems Marek Capinski, Tomasz Jerzy Zastawniak, 2013-06-29 This book of problems has been designed to accompany an undergraduate course in probability. It will also be useful for students with interest in probability who wish to study on their own. The only prerequisite is basic algebra and calculus. This includes some elementary experience in set theory, sequences and series, functions of one variable, and their derivatives. Familiarity with integrals would be a bonus. A brief survey of terminology and notation in set theory and calculus is provided. Each chapter is divided into three parts: Problems, Hints, and Solutions. To make the book reasonably self-contained, all problem sections include expository material. Definitions and statements of important results are interlaced with relevant problems. The latter have been selected to motivate abstract definitions by concrete examples and to lead in manageable steps toward general results, as well as to provide exercises based on the issues and techniques introduced in each chapter. The hint sections are an important part of the book, designed to guide the reader in an informal manner. This makes Probability Through Prob lems particularly useful for self-study and can also be of help in tutorials. Those who seek mathematical precision will find it in the worked solutions provided. However, students are strongly advised to consult the hints prior to looking at the solutions, and, first of all, to try to solve each problem on their own. |
probability solved problems: Fifty Challenging Problems in Probability with Solutions Frederick Mosteller, 2012-04-26 Remarkable puzzlers, graded in difficulty, illustrate elementary and advanced aspects of probability. These problems were selected for originality, general interest, or because they demonstrate valuable techniques. Also includes detailed solutions. |
probability solved problems: The Probability Problem Solver Vance Berger, Research and Education Association, 1996 Exhaustive coverage is given to all major topics in probability. Among the many topics covered are set theory, Venn diagrams, discrete random variables, continuous random variables, moments, joint distributions, laws of large numbers, and the central limit theorem. Specific exercises and examples accompany each chapter. This book is a necessity for anyone studying probability and statistics. |
probability solved problems: 101 Special Practice Problems in Probability and Statistics Paul D. Berger, Samuel C. Hanna, Robert E. Maurer, 2005 |
probability solved problems: Introduction to Probability Joseph K. Blitzstein, Jessica Hwang, 2014-07-24 Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment. |
probability solved problems: Problems in Probability Theory, Mathematical Statistics and Theory of Random Functions Aram Aruti?u?novich Sveshnikov, Bernard R. Gelbaum, 1978-01-01 Approximately 1,000 problems — with answers and solutions included at the back of the book — illustrate such topics as random events, random variables, limit theorems, Markov processes, and much more. |
probability solved problems: Digital Dice Paul Nahin, 2013-03-24 Some probability problems are so difficult that they stump the smartest mathematicians. But even the hardest of these problems can often be solved with a computer and a Monte Carlo simulation, in which a random-number generator simulates a physical process, such as a million rolls of a pair of dice. This is what Digital Dice is all about: how to get numerical answers to difficult probability problems without having to solve complicated mathematical equations. Popular-math writer Paul Nahin challenges readers to solve twenty-one difficult but fun problems, from determining the odds of coin-flipping games to figuring out the behavior of elevators. Problems build from relatively easy (deciding whether a dishwasher who breaks most of the dishes at a restaurant during a given week is clumsy or just the victim of randomness) to the very difficult (tackling branching processes of the kind that had to be solved by Manhattan Project mathematician Stanislaw Ulam). In his characteristic style, Nahin brings the problems to life with interesting and odd historical anecdotes. Readers learn, for example, not just how to determine the optimal stopping point in any selection process but that astronomer Johannes Kepler selected his second wife by interviewing eleven women. The book shows readers how to write elementary computer codes using any common programming language, and provides solutions and line-by-line walk-throughs of a MATLAB code for each problem. Digital Dice will appeal to anyone who enjoys popular math or computer science. In a new preface, Nahin wittily addresses some of the responses he received to the first edition. |
