Advertisement
principles of population genetics hartl: Principles of Population Genetics Daniel L. Hartl, 1980 **** The first edition (1980) is one of the 10 titles on quantitative genetics/population genetics cited in BCL3. For upper-level undergraduates and beginning graduate students with some background in genetics and population biology. Contains nine chapters with illustrations, boxed examples and problems. Annotation copyrighted by Book News, Inc., Portland, OR |
principles of population genetics hartl: A Primer of Population Genetics Daniel L. Hartl, 1988 The use of molecular methods to study genetic polymorphisms has made a familiarity with population genetics essential for any biologist whose work is at the population level. A Primer of Population Genetics, Third Edition provides a concise but comprehensive introduction to population genetics. The four chapters of the book address genetic variation, the causes of evolution, molecular population genetics, and the genetic architecture of complex traits. Chapter-end problems reinforce ideas and, while there are some equations, the emphasis is on explanation rather than derivation. |
principles of population genetics hartl: A Primer of Ecological Genetics Jeffrey K. Conner, Daniel L. Hartl, 2004-01 This book covers basic concepts in population and quantitative genetics, including measuring selection on phenotypic traits. The emphasis is on material applicable to field studies of evolution focusing on ecologically important traits. Topics addressed are critical for training students in ecology, evolution, conservation biology, agriculture, forestry, and wildlife management. Many texts in this field are too complex and mathematical to allow the average beginning student to readily grasp the key concepts. A Primer of Ecological Genetics, in contrast, employs mathematics and statistics-fully explained, but at a less advanced level-as tools to improve understanding of biological principles. The main goal is to enable students to understand the concepts well enough that they can gain entry into the primary literature. Integration of the different chapters of the book shows students how diverse concepts relate to each other. |
principles of population genetics hartl: Introduction to Population Genetics Richard Halliburton, 2004 Making the theory of population genetics relevant to readers, this book explains the related mathematics with a logical organization. It presents the quantitative aspects of population genetics, and employs examples of human genetics, medical evolution, human evolution, and endangered species. For an introduction to, and understanding of, population genetics. |
principles of population genetics hartl: Population Genetics Matthew Hamilton, 2009-04-08 This book aims to make population genetics approachable, logical and easily understood. To achieve these goals, the book’s design emphasizes well explained introductions to key principles and predictions. These are augmented with case studies as well as illustrations along with introductions to classical hypotheses and debates. Pedagogical features in the text include: Interact boxes that guide readers step-by-step through computer simulations using public domain software. Math boxes that fully explain mathematical derivations. Methods boxes that give insight into the use of actual genetic data. Numerous Problem boxes are integrated into the text to reinforce concepts as they are encountered. Dedicated website at www.wiley.com/go/hamiltongenetics This text also offers a highly accessible introduction to coalescent theory, the major conceptual advance in population genetics of the last two decades. |
principles of population genetics hartl: A Primer of Molecular Population Genetics Asher D. Cutter, 2019 What are the genomic signatures of adaptations in DNA? How often does natural selection dictate changes to DNA? How does the ebb and flow in the abundance of individuals over time get marked onto chromosomes to record genetic history? Molecular population genetics seeks to answer such questions by explaining genetic variation and molecular evolution from micro-evolutionary principles. It provides a way to learn about how evolution works and how it shapes species by incorporating molecular details of DNA as the heritable material. It enables us to understand the logic of how mutations originate, change in abundance in populations, and become fixed as DNA sequence divergence between species. With the revolutionary advances in genomic data acquisition, understanding molecular population genetics is now a fundamental requirement for today's life scientists. These concepts apply in analysis of personal genomics, genome-wide association studies, landscape and conservation genetics, forensics, molecular anthropology, and selection scans. This book introduces, in an accessible way, the bare essentials of the theory and practice of molecular population genetics. |
principles of population genetics hartl: Essential Genetics Daniel L. Hartl, Elizabeth W. Jones, 2006 Completely updated to reflect new discoveries and current thinking in the field, the Fourth Edition of Essential Genetics is designed for the shorter, less comprehensive introductory course in genetics. The text is written in a clear, lively, and concise manner and includes many special features that make the book user friendly. Topics were carefully chosen to provide a solid foundation for understanding the basic processes of gene transmission, mutation, expression, and regulation. The text also helps students develop skills in problem solving, achieve a sense of the social and historical context in which genetics has developed, and become aware of the genetic resources and information available through the Internet. |
