Advertisement
python programming using problem solving approach: Python Programming Reema Thareja, 2022 |
python programming using problem solving approach: Python Programming Reema Thareja, 2019 Python Programming is designed as a textbook to fulfil the requirements of the first-level course in Python programming. It is suited for undergraduate degree students of computer science engineering, IT as well as computer applications. This book will enable students to apply the Python programming concepts in solving real-world problems. The book begins with an introduction to computers, problem solving approaches, programming languages, object oriented programming, and Python programming. Separate chapters dealing with the important constructs of Python language such as control statements, functions, strings, files, data structures, classes and objects, inheritance, operator overloading, and exceptions are provided in the book. |
python programming using problem solving approach: Learn to Code by Solving Problems Daniel Zingaro, 2021-06-29 Learn to Code by Solving Problems is a practical introduction to programming using Python. It uses coding-competition challenges to teach you the mechanics of coding and how to think like a savvy programmer. Computers are capable of solving almost any problem when given the right instructions. That’s where programming comes in. This beginner’s book will have you writing Python programs right away. You’ll solve interesting problems drawn from real coding competitions and build your programming skills as you go. Every chapter presents problems from coding challenge websites, where online judges test your solutions and provide targeted feedback. As you practice using core Python features, functions, and techniques, you’ll develop a clear understanding of data structures, algorithms, and other programming basics. Bonus exercises invite you to explore new concepts on your own, and multiple-choice questions encourage you to think about how each piece of code works. You’ll learn how to: Run Python code, work with strings, and use variables Write programs that make decisions Make code more efficient with while and for loops Use Python sets, lists, and dictionaries to organize, sort, and search data Design programs using functions and top-down design Create complete-search algorithms and use Big O notation to design more efficient code By the end of the book, you’ll not only be proficient in Python, but you’ll also understand how to think through problems and tackle them with code. Programming languages come and go, but this book gives you the lasting foundation you need to start thinking like a programmer. |
python programming using problem solving approach: Python Programming John M. Zelle, 2004 This book is suitable for use in a university-level first course in computing (CS1), as well as the increasingly popular course known as CS0. It is difficult for many students to master basic concepts in computer science and programming. A large portion of the confusion can be blamed on the complexity of the tools and materials that are traditionally used to teach CS1 and CS2. This textbook was written with a single overarching goal: to present the core concepts of computer science as simply as possible without being simplistic. |
python programming using problem solving approach: Python Programming in Context Bradley N. Miller, David L. Ranum, 2013-01-22 A user-friendly, object-oriented language, Python is quickly becoming the favorite introductory programming language among students and instructors. Many find Python to be a more lucid language than Java but with much of the functionality and therefore the ideal first language for those entering the world of Computer Science. Python Programming in Context, Second Edition is a clear, accessible introduction to the fundamental programming and problem solving concepts necessary for students at this level. The authors carefully build upon the many important computer science concepts and problem solving techniques throughout the text and offer relevant, real-world examples and exercises to reinforce key material. Programming skills throughout the text are linked to applied areas such as Image Processing, Cryptography, Astronomy, Music, the Internet, and Bioinformatics, giving students a well-rounded look of its capabilities. |
python programming using problem solving approach: Introduction to Programming with Java John Dean, 2009-05-01 This book teaches the reader how to write programs using Java. It does so with a unique approach that combines fundamentals first with objects early. The book transitions smoothly through a carefully selected set of procedural programming fundamentals to object-oriented fundamentals. During this early transition and beyond, the book emphasizes problem solving. For example, Chapter 2 is devoted to algorithm development, Chapter 8 is devoted to program design, and problem-solving sections appear throughout the book. Problem-solving skills are fostered with the help of an interactive, iterative presentation style: Here's the problem. How can we solve it? How can we improve the solution? Some key features include: -A conversational, easy-to-follow