probability solved problems: Classic Problems of Probability Prakash Gorroochurn, 2012-04-30 Winner of the 2012 PROSE Award for Mathematics from The American Publishers Awards for Professional and Scholarly Excellence. A great book, one that I will certainly add to my personal library. —Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexing Paradox, the book clearly outlines the puzzles and problems of probability, interweaving the discussion with rich historical detail and the story of how the mathematicians involved arrived at their solutions. Each problem is given an in-depth treatment, including detailed and rigorous mathematical proofs as needed. Some of the fascinating topics discussed by the author include: Buffon's Needle problem and its ingenious treatment by Joseph Barbier, culminating into a discussion of invariance Various paradoxes raised by Joseph Bertrand Classic problems in decision theory, including Pascal's Wager, Kraitchik's Neckties, and Newcomb's problem The Bayesian paradigm and various philosophies of probability Coverage of both elementary and more complex problems, including the Chevalier de Méré problems, Fisher and the lady testing tea, the birthday problem and its various extensions, and the Borel-Kolmogorov paradox Classic Problems of Probability is an eye-opening, one-of-a-kind reference for researchers and professionals interested in the history of probability and the varied problem-solving strategies employed throughout the ages. The book also serves as an insightful supplement for courses on mathematical probability and introductory probability and statistics at the undergraduate level. |
probability solved problems: Introduction to Counting and Probability Solutions Manual David Patrick, 2007-08 |
probability solved problems: Problems in Probability Albert N. Shiryaev, 2012-08-07 For the first two editions of the book Probability (GTM 95), each chapter included a comprehensive and diverse set of relevant exercises. While the work on the third edition was still in progress, it was decided that it would be more appropriate to publish a separate book that would comprise all of the exercises from previous editions, in addition to many new exercises. Most of the material in this book consists of exercises created by Shiryaev, collected and compiled over the course of many years while working on many interesting topics. Many of the exercises resulted from discussions that took place during special seminars for graduate and undergraduate students. Many of the exercises included in the book contain helpful hints and other relevant information. Lastly, the author has included an appendix at the end of the book that contains a summary of the main results, notation and terminology from Probability Theory that are used throughout the present book. This Appendix also contains additional material from Combinatorics, Potential Theory and Markov Chains, which is not covered in the book, but is nevertheless needed for many of the exercises included here. |
probability solved problems: Probability Geoffrey Grimmett, Dominic Welsh, 2014-08-21 Probability is an area of mathematics of tremendous contemporary importance across all aspects of human endeavour. This book is a compact account of the basic features of probability and random processes at the level of first and second year mathematics undergraduates and Masters' students in cognate fields. It is suitable for a first course in probability, plus a follow-up course in random processes including Markov chains. A special feature is the authors' attention to rigorous mathematics: not everything is rigorous, but the need for rigour is explained at difficult junctures. The text is enriched by simple exercises, together with problems (with very brief hints) many of which are taken from final examinations at Cambridge and Oxford. The first eight chapters form a course in basic probability, being an account of events, random variables, and distributions - discrete and continuous random variables are treated separately - together with simple versions of the law of large numbers and the central limit theorem. There is an account of moment generating functions and their applications. The following three chapters are about branching processes, random walks, and continuous-time random processes such as the Poisson process. The final chapter is a fairly extensive account of Markov chains in discrete time. This second edition develops the success of the first edition through an updated presentation, the extensive new chapter on Markov chains, and a number of new sections to ensure comprehensive coverage of the syllabi at major universities. |
probability solved problems: Introduction to Probability Dimitri Bertsekas, John N. Tsitsiklis, 2008-07-01 An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems. |
probability solved problems: Probability Rick Durrett, 2010-08-30 This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject. |