principles of population genetics hartl: Understanding Population Genetics Torbjörn Säll, Bengt O. Bengtsson, 2017-07-14 An inspiring introduction to a vital scientific field. The reader is taken through ten mathematical derivations that lead to important results, explaining in a hands-on manner the key concepts and methods of theoretical population genetics. The derivations are carefully worked out and easy to follow. Particular attention is given to the underlying assumptions and the mathematics used. The results are discussed and broadened out with relevant current implications. All topics feature questions with helpful answers. The book is intended for the reader who already knows some population genetics but requires a more comprehensive understanding. It is particularly suited to those who analyse genetic data and wish to better grasp what their results actually mean. It will also be helpful for those who wish to understand how population genetics contributes to the explanation of evolution. Or as the writers claim: If one wants to understand life in all its improbable and amazing richness one must start by understanding population genetics. |
principles of population genetics hartl: Population Genetics John H. Gillespie, 2004-08-06 Publisher Description |
principles of population genetics hartl: Rapidly Evolving Genes and Genetic Systems Rama S. Singh, Jianping Xu, Rob J. Kulathinal, 2012-06-28 A range of theories on the rates of evolution-from static to gradual to punctuated to quantum-have been developed, mostly by comparing morphological changes over geological timescales as described in the fossil record. |
principles of population genetics hartl: Epigenetic Inheritance and Evolution Eva Jablonka, Marion J. Lamb, 1995 Does the inheritance of acquired characteristics play a significant role in evolution? In this book, Eva Jablonka and Marion J. Lamb attempt to answer that question with an original, provocative exploration of the nature and origin of hereditary variations. Starting with a historical account of Lamarck's ideas and the reasons they have fallen in disrepute, the authors go on to challenge the prevailing assumption that all heritable variation is random and the result of variation in DNA base sequences. They also detail recent breakthroughs in our understanding of the molecular mechanisms underlying inheritance--including several pathways not envisioned by classical population genetics--and argue that these advances need to be more fully incorporated into mainstream evolutionary theory. Throughout, the book offers a new look at the evidence for and against the hereditability of environmentally induced changes, and addresses timely questions about the importance of non-Mendelian inheritance. A glossary and extensive list of references round out the book. Urging a reconsideration of the present DNA-centric view prevalent in the field, Epigentic Inheritance and Evolution will make fascinating and important reading for students and researchers in evolution, genetics, ecology, molecular biology, developmental biology, and the history and philosophy of science. |
principles of population genetics hartl: Genetics Daniel L. Hartl, Elizabeth W. Jones, 1998 |
principles of population genetics hartl: Mathematical and Statistical Methods for Genetic Analysis Kenneth Lange, 2012-12-06 During the past decade, geneticists have cloned scores of Mendelian disease genes and constructed a rough draft of the entire human genome. The unprecedented insights into human disease and evolution offered by mapping, cloning, and sequencing will transform medicine and agriculture. This revolution depends vitally on the contributions of applied mathematicians, statisticians, and computer scientists. Mathematical and Statistical Methods for Genetic Analysis is written to equip students in the mathematical sciences to understand and model the epidemiological and experimental data encountered in genetics research. Mathematical, statistical, and computational principles relevant to this task are developed hand in hand with applications to population genetics, gene mapping, risk prediction, testing of epidemiological hypotheses, molecular evolution, and DNA sequence analysis. Many specialized topics are covered that are currently accessible only in journal articles. This second edition expands the original edition by over 100 pages and includes new material on DNA sequence analysis, diffusion processes, binding domain identification, Bayesian estimation of haplotype frequencies, case-control association studies, the gamete competition model, QTL mapping and factor analysis, the Lander-Green-Kruglyak algorithm of pedigree analysis, and codon and rate variation models in molecular phylogeny. Sprinkled throughout the chapters are many new problems. |
principles of population genetics hartl: Population Genetics Ching Chun Li, 1958 |