writing style. -Many executable code examples that clearly and efficiently illustrate key concepts. -Extensive use of UML class diagrams to specify problem organization. -Simple GUI programming early, in an optional standalone graphics track. -Well-identified alternatives for altering the book's sequence to fit individual needs. -Well-developed projects in six different academic disciplines, with a handy summary. -Detailed customizable PowerPointTM lecture slides, with icon-keyed hidden notes. Student Resources: Links to compiler software - for Sun's Java2 SDK toolkit, Helios's TextPad, Eclipse, NetBeans, and BlueJ. TextPad tutorial. Eclipse tutorials. Textbook errata. All textbook example programs and associated resource files. Instructor Resources: Customizable PowerPoint lecture slides with hidden notes. Hidden notes provide comments that supplement the displayed text in the lecture slides. For example, if the displayed text asks a question the hidden notes provide the answer. Exercise solutions. Project solutions. Supplemental Chapters to Accommodate an Objects-Late Approach are available. Click this link to reach the supplemental chapters. The authors have done a superb job of organizing the various chapters to allow the students to enjoy programming in Java from day one. I am deeply impressed with the entire textbook. I would have my students keep this text and use it throughout their academic career as an excellent Java programming source book. - Benjamin B. Nystuen, University of Colorado at Colorado Springs The authors have done a great job in describing the technical aspects of programming. The authors have an immensely readable writing style. I have an extremely favorable impression of Dean and Dean's proposed text. - Shyamal Mitra, University of Texas at Austin The overall impression of the book was that it was friendly to read. I think this is a great strength, simply because students reading it, and especially students who are prone to reading to understand, will appreciate this approach rather than the regular hardcore programming mentality. - Andree Jacobson, University of New Mexico |
python programming using problem solving approach: Introduction to Computation and Programming Using Python, second edition John V. Guttag, 2016-08-08 The new edition of an introductory text that teaches students the art of computational problem solving, covering topics ranging from simple algorithms to information visualization. This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (MOOC). This new edition has been updated for Python 3, reorganized to make it easier to use for courses that cover only a subset of the material, and offers additional material including five new chapters. Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming. This edition offers expanded material on statistics and machine learning and new chapters on Frequentist and Bayesian statistics. |
python programming using problem solving approach: Introduction to Computing & Problem Solving With PYTHON Jeeva Jose, P.Sojan Lal, 2016-08-01 This book 'Introduction to Computing and Problem Solving with Python' will help every student,teacher and researcher to understand the computing basics and advanced PythonProgramming language. The Python programming topics include the reserved keywords,identifiers, variables, operators, data types and their operations, flowcontrol techniques which include decision making and looping, modules, filesand exception handling techniques. Advanced topics like Python regularexpressions, Database Programming and Object Oriented Programming concepts arealso covered in detail. All chapters have worked out programs, illustrations,review and frequently asked interview questions. The simple style of presentationmakes this a friend for self-learners. More than 300 solved lab exercisesavailable in this book is tested in Python 3.4.3 version for Windows. The book covers syllabus for more than 35 International Universities and45 Indian universities like Dr. APJ Abdul Kalam Technological University,Christ University, Savitribai Phule Pune University, University of Delhi, University of Calicut, Mahatma Gandhi University, University of Mumbai, AICTE, CBSE, MIT, University of Virginia, University of Chicago, University of Toronto, Technical University of Denmark etc. |
python programming using problem solving approach: Learn Python 3 the Hard Way Zed A. Shaw, 2017-06-26 You Will Learn Python 3! Zed Shaw has perfected the world’s best system for learning Python 3. Follow it and you will succeed—just like the millions of beginners Zed has taught to date! You bring the discipline, commitment, and persistence; the author supplies everything else. In Learn Python 3 the Hard Way, you’ll learn Python by working through 52 brilliantly crafted exercises. Read them. Type their code precisely. (No copying and pasting!) Fix your mistakes. Watch the programs run. As you do, you’ll learn how a computer works; what good programs look like; and how to read, write, and think about code. Zed then teaches you even more in 5+ hours of video where he shows you how to break, fix, and debug your code—live, as he’s doing the exercises. Install a