probability solved problems: Probability Problems and Solutions Stefan Hollos, J. Richard Hollos, 2013-04 This book will help you learn probability in the most effective way possible - through problem solving. It contains over 200 problems in discrete probability with detailed solutions for each. Most of the problems require very little mathematical background to solve. A good grasp of algebra is all that is required. Some prior exposure to probability or combinatorics will make things easier but the book has enough introductory material to cover any deficiency in those areas. There are sections that review the basics of discrete probability and combinatorics. There are also sections on advance topics in discrete probability that are helpful in solving the more difficult and interesting problems. The problems range widely in difficulty and variety. They begin very easy and increase in difficulty as you go. The first few are warm up problems to wake up your probability neurons and get you ready for what's to come. Some of the later problems can be quite challenging and may take some effort to solve. There are problems on letters and words, dice and coin problems, card problems, sports problems, Bayesian problems, collection problems, birthday problems and many many more. The almost endless variety of probability problems is one of the things that makes them so stimulating and fun to solve. |
probability solved problems: Introduction to Probability Charles Miller Grinstead, James Laurie Snell, 2012-10-30 This text is designed for an introductory probability course at the university level for sophomores, juniors, and seniors in mathematics, physical and social sciences, engineering, and computer science. It presents a thorough treatment of ideas and techniques necessary for a firm understanding of the subject. |
probability solved problems: The Pleasures of Probability Richard Isaac, 2013-11-11 The ideas of probability are all around us. Lotteries, casino gambling, the al most non-stop polling which seems to mold public policy more and more these are a few of the areas where principles of probability impinge in a direct way on the lives and fortunes of the general public. At a more re moved level there is modern science which uses probability and its offshoots like statistics and the theory of random processes to build mathematical descriptions of the real world. In fact, twentieth-century physics, in embrac ing quantum mechanics, has a world view that is at its core probabilistic in nature, contrary to the deterministic one of classical physics. In addition to all this muscular evidence of the importance of probability ideas it should also be said that probability can be lots of fun. It is a subject where you can start thinking about amusing, interesting, and often difficult problems with very little mathematical background. In this book, I wanted to introduce a reader with at least a fairly decent mathematical background in elementary algebra to this world of probabil ity, to the way of thinking typical of probability, and the kinds of problems to which probability can be applied. I have used examples from a wide variety of fields to motivate the discussion of concepts. |
probability solved problems: Introductory Business Statistics 2e Alexander Holmes, Barbara Illowsky, Susan Dean, 2023-12-13 Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License. |
probability solved problems: Understanding Probability Henk Tijms, 2007-07-26 In this fully revised second edition of Understanding Probability, the reader can learn about the world of probability in an informal way. The author demystifies the law of large numbers, betting systems, random walks, the bootstrap, rare events, the central limit theorem, the Bayesian approach and more. This second edition has wider coverage, more explanations and examples and exercises, and a new chapter introducing Markov chains, making it a great choice for a first probability course. But its easy-going style makes it just as valuable if you want to learn about the subject on your own, and high school algebra is really all the mathematical background you need. |
probability solved problems: Probability, Statistical Optics, and Data Testing B.R. Frieden, 2012-12-06 A basic skill in probability is practically demanded nowadays in many bran ches of optics, especially in image science. On the other hand, there is no text presently available that develops probability, and its companion fields stochastic processes and statistics, from the optical perspective. [Short of a book, a chapter was recently written for this purpose; see B. R. Frieden (ed. ): The Computer in Optical Research, Topics in Applied Physics, Vol. 41 (Springer, Berlin, Heidelberg, New York 1980) Chap. 3] Most standard texts either use illustrative examples and problems from electrical engineering or from the life sciences. The present book is meant to remedy this situation, by teaching probability with the specific needs of the optical researcher in mind. Virtually all the illustrative examples and applications of the theory are from image science and other fields of optics. One might say that photons have replaced electrons in nearly all considera tions here. We hope, in this manner, to make the learning of probability a pleasant and absorbing experience for optical workers. Some of the remaining applications are from information theory, a con cept which complements image science in particular. As will be seen, there are numerous tie-ins between the two concepts. Students will be adequately prepared for the material in this book if they have had a course in calculus, and know the basics of matrix manipulation. |