principles of population genetics hartl: Probability Models for DNA Sequence Evolution Rick Durrett, 2013-03-09 Our basic question is: Given a collection of DNA sequences, what underlying forces are responsible for the observed patterns of variability? To approach this question we introduce and analyze a number of probability models: the Wright-Fisher model, the coalescent, the infinite alleles model, and the infinite sites model. We study the complications that come from nonconstant population size, recombination, population subdivision, and three forms of natural selection: directional selection, balancing selection, and background selection. These theoretical results set the stage for the investigation of various statistical tests to detect departures from neutral evolution. The final chapter studies the evolution of whole genomes by chromosomal inversions, reciprocal translocations, and genome duplication. Throughout the book, the theory is developed in close connection with data from more than 60 experimental studies from the biology literature that illustrate the use of these results. This book is written for mathematicians and for biologists alike. We assume no previous knowledge of concepts from biology and only a basic knowledge of probability: a one semester undergraduate course and some familiarity with Markov chains and Poisson processes. Rick Durrett received his Ph.D. in operations research from Stanford University in 1976. He taught in the UCLA mathematics department before coming to Cornell in 1985. He is the author of six books and 125 research papers, and is the academic father of more than 30 Ph.D. students. His current interests are the use of probability models in genetics and ecology, and decreasing the mean and variance of his golf. |
principles of population genetics hartl: The Evaluation of Forensic DNA Evidence National Research Council, Division on Earth and Life Studies, Commission on Life Sciences, Committee on DNA Forensic Science: An Update, 1996-12-12 In 1992 the National Research Council issued DNA Technology in Forensic Science, a book that documented the state of the art in this emerging field. Recently, this volume was brought to worldwide attention in the murder trial of celebrity O. J. Simpson. The Evaluation of Forensic DNA Evidence reports on developments in population genetics and statistics since the original volume was published. The committee comments on statements in the original book that proved controversial or that have been misapplied in the courts. This volume offers recommendations for handling DNA samples, performing calculations, and other aspects of using DNA as a forensic toolâ€modifying some recommendations presented in the 1992 volume. The update addresses two major areas: Determination of DNA profiles. The committee considers how laboratory errors (particularly false matches) can arise, how errors might be reduced, and how to take into account the fact that the error rate can never be reduced to zero. Interpretation of a finding that the DNA profile of a suspect or victim matches the evidence DNA. The committee addresses controversies in population genetics, exploring the problems that arise from the mixture of groups and subgroups in the American population and how this substructure can be accounted for in calculating frequencies. This volume examines statistical issues in interpreting frequencies as probabilities, including adjustments when a suspect is found through a database search. The committee includes a detailed discussion of what its recommendations would mean in the courtroom, with numerous case citations. By resolving several remaining issues in the evaluation of this increasingly important area of forensic evidence, this technical update will be important to forensic scientists and population geneticistsâ€and helpful to attorneys, judges, and others who need to understand DNA and the law. Anyone working in laboratories and in the courts or anyone studying this issue should own this book. |
principles of population genetics hartl: Genetics of Populations Philip Hedrick, 2011-08-24 The Fourth Edition of Genetics of Populations is the most current, comprehensive, and accessible introduction to the field for advanced undergraduate and graduate students, and researchers in genetics, evolution, conservation, and related fields. In the past several years, interest in the application of population genetics principles to new molecular data has increased greatly, and Dr. Hedrick's new edition exemplifies his commitment to keeping pace with this dynamic area of study. Reorganized to allow students to focus more sharply on key material, the Fourth Edition integrates coverage of theoretical issues with a clear presentation of experimental population genetics and empirical data. Drawing examples from both recent and classic studies, and using a variety of organisms to illustrate the vast developments of population genetics, this text provides students and researchers with the most comprehensive resource in the field. |
principles of population genetics hartl: The Origins of Genome Architecture Michael Lynch, 2007-06 The availability of genomic blueprints for hundreds of species has led to a transformation in biology, encouraging the proliferation of adaptive arguments for the evolution of genomic features. This text explains why the details matter and presents a framework for how the architectural diversity of eukaryotic genomes and genes came to arise. |