complete Python environment Organize and write code Fix and break code Basic mathematics Variables Strings and text Interact with users Work with files Looping and logic Data structures using lists and dictionaries Program design Object-oriented programming Inheritance and composition Modules, classes, and objects Python packaging Automated testing Basic game development Basic web development It’ll be hard at first. But soon, you’ll just get it—and that will feel great! This course will reward you for every minute you put into it. Soon, you’ll know one of the world’s most powerful, popular programming languages. You’ll be a Python programmer. This Book Is Perfect For Total beginners with zero programming experience Junior developers who know one or two languages Returning professionals who haven’t written code in years Seasoned professionals looking for a fast, simple, crash course in Python 3 |
python programming using problem solving approach: Real-World Python Lee Vaughan, 2020-11-10 A project-based approach to learning Python programming for beginners. Intriguing projects teach you how to tackle challenging problems with code. You've mastered the basics. Now you're ready to explore some of Python's more powerful tools. Real-World Python will show you how. Through a series of hands-on projects, you'll investigate and solve real-world problems using sophisticated computer vision, machine learning, data analysis, and language processing tools. You'll be introduced to important modules like OpenCV, NumPy, Pandas, NLTK, Bokeh, Beautiful Soup, Requests, HoloViews, Tkinter, turtle, matplotlib, and more. You'll create complete, working programs and think through intriguing projects that show you how to: Save shipwrecked sailors with an algorithm designed to prove the existence of God Detect asteroids and comets moving against a starfield Program a sentry gun to shoot your enemies and spare your friends Select landing sites for a Mars probe using real NASA maps Send unbreakable messages based on a book code Survive a zombie outbreak using data science Discover exoplanets and alien megastructures orbiting distant stars Test the hypothesis that we're all living in a computer simulation And more! If you're tired of learning the bare essentials of Python Programming with isolated snippets of code, you'll relish the relevant and geeky fun of Real-World Python! |
python programming using problem solving approach: Python Programming Using Problem Solving Harsh Bhasin, 2023-06-28 Python is a robust, procedural, object-oriented, and functional language. The features of the language make it valuable for web development, game development, business, and scientific programming. This book deals with problem-solving and programming in Python. It concentrates on the development of efficient algorithms, the syntax of the language, and the ability to design programs in order to solve problems. In addition to standard Python topics, the book has extensive coverage of NumPy, data visualization, and Matplotlib. Numerous types of exercises, including theoretical, programming, and multiple-choice, reinforce the concepts covered in each chapter. FEATURES: Concentrates on the development of efficient algorithms, the syntax of the language, and the ability to design programs in order to solve problems Features both standard Python topics and also extensive coverage of NumPy, data visualization, and Matplotlib problem-solving techniques |
python programming using problem solving approach: Classic Computer Science Problems in Java David Kopec, 2020-12-21 Sharpen your coding skills by exploring established computer science problems! Classic Computer Science Problems in Java challenges you with time-tested scenarios and algorithms. Summary Sharpen your coding skills by exploring established computer science problems! Classic Computer Science Problems in Java challenges you with time-tested scenarios and algorithms. You’ll work through a series of exercises based in computer science fundamentals that are designed to improve your software development abilities, improve your understanding of artificial intelligence, and even prepare you to ace an interview. As you work through examples in search, clustering, graphs, and more, you'll remember important things you've forgotten and discover classic solutions to your new problems! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Whatever software development problem you’re facing, odds are someone has already uncovered a solution. This book collects the most useful solutions devised, guiding you through a variety of challenges and tried-and-true problem-solving techniques. The principles and algorithms presented here are guaranteed to save you countless hours in project after project. About the book Classic Computer Science Problems in Java is a master class in computer programming designed around 55 exercises that have been used in computer science classrooms for years. You’ll work through hands-on examples as you explore core algorithms, constraint problems, AI applications, and much more. What's inside Recursion, memoization, and bit manipulation Search, graph, and genetic algorithms Constraint-satisfaction problems K-means clustering, neural networks, and adversarial search About the reader For intermediate Java programmers. About the author David Kopec is an assistant professor of Computer Science and Innovation at Champlain College in Burlington, Vermont. Table of Contents 1 Small problems 2 Search problems 3 Constraint-satisfaction problems 4 Graph problems 5 Genetic algorithms 6 K-means clustering 7 Fairly simple neural networks 8 Adversarial search 9 Miscellaneous problems 10 Interview with Brian Goetz |