probability solved problems: Set Theory and Logic Robert R. Stoll, 2012-05-23 Explores sets and relations, the natural number sequence and its generalization, extension of natural numbers to real numbers, logic, informal axiomatic mathematics, Boolean algebras, informal axiomatic set theory, several algebraic theories, and 1st-order theories. |
probability solved problems: Probability and Statistics with Applications Leonard A. Asimow, Mark M. Maxwell, 2010 This text is listed on the Course of Reading for SOA Exam P, and for the CAS Exam ST. Probability and Statistics with Applications: A Problem Solving Text is an introductory textbook designed to make the subject accessible to college freshmen and sophomores concurrent with their study of calculus. The book provides the content to serve as the primary text for a standard two-semester advanced undergraduate course in mathematical probability and statistics. It is organized specifically to meet the needs of students who are preparing for the Society of Actuaries and Casualty Actuarial Society qualifying examination P/1 and the statistics component of CAS Exam 3L. Sample actuarial exam problems are integrated throughout the text along with an abundance of illustrative examples and 799 exercises. The chapters on mathematical statistics cover all of the learning objectives for the statistics portion of the Casualty Actuarial Society Exam ST syllabus. Here again, liberal use is made of past exam problems from CAS Exams 3 and 3L. A separate solutions manual for the text exercises is also available. |
probability solved problems: Elementary Probability David Stirzaker, 2003-08-18 Now available in a fully revised and updated second edition, this well established textbook provides a straightforward introduction to the theory of probability. The presentation is entertaining without any sacrifice of rigour; important notions are covered with the clarity that the subject demands. Topics covered include conditional probability, independence, discrete and continuous random variables, basic combinatorics, generating functions and limit theorems, and an introduction to Markov chains. The text is accessible to undergraduate students and provides numerous worked examples and exercises to help build the important skills necessary for problem solving. |
probability solved problems: Challenging Mathematical Problems with Elementary Solutions ?. ? ?????, Isaak Moiseevich I?Aglom, Basil Gordon, 1987-01-01 Volume II of a two-part series, this book features 74 problems from various branches of mathematics. Topics include points and lines, topology, convex polygons, theory of primes, and other subjects. Complete solutions. |
probability solved problems: Probability and Bayesian Modeling Jim Albert, Jingchen Hu, 2019-12-06 Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section. |
probability solved problems: Probability and Stochastic Processes Roy D. Yates, David J. Goodman, 2014-01-28 This text introduces engineering students to probability theory and stochastic processes. Along with thorough mathematical development of the subject, the book presents intuitive explanations of key points in order to give students the insights they need to apply math to practical engineering problems. The first five chapters contain the core material that is essential to any introductory course. In one-semester undergraduate courses, instructors can select material from the remaining chapters to meet their individual goals. Graduate courses can cover all chapters in one semester. |
probability solved problems: A Practical Guide To Quantitative Finance Interviews Xinfeng Zhou, 2020-05-05 This book will prepare you for quantitative finance interviews by helping you zero in on the key concepts that are frequently tested in such interviews. In this book we analyze solutions to more than 200 real interview problems and provide valuable insights into how to ace quantitative interviews. The book covers a variety of topics that you are likely to encounter in quantitative interviews: brain teasers, calculus, linear algebra, probability, stochastic processes and stochastic calculus, finance and programming. |
probability solved problems: Mathematical Statistics Jun Shao, 2008-02-03 This graduate textbook covers topics in statistical theory essential for graduate students preparing for work on a Ph.D. degree in statistics. The first chapter provides a quick overview of concepts and results in measure-theoretic probability theory that are useful in statistics. The second chapter introduces some fundamental concepts in statistical decision theory and inference. Chapters 3-7 contain detailed studies on some important topics: unbiased estimation, parametric estimation, nonparametric estimation, hypothesis testing, and confidence sets. A large number of exercises in each chapter provide not only practice problems for students, but also many additional results. In addition to improving the presentation, the new edition makes Chapter 1 a self-contained chapter for probability theory with emphasis in statistics. Added topics include useful moment inequalities, more discussions of moment generating and characteristic functions, conditional independence, Markov chains, martingales, Edgeworth and Cornish-Fisher expansions, and proofs to many key theorems such as the dominated convergence theorem, monotone convergence theorem, uniqueness theorem, continuity theorem, law of large numbers, and central limit theorem. A new section in Chapter 5 introduces semiparametric models, and a number of new exercises were added to each chapter. |