principles of population genetics hartl: Evolutionary Genetics Glenn-Peter Sætre, Mark Ravinet, 2019 With recent technological advances, vast quantities of genetic and genomic data are being generated at an ever-increasing pace. The explosion in access to data has transformed the field of evolutionary genetics. A thorough understanding of evolutionary principles is essential for making sense of this, but new skill sets are also needed to handle and analyze big data. This contemporary textbook covers all the major components of modern evolutionary genetics, carefully explaining fundamental processes such as mutation, natural selection, genetic drift, and speciation. It also draws on a rich literature of exciting and inspiring examples to demonstrate the diversity of evolutionary research, including an emphasis on how evolution and selection has shaped our own species. Practical experience is essential for developing an understanding of how to use genetic and genomic data to analyze and interpret results in meaningful ways. In addition to the main text, a series of online tutorials using the R language serves as an introduction to programming, statistics, and analysis. Indeed the R environment stands out as an ideal all-purpose source platform to handle and analyze such data. The book and its online materials take full advantage of the authors' own experience in working in a post-genomic revolution world, and introduces readers to the plethora of molecular and analytical methods that have only recently become available. Evolutionary Genetics is an advanced but accessible textbook aimed principally at students of various levels (from undergraduate to postgraduate) but also for researchers looking for an updated introduction to modern evolutionary biology and genetics. |
principles of population genetics hartl: The Causes of Evolution John Burdon Haldane, 1990-10-10 J.B.S. Haldane (1892-1964), one of the founders of the science of population genetics, was also one of the greatest practitioners of the art of explaining science to the layperson. Haldane was a superb story-teller, as his essays and his children's books attest. In The Causes of Evolution he not only helped to marry the new science of genetics to the older one of evolutionary theory but also provided an accessible introduction to the genetical basis of evolution by natural selection. Egbert Leigh's new introduction to this classic work places it in the context of the ongoing study of evolution. Describing Haldane's refusal to be confined by a System as a light-hearted one, Leigh points out that we are now finding that Haldane's questions are the appropriate next stage in learning how adaptation can evolve. We are now ready to reap the benefit of the fact that Haldane was a free man in the sense that really matters. |
principles of population genetics hartl: Deontology, Responsibility, and Equality Kasper Lippert-Rasmussen, 2005 Three questions that loom large in moral and political philosophy are these: Can deontological moral constraints be justified? When, if ever, are we morally responsible for what we do? How is the ideal of equality best configured? Deontology, Responsibility and Equality deals with selected aspects of these three broad questions. It critically discusses certain attempts by Frances Kamm and Thomas Nagel (among others) to account for the impermissibility of minimizing violations in terms of moral status. Also, it challenges the view that there is a morally relevant difference between doing and allowing harm and, especially, between killing and letting die. In relation to the second question, it concentrates on recent developments within compatibilist accounts of moral responsibility prompted by the work of Harry Frankfurt. It challenges his purported refutation of the principle of alternative possibilities as well as certain positive compatibilist, identification- based accounts of respon |
principles of population genetics hartl: An Introduction to Statistical Genetic Data Analysis Melinda C. Mills, Nicola Barban, Felix C. Tropf, 2020-02-18 A comprehensive introduction to modern applied statistical genetic data analysis, accessible to those without a background in molecular biology or genetics. Human genetic research is now relevant beyond biology, epidemiology, and the medical sciences, with applications in such fields as psychology, psychiatry, statistics, demography, sociology, and economics. With advances in computing power, the availability of data, and new techniques, it is now possible to integrate large-scale molecular genetic information into research across a broad range of topics. This book offers the first comprehensive introduction to modern applied statistical genetic data analysis that covers theory, data preparation, and analysis of molecular genetic data, with hands-on computer exercises. It is accessible to students and researchers in any empirically oriented medical, biological, or social science discipline; a background in molecular biology or genetics is not required. The book first provides foundations for statistical genetic data analysis, including a survey of fundamental concepts, primers on statistics and human evolution, and an introduction to polygenic scores. It then covers the practicalities of working with genetic data, discussing such topics as analytical challenges and data management. Finally, the book presents applications and advanced topics, including polygenic score and gene-environment interaction applications, Mendelian Randomization and instrumental variables, and ethical issues. The software and data used in the book are freely available and can be found on the book's website. |
principles of population genetics hartl: Coalescent Theory John Wakely, 2016-04-22 This textbook provides the foundation for molecular population genetics and genomics. It shows the conceptual framework for studies of DNA sequence variation within species, and is the source of essential tools for making inferences about mutation, recombination, population structure and natural selection from DNA sequence data. |