python programming using problem solving approach: Think Like a Programmer V. Anton Spraul, 2012-08-12 The real challenge of programming isn't learning a language's syntax—it's learning to creatively solve problems so you can build something great. In this one-of-a-kind text, author V. Anton Spraul breaks down the ways that programmers solve problems and teaches you what other introductory books often ignore: how to Think Like a Programmer. Each chapter tackles a single programming concept, like classes, pointers, and recursion, and open-ended exercises throughout challenge you to apply your knowledge. You'll also learn how to: –Split problems into discrete components to make them easier to solve –Make the most of code reuse with functions, classes, and libraries –Pick the perfect data structure for a particular job –Master more advanced programming tools like recursion and dynamic memory –Organize your thoughts and develop strategies to tackle particular types of problems Although the book's examples are written in C++, the creative problem-solving concepts they illustrate go beyond any particular language; in fact, they often reach outside the realm of computer science. As the most skillful programmers know, writing great code is a creative art—and the first step in creating your masterpiece is learning to Think Like a Programmer. |
python programming using problem solving approach: Murachs Python Programming Joel Murach, Michael Urban, 2016 This book is for anyone who wants to learn Python. If Python is your first programming language, it helps you master all the skills and concepts you need to program in any modern language, as you learn Python itself. If you're an experienced programmer who wants to add Python to your resume, it will help you learn Python faster and better. |
python programming using problem solving approach: Discovering Computer Science Jessen Havill, 2020-10-27 Havill's problem-driven approach introduces algorithmic concepts in context and motivates students with a wide range of interests and backgrounds. -- Janet Davis , Associate Professor and Microsoft Chair of Computer Science, Whitman College This book looks really great and takes exactly the approach I think should be used for a CS 1 course. I think it really fills a need in the textbook landscape. -- Marie desJardins, Dean of the College of Organizational, Computational, and Information Sciences, Simmons University Discovering Computer Science is a refreshing departure from introductory programming texts, offering students a much more sincere introduction to the breadth and complexity of this ever-growing field. -- James Deverick, Senior Lecturer, The College of William and Mary This unique introduction to the science of computing guides students through broad and universal approaches to problem solving in a variety of contexts and their ultimate implementation as computer programs. -- Daniel Kaplan, DeWitt Wallace Professor, Macalester College Discovering Computer Science: Interdisciplinary Problems, Principles, and Python Programming is a problem-oriented introduction to computational problem solving and programming in Python, appropriate for a first course for computer science majors, a more targeted disciplinary computing course or, at a slower pace, any introductory computer science course for a general audience. Realizing that an organization around language features only resonates with a narrow audience, this textbook instead connects programming to students’ prior interests using a range of authentic problems from the natural and social sciences and the digital humanities. The presentation begins with an introduction to the problem-solving process, contextualizing programming as an essential component. Then, as the book progresses, each chapter guides students through solutions to increasingly complex problems, using a spiral approach to introduce Python language features. The text also places programming in the context of fundamental computer science principles, such as abstraction, efficiency, testing, and algorithmic techniques, offering glimpses of topics that are traditionally put off until later courses. This book contains 30 well-developed independent projects that encourage students to explore questions across disciplinary boundaries, over 750 homework exercises, and 300 integrated reflection questions engage students in problem solving and active reading. The accompanying website — https://www.discoveringcs.net — includes more advanced content, solutions to selected exercises, sample code and data files, and pointers for further exploration. |