probability solved problems: Data Science Bookcamp Leonard Apeltsin, 2021-12-07 Learn data science with Python by building five real-world projects! Experiment with card game predictions, tracking disease outbreaks, and more, as you build a flexible and intuitive understanding of data science. In Data Science Bookcamp you will learn: - Techniques for computing and plotting probabilities - Statistical analysis using Scipy - How to organize datasets with clustering algorithms - How to visualize complex multi-variable datasets - How to train a decision tree machine learning algorithm In Data Science Bookcamp you’ll test and build your knowledge of Python with the kind of open-ended problems that professional data scientists work on every day. Downloadable data sets and thoroughly-explained solutions help you lock in what you’ve learned, building your confidence and making you ready for an exciting new data science career. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology A data science project has a lot of moving parts, and it takes practice and skill to get all the code, algorithms, datasets, formats, and visualizations working together harmoniously. This unique book guides you through five realistic projects, including tracking disease outbreaks from news headlines, analyzing social networks, and finding relevant patterns in ad click data. About the book Data Science Bookcamp doesn’t stop with surface-level theory and toy examples. As you work through each project, you’ll learn how to troubleshoot common problems like missing data, messy data, and algorithms that don’t quite fit the model you’re building. You’ll appreciate the detailed setup instructions and the fully explained solutions that highlight common failure points. In the end, you’ll be confident in your skills because you can see the results. What's inside - Web scraping - Organize datasets with clustering algorithms - Visualize complex multi-variable datasets - Train a decision tree machine learning algorithm About the reader For readers who know the basics of Python. No prior data science or machine learning skills required. About the author Leonard Apeltsin is the Head of Data Science at Anomaly, where his team applies advanced analytics to uncover healthcare fraud, waste, and abuse. Table of Contents CASE STUDY 1 FINDING THE WINNING STRATEGY IN A CARD GAME 1 Computing probabilities using Python 2 Plotting probabilities using Matplotlib 3 Running random simulations in NumPy 4 Case study 1 solution CASE STUDY 2 ASSESSING ONLINE AD CLICKS FOR SIGNIFICANCE 5 Basic probability and statistical analysis using SciPy 6 Making predictions using the central limit theorem and SciPy 7 Statistical hypothesis testing 8 Analyzing tables using Pandas 9 Case study 2 solution CASE STUDY 3 TRACKING DISEASE OUTBREAKS USING NEWS HEADLINES 10 Clustering data into groups 11 Geographic location visualization and analysis 12 Case study 3 solution CASE STUDY 4 USING ONLINE JOB POSTINGS TO IMPROVE YOUR DATA SCIENCE RESUME 13 Measuring text similarities 14 Dimension reduction of matrix data 15 NLP analysis of large text datasets 16 Extracting text from web pages 17 Case study 4 solution CASE STUDY 5 PREDICTING FUTURE FRIENDSHIPS FROM SOCIAL NETWORK DATA 18 An introduction to graph theory and network analysis 19 Dynamic graph theory techniques for node ranking and social network analysis 20 Network-driven supervised machine learning 21 Training linear classifiers with logistic regression 22 Training nonlinear classifiers with decision tree techniques 23 Case study 5 solution |
probability solved problems: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site. |
probability solved problems: 102 Combinatorial Problems Titu Andreescu, Zuming Feng, 2013-11-27 102 Combinatorial Problems consists of carefully selected problems that have been used in the training and testing of the USA International Mathematical Olympiad (IMO) team. Key features: * Provides in-depth enrichment in the important areas of combinatorics by reorganizing and enhancing problem-solving tactics and strategies * Topics include: combinatorial arguments and identities, generating functions, graph theory, recursive relations, sums and products, probability, number theory, polynomials, theory of equations, complex numbers in geometry, algorithmic proofs, combinatorial and advanced geometry, functional equations and classical inequalities The book is systematically organized, gradually building combinatorial skills and techniques and broadening the student's view of mathematics. Aside from its practical use in training teachers and students engaged in mathematical competitions, it is a source of enrichment that is bound to stimulate interest in a variety of mathematical areas that are tangential to combinatorics. |