principles of population genetics hartl: Analysis of Genes and Genomes Richard J. Reece, 2004 Analysis of GenesA and Genomes is a clear introduction to the theoretical and practical basis of genetic engineering, gene cloning and molecular biology. All aspects of genetic engineering in the post-genomic era are covered, beginning with the basics of DNA structure and DNA metabolism. Using an example-driven approach, the fundamentals of creating mutations in DNA, cloning in bacteria, yeast, plants and animals are all clearly presented. Newer technologies such as DNA macro and macroarrays, proteomics and bioinformatics are introduced in later chapters helping students to analyse and understand the vast amounts of data that are now available through genome sequence and function projects. Aimed at students with a basic knowledge of the molecular side of biology, this will be invaluable to those looking to better understand the complexities and capabilities of these important new technologies. A modern post-genome era introduction to key techniques used in genetic engineering. An example driven past-to-present approach to allow the experiments of today to be placed in an historical context Beautifully illustrated in full colour throughout. Associated website including updates, additional content and illustrations |
principles of population genetics hartl: Population Genetics and Microevolutionary Theory Alan R. Templeton, 2006-09-29 The advances made possible by the development of molecular techniques have in recent years revolutionized quantitative genetics and its relevance for population genetics. Population Genetics and Microevolutionary Theory takes a modern approach to population genetics, incorporating modern molecular biology, species-level evolutionary biology, and a thorough acknowledgment of quantitative genetics as the theoretical basis for population genetics. Logically organized into three main sections on population structure and history, genotype-phenotype interactions, and selection/adaptation Extensive use of real examples to illustrate concepts Written in a clear and accessible manner and devoid of complex mathematical equations Includes the author's introduction to background material as well as a conclusion for a handy overview of the field and its modern applications Each chapter ends with a set of review questions and answers Offers helpful general references and Internet links |
principles of population genetics hartl: Primer of Genetic Analysis James N. Thompson, Jr, Jenna J. Hellack, Gerald Braver, David S. Durica, 2007-10-01 This third edition of a student-tested primer provides guided instruction in the analysis and interpretation of genetic principles and problem solving. All core areas of genetics are covered. Each section is introduced with a summary of key concepts and terms. A series of problems, graded from simple to more complex, then allows students to test their understanding of the material. Each question is accompanied by a detailed explanation. This new edition includes additional problems, extensively expanded coverage of molecular biology throughout, new overview chapters, and an expanded glossary. |
principles of population genetics hartl: Handbook of Statistical Genetics David J. Balding, Martin Bishop, Chris Cannings, 2008-06-10 The Handbook for Statistical Genetics is widely regarded as the reference work in the field. However, the field has developed considerably over the past three years. In particular the modeling of genetic networks has advanced considerably via the evolution of microarray analysis. As a consequence the 3rd edition of the handbook contains a much expanded section on Network Modeling, including 5 new chapters covering metabolic networks, graphical modeling and inference and simulation of pedigrees and genealogies. Other chapters new to the 3rd edition include Human Population Genetics, Genome-wide Association Studies, Family-based Association Studies, Pharmacogenetics, Epigenetics, Ethic and Insurance. As with the second Edition, the Handbook includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between the chapters, tying the different areas together. With heavy use of up-to-date examples, real-life case studies and references to web-based resources, this continues to be must-have reference in a vital area of research. Edited by the leading international authorities in the field. David Balding - Department of Epidemiology & Public Health, Imperial College An advisor for our Probability & Statistics series, Professor Balding is also a previous Wiley author, having written Weight-of-Evidence for Forensic DNA Profiles, as well as having edited the two previous editions of HSG. With over 20 years teaching experience, he’s also had dozens of articles published in numerous international journals. Martin Bishop – Head of the Bioinformatics Division at the HGMP Resource Centre As well as the first two editions of HSG, Dr Bishop has edited a number of introductory books on the application of informatics to molecular biology and genetics. He is the Associate Editor of the journal Bioinformatics and Managing Editor of Briefings in Bioinformatics. Chris Cannings – Division of Genomic Medicine, University of Sheffield With over 40 years teaching in the area, Professor Cannings has published over 100 papers and is on the editorial board of many related journals. Co-editor of the two previous editions of HSG, he also authored a book on this topic. |
principles of population genetics hartl: Molecular Population Genetics Matthew W. Hahn, 2018 |