python programming using problem solving approach: Powerful Python Aaron Maxwell, 2024-11-08 Once you've mastered the basics of Python, how do you skill up to the top 1%? How do you focus your learning time on topics that yield the most benefit for production engineering and data teams—without getting distracted by info of little real-world use? This book answers these questions and more. Based on author Aaron Maxwell's software engineering career in Silicon Valley, this unique book focuses on the Python first principles that act to accelerate everything else: the 5% of programming knowledge that makes the remaining 95% fall like dominos. It's also this knowledge that helps you become an exceptional Python programmer, fast. Learn how to think like a Pythonista: explore advanced Pythonic thinking Create lists, dicts, and other data structures using a high-level, readable, and maintainable syntax Explore higher-order function abstractions that form the basis of Python libraries Examine Python's metaprogramming tool for priceless patterns of code reuse Master Python's error model and learn how to leverage it in your own code Learn the more potent and advanced tools of Python's object system Take a deep dive into Python's automated testing and TDD Learn how Python logging helps you troubleshoot and debug more quickly |
python programming using problem solving approach: Python Programming and Numerical Methods Qingkai Kong, Timmy Siauw, Alexandre Bayen, 2020-12-02 Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings. |
python programming using problem solving approach: Python for Mechanical and Aerospace Engineering Alex Kenan, 2021-01-01 The traditional computer science courses for engineering focus on the fundamentals of programming without demonstrating the wide array of practical applications for fields outside of computer science. Thus, the mindset of “Java/Python is for computer science people or programmers, and MATLAB is for engineering” develops. MATLAB tends to dominate the engineering space because it is viewed as a batteries-included software kit that is focused on functional programming. Everything in MATLAB is some sort of array, and it lends itself to engineering integration with its toolkits like Simulink and other add-ins. The downside of MATLAB is that it is proprietary software, the license is expensive to purchase, and it is more limited than Python for doing tasks besides calculating or data capturing. This book is about the Python programming language. Specifically, it is about Python in the context of mechanical and aerospace engineering. Did you know that Python can be used to model a satellite orbiting the Earth? You can find the completed programs and a very helpful 595 page NSA Python tutorial at the book’s GitHub page at https://www.github.com/alexkenan/pymae. Read more about the book, including a sample part of Chapter 5, at https://pymae.github.io |
python programming using problem solving approach: Introduction to Computing Using Python Ljubomir Perkovic, 2012-04-13 Perkovic's Introduction to Programming Using Python is more than just an introduction to programming. It is an inclusive introduction to Computer Science that takes the pedagogical approach of the right tool for the job at the right moment, and focuses on application development. The approach is hands-on and problem-oriented, with practice problems and solutions appearing throughout the text. The text is imperative-first, but does not shy away from discussing objects early where appropriate. Discussions of user-defined classes and Object-Oriented Programming appear later in the text, when students have more background and concepts can be motivated. Chapters include an introduction to problem solving techniques and classical algorithms, problem-solving and programming and ways to apply core skills to application development. |
python programming using problem solving approach: Computational Physics Rubin H. Landau, Manuel J Páez, Cristian C. Bordeianu, 2015-06-11 The use of computation and simulation has become an essential part of the scientific process. Being able to transform a theory into an algorithm requires significant theoretical insight, detailed physical and mathematical understanding, and a working level of competency in programming. This upper-division text provides an unusually broad survey of the topics of modern computational physics from a multidisciplinary, computational science point of view. Its philosophy is rooted in learning by doing (assisted by many model programs), with new scientific materials as well as with the Python programming language. Python has become very popular, particularly for physics education and large scientific projects. It is probably the easiest programming language to learn for beginners, yet is also used for mainstream scientific computing, and has packages for excellent graphics and even symbolic manipulations. The text is designed for an upper-level undergraduate or beginning graduate course and provides the reader with the essential knowledge to understand computational tools and mathematical methods well enough to be successful. As part of the teaching of using computers to solve scientific problems, the reader is encouraged to work through a sample problem stated at