probability solved problems: Probability and Statistics Michael J. Evans, Jeffrey S. Rosenthal, 2004 Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students. |
probability solved problems: Finite Automata and Regular Expressions Stefan Hollos, J. Richard Hollos, 2013-08 This is a book about solving problems related to automata and regular expressions. It helps you learn the subject in the most effective way possible, through problem solving. There are 84 problems with solutions. The introduction provides some background information on automata, regular expressions, and generating functions. The inclusion of generating functions is one of the unique features of this book. Few computer science books cover the topic of generating functions for automata and there are only a handful of combinatorics books that mention it. This is unfortunate since we believe the connection between computer science and combinatorics, that is opened up by these generating functions, can enrich both subjects and lead to new methods and applications. We cover a few interesting classes of problems for finite state automata and then show some examples of infinite state automata and recursive regular expressions. The final problem in the book involves constructing a recursive regular expression for matching regular expressions. This book explains: * Why automata are important. * The relationship of automata to regular expressions. * The difference between deterministic and nondeterministic automata. * How to get the regular expression from an automaton. * Why two seemingly different regular expressions can belong to the same automaton. * How the regular expression for an infinite automaton is different than one for a finite one. * The relationship of a regular expression to a regular language. * What a generating function for a language tells you about the language. * How to get a generating function from a regular expression. * How the generating function of a recursive regular expression is different from that of an ordinary regular expression. * How to test divisibility properties of integers (binary and decimal based) using automata. * How to construct an automaton to search for a given pattern, or for a given pattern not occurring. * How to construct an automaton for arbitrary patterns and alphabets. * How the recursive regular expression for nested parentheses leads to the Catalan numbers. Included in this book: * Divisibility problems in binary and decimal. * Pattern search problems in binary, ternary, and quaternary alphabets. * Pattern search problems for circular strings that contain or do not contain a given pattern. * Automata, regular expressions, and generating functions for gambling games. * Automata and generating functions for finite and infinite correctly nested parentheses. * The recursive regular expression for matching regular expressions over a binary alphabet. * A further reading list. |
probability solved problems: Probability David J. Morin, 2016 Preface -- Combinatorics -- Probability -- Expectation values -- Distributions -- Gaussian approximations -- Correlation and regression -- Appendices. |
probability solved problems: Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering, 2e Instructor Site Alfredo H-S. Ang, Wilson H. Tang, 2007 Apply the principles of probability and statistics to realistic engineering problems The easiest and most effective way to learn the principles of probabilistic modeling and statistical inference is to apply those principles to a variety of applications. That’s why Ang and Tang’s Second Edition of Probability Concepts in Engineering (previously titled Probability Concepts in Engineering Planning and Design) explains concepts and methods using a wide range of problems related to engineering and the physical sciences, particularly civil and environmental engineering. Now extensively revised with new illustrative problems and new and expanded topics, this Second Edition will help you develop a thorough understanding of probability and statistics and the ability to formulate and solve real-world problems in engineering. The authors present each basic principle using different examples, and give you the opportunity to enhance your understanding with practice problems. The text is ideally suited for students, as well as those wishing to learn and apply the principles and tools of statistics and probability through self-study. Key Features in this 2nd Edition: A new chapter (Chapter 5) covers Computer-Based Numerical and Simulation Methods in Probability, to extend and expand the analytical methods to more complex engineering problems. New and expanded coverage includes distribution of extreme values (Chapter 3), the Anderson-Darling method for goodness-of-fit test (Chapter 6), hypothesis testing (Chapter 6), the determination of confidence intervals in linear regression (Chapter 8), and Bayesian regression and correlation analyses (Chapter 9). Many new exercise problems in each chapter help you develop a working knowledge of concepts and methods. Provides a wide variety of examples, including many new to this edition, to help you learn and understand specific concepts. Illustrates the formulation and solution of engineering-type probabilistic problems through computer-based methods, including developing computer codes using commercial software such as MATLAB and MATHCAD. Introduces and develops analytical probabilistic models and shows how to formulate engineering problems under uncertainty, and provides the fundamentals for quantitative risk assessment. |