principles of population genetics hartl: Using Science to Improve the BLM Wild Horse and Burro Program National Research Council, Division on Earth and Life Studies, Board on Agriculture and Natural Resources, Committee to Review the Bureau of Land Management Wild Horse and Burro Management Program, 2013-10-04 Using Science to Improve the BLM Wild Horse and Burro Program: A Way Forward reviews the science that underpins the Bureau of Land Management's oversight of free-ranging horses and burros on federal public lands in the western United States, concluding that constructive changes could be implemented. The Wild Horse and Burro Program has not used scientifically rigorous methods to estimate the population sizes of horses and burros, to model the effects of management actions on the animals, or to assess the availability and use of forage on rangelands. Evidence suggests that horse populations are growing by 15 to 20 percent each year, a level that is unsustainable for maintaining healthy horse populations as well as healthy ecosystems. Promising fertility-control methods are available to help limit this population growth, however. In addition, science-based methods exist for improving population estimates, predicting the effects of management practices in order to maintain genetically diverse, healthy populations, and estimating the productivity of rangelands. Greater transparency in how science-based methods are used to inform management decisions may help increase public confidence in the Wild Horse and Burro Program. |
principles of population genetics hartl: An Introduction to Population Genetics Rasmus Nielsen, Montgomery Slatkin, 2013-07-18 This book covers both classical population genetics theory developed in terms of allele and haplotype frequencies and modern population genetics theory developed in terms of coalescent theory. It features applications of theory to problems that arise in the study of human and other populations and assumes little prior knowledge of mathematics. |
principles of population genetics hartl: An Introduction to Behavior Genetics Terence J. Bazzett, 2008 |
principles of population genetics hartl: Ending the Mendel-Fisher Controversy Allan Franklin, 2008 Gregor Mendel's Experiments in Plant-Hybridization, presented in 1865, became the foundation of modern genetics. Did his research follow the rigors of real scientific inquiry, or was Mendel's data too good to be true-the product of doctored statistics? In this book, leading experts present their conclusions on the legendary controversy surrounding the challenge to Mendel's findings by British statistician and biologist R. A. Fisher. In 1936, Fisher suggested that Mendel's data could have been falsified in order to support his expectations.This volume includes an overview of the controversy; the original papers of Mendel and Fisher; four of the most important papers on the debate; and new updates, by the authors, of the latter four papers, making this book the definitive last word on the subject. |
principles of population genetics hartl: The Princeton Guide to Ecology Simon A. Levin, Stephen R. Carpenter, H. Charles J. Godfray, Ann P. Kinzig, Michel Loreau, Jonathan B. Losos, Brian Walker, David S. Wilcove, 2012-09-30 The Princeton Guide to Ecology is a concise, authoritative one-volume reference to the field's major subjects and key concepts. Edited by eminent ecologist Simon Levin, with contributions from an international team of leading ecologists, the book contains more than ninety clear, accurate, and up-to-date articles on the most important topics within seven major areas: autecology, population ecology, communities and ecosystems, landscapes and the biosphere, conservation biology, ecosystem services, and biosphere management. Complete with more than 200 illustrations (including sixteen pages in color), a glossary of key terms, a chronology of milestones in the field, suggestions for further reading on each topic, and an index, this is an essential volume for undergraduate and graduate students, research ecologists, scientists in related fields, policymakers, and anyone else with a serious interest in ecology. Explains key topics in one concise and authoritative volume Features more than ninety articles written by an international team of leading ecologists Contains more than 200 illustrations, including sixteen pages in color Includes glossary, chronology, suggestions for further reading, and index Covers autecology, population ecology, communities and ecosystems, landscapes and the biosphere, conservation biology, ecosystem services, and biosphere management |
principles of population genetics hartl: Molecular Plant Taxonomy Pascale Besse, 2014-01-11 Plant taxonomy is an ancient discipline facing new challenges with the current availability of a vast array of molecular approaches which allow reliable genealogy-based classifications. Although the primary focus of plant taxonomy is on the delimitation of species, molecular approaches also provide a better understanding of evolutionary processes, a particularly important issue for some taxonomic complex groups. Molecular Plant Taxonomy: Methods and Protocols describes laboratory protocols based on the use of nucleic acids and chromosomes for plant taxonomy, as well as guidelines for phylogenetic analysis of molecular data. Experts in the field also contribute review and application chapters that will encourage the reader to develop an integrative taxonomy approach, combining nucleic acid and cytogenetic data together with other crucial information (taxonomy, morphology, anatomy, ecology, reproductive biology, biogeography, paleobotany), which will help not only to best circumvent species delimitation but also to resolve the evolutionary processes in play. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Molecular Plant Taxonomy: Methods and Protocols seeks to provide conceptual as well as technical guidelines to plant taxonomists and geneticists. |
principles of population genetics hartl: Population and Evolutionary Genetics Francisco José Ayala, 1982 |