probability solved problems: Probability Anusha Illukkumbura, 2020-07-19 In the book Probability Questions and Answers, the writer has presented step by step solutions for 100 probability questions. These probability questions are solved using probability theories, venn diagrams, tree diagrams, contingency tables and combinations. A student can acquire a solid and deep knowledge on solving probability questions by using this book. If you have any suggestions contact me at http: //anushabooks.com/ |
probability solved problems: Solved Problems in Geostatistics Oy Leuangthong, K. Daniel Khan, Clayton V. Deutsch, 2011-09-20 This unique book presents a learn-by-doing introduction to geostatistics. Geostatistics provides the essential numerical tools for addressing research problems that are encountered in fields of study such as geology, engineering, and the earth sciences. Illustrating key methods through both theoretical and practical exercises, Solved Problems in Geostatistics is a valuable and well-organized collection of worked-out problems that allow the reader to master the statistical techniques for modeling data in the geological sciences. The book's scope of coverage begins with the elements from statistics and probability that form the foundation of most geostatistical methodologies, such as declustering, debiasing methods, and Monte Carlo simulation. Next, the authors delve into three fundamental areas in conventional geostatistics: covariance and variogram functions; kriging; and Gaussian simulation. Finally, special topics are introduced through problems involving utility theory, loss functions, and multiple-point geostatistics. Each topic is treated in the same clearly organized format. First, an objective presents the main concepts that will be established in the section. Next, the background and assumptions are outlined, supplying the comprehensive foundation that is necessary to begin work on the problem. A solution plan demonstrates the steps and considerations that have to be taken when working with the exercise, and the solution allows the reader to check their work. Finally, a remarks section highlights the overarching principles and noteworthy aspects of the problem. Additional exercises are available via a related Web site, which also includes data related to the book problems and software programs that facilitate their resolution. Enforcing a truly hands-on approach to the topic, Solved Problems in Geostatistics is an indispensable supplement for courses on geostatistics and spatial statistics a the upper-undergraduate and graduate levels.It also serves as an applied reference for practicing professionals in the geosciences. |
probability solved problems: Problems In Probability (2nd Edition) Terry M Mills, 2013-10-22 This is a book of problems in probability and their solutions. The work has been written for undergraduate students who have a background in calculus and wish to study probability.Probability theory is a key part of contemporary mathematics. The subject plays a key role in the insurance industry, modelling financial markets, and statistics in general — including all those fields of endeavour to which statistics is applied (e.g. health, physical sciences, engineering, economics, social sciences). Every student majoring in mathematics at university ought to take a course on probability or mathematical statistics. Probability is now a standard part of high school mathematics, and teachers ought to be well versed and confident in the subject. Problem solving is important in mathematics. This book combines problem solving and probability. |
probability solved problems: Solving Problems in Genetics Richard Kowles, 2013-12-01 The principle objective of this book is to help undergraduate students in the analysis of genetic problems. Many students have a great deal of difficulty doing genetic analysis, and the book will be useful regardless of which genetics text is being used. Most texts provide some kinds of problems and answers: few, if any, however, show the students how to actually solve the problem. Often the student has no idea how the answer was derived. This work emphasizes solutions, not just answers. The strategy is to provide the student with the essential steps and the reasoning involved in conducting the analysis. Throughout the book, an attempt is made to present a balanced account of genetics. Topics, therefore, center about Mendelian, cytogenetic, molecular, quantitative, and population genetics, with a few more specialized areas. Whenever possible the student is provided with the appropriate basic statistics necessary to make some of the analyses. The book also builds on itself; that is, analytical methods learned in early parts of the book are subsequently revisited and used for later analyses. A deliberate attempt is made to make complex concepts simple, and sometimes to point out that apparently simple concepts are sometimes less so on further investigation. Any student taking a genetics course will find this book an invaluable aid to achieving a good understanding of genetic principles and practice. |