principles of population genetics hartl: An Introduction to Population Genetics Theory James F. Crow, Motoo Kimura, 2009 Originally published in 1970, this classic in the field of population genetics opens with elementary concepts and deals primarily with natural populations and less fully with the rather similar problems that arise in breeding livestock and cultivated plants. |
principles of population genetics hartl: The Origins of Theoretical Population Genetics William B. Provine, 2020-07-24 Tracing the development of population genetics through the writings of such luminaries as Darwin, Galton, Pearson, Fisher, Haldane, and Wright, William B. Provine sheds light on this complex field as well as its bearing on other branches of biology. |
principles of population genetics hartl: The Snow Geese of La Pérouse Bay Fred Cooke, Robert F. Rockwell, David B. Lank, 1995 This unique title evaluates the results from one of the most significant long-term studies of birds in the late twentieth century. The authors evaluate the working of natural selection on Snow Goose plumage colour, seasonal timing of breeding, clutch size, egg size and body size.With information gathered over 26 years on 40,000 individually marked adult geese, 45,000 nests and more than 110,000 goslings at one colony in northern Manitoba, this work is a landmark in avian biology and population genetics. |
principles of population genetics hartl: Statistical Population Genomics Julien Y Dutheil, 2020-10-08 This open access volume presents state-of-the-art inference methods in population genomics, focusing on data analysis based on rigorous statistical techniques. After introducing general concepts related to the biology of genomes and their evolution, the book covers state-of-the-art methods for the analysis of genomes in populations, including demography inference, population structure analysis and detection of selection, using both model-based inference and simulation procedures. Last but not least, it offers an overview of the current knowledge acquired by applying such methods to a large variety of eukaryotic organisms. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, pointers to the relevant literature, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Statistical Population Genomics aims to promote and ensure successful applications of population genomic methods to an increasing number of model systems and biological questions. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors. |
principles of population genetics hartl: Principles of Population Genetics , 2023 |
PRINCIPLE Definition & Meaning - Merriam-Webster
a comprehensive and fundamental law, doctrine, or assumption; a rule or code of conduct; habitual devotion to right principles… See the full definition
Principles by Ray Dalio
Ray Dalio, one of the world’s most successful investors and entrepreneurs, shares the unconventional principles that helped him create unique …
Principle - Definition, Meaning & Synonyms | Vocabulary.com
A principle is a kind of rule, belief, or idea that guides you. You can also say a good, ethical person has a lot of …
PRINCIPLE | English meaning - Cambridge Dictionary
Principal as an adjective means ‘most important’: … [ C ] His guiding principle is that everyone should have equal …
Principle - Wikipedia
There are many principles observed in physics, notably in cosmology which observes the mediocrity principle, the anthropic principle, the principle of …
PRINCIPLE Definition & Meaning - Merriam-Webster
a comprehensive and fundamental law, doctrine, or assumption; a rule or code of conduct; habitual devotion to right principles… See the full definition
Principles by Ray Dalio
Ray Dalio, one of the world’s most successful investors and entrepreneurs, shares the unconventional principles that helped him create unique results in life and business.
Principle - Definition, Meaning & Synonyms | Vocabulary.com
A principle is a kind of rule, belief, or idea that guides you. You can also say a good, ethical person has a lot of principles.
PRINCIPLE | English meaning - Cambridge Dictionary
Principal as an adjective means ‘most important’: … [ C ] His guiding principle is that everyone should have equal access to high-quality health care. [ C ] He refused to compromise his …
Principle - Wikipedia
There are many principles observed in physics, notably in cosmology which observes the mediocrity principle, the anthropic principle, the principle of relativity and the cosmological principle. Other …
PRINCIPLE Definition & Meaning | Dictionary.com
Principle, canon, rule imply something established as a standard or test, for measuring, regulating, or guiding conduct or practice. A principle is a general and fundamental truth that may be used in …
PRINCIPLE definition and meaning | Collins English Dictionary
A principle is a general belief that you have about the way you should behave, which influences your behaviour. Buck never allowed himself to be bullied into doing anything that went against his …
principle noun - Definition, pictures, pronunciation and usage …
Definition of principle noun from the Oxford Advanced Learner's Dictionary. [countable, usually plural, uncountable] a moral rule or a strong belief that influences your actions. He has high …
Principle Definition & Meaning | Britannica Dictionary
In principle, making the changes should be a simple matter, but there may be problems we haven't thought of. They accepted the offer in principle. Do not confuse principle with principal.
Principle Definition & Meaning - YourDictionary
Principle definition: A basic truth, law, or assumption.