Probability - Wikipedia
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 …
Probability - Math is Fun
How likely something is to happen. Many events can't be predicted with total certainty. The best we can say is how likely they are to happen, using the idea of probability. When a coin is …
Probability - Formula, Calculating, Find, Theorems, Examples
Probability is all about how likely is an event to happen. For a random experiment with sample space S, the probability of happening of an event A is calculated by the probability formula n …
7.5: Basic Concepts of Probability - Mathematics LibreTexts
Define probability including impossible and certain events. Calculate basic theoretical probabilities. Calculate basic empirical probabilities. Distinguish among theoretical, empirical, …
Probability Definition in Math - BYJU'S
Probability is a measure of the likelihood of an event to occur. Many events cannot be predicted with total certainty. We can predict only the chance of an event to occur i.e., how likely they …
How To Calculate Probability - Math Steps, Examples & Questions
Free how to calculate probability math topic guide, including step-by-step examples, free practice questions, teaching tips and more!
What is Probability? Definition, Types, Formula, & Examples
Apr 7, 2025 · Probability is defined as the measure of how likely an event is to happen, usually expressed as a value between zero and one. A Probability of zero indicates that the event is …
Probability in Maths - GeeksforGeeks
May 16, 2025 · In this section, you will explore the fundamental concepts of probability, key formulas, conditional probability, and Bayes' Theorem. By the end, you'll have a clear …
Probability | Brilliant Math & Science Wiki
A probability is a number that represents the likelihood of an uncertain event. Probabilities are always between 0 and 1, inclusive. The larger the probability, the more likely the event is to …
Probability - Definition, Formula, Types, Terms, Solved Problems
Jan 15, 2021 · Probability is defined as the possibility of an event to occur. The formula for Probability is given as the ratio of the number of favorable events to the total number of …
Probability - Wikipedia
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 …
Probability - Math is Fun
How likely something is to happen. Many events can't be predicted with total certainty. The best we can say is how likely they are to happen, using the idea of probability. When a coin is …
Probability - Formula, Calculating, Find, Theorems, Examples
Probability is all about how likely is an event to happen. For a random experiment with sample space S, the probability of happening of an event A is calculated by the probability formula n …
7.5: Basic Concepts of Probability - Mathematics LibreTexts
Define probability including impossible and certain events. Calculate basic theoretical probabilities. Calculate basic empirical probabilities. Distinguish among theoretical, empirical, …
Probability Definition in Math - BYJU'S
Probability is a measure of the likelihood of an event to occur. Many events cannot be predicted with total certainty. We can predict only the chance of an event to occur i.e., how likely they …
How To Calculate Probability - Math Steps, Examples & Questions
Free how to calculate probability math topic guide, including step-by-step examples, free practice questions, teaching tips and more!
What is Probability? Definition, Types, Formula, & Examples
Apr 7, 2025 · Probability is defined as the measure of how likely an event is to happen, usually expressed as a value between zero and one. A Probability of zero indicates that the event is …
Probability in Maths - GeeksforGeeks
May 16, 2025 · In this section, you will explore the fundamental concepts of probability, key formulas, conditional probability, and Bayes' Theorem. By the end, you'll have a clear …
Probability | Brilliant Math & Science Wiki
A probability is a number that represents the likelihood of an uncertain event. Probabilities are always between 0 and 1, inclusive. The larger the probability, the more likely the event is to …
Probability - Definition, Formula, Types, Terms, Solved Problems
Jan 15, 2021 · Probability is defined as the possibility of an event to occur. The formula for Probability is given as the ratio of the number of favorable events to the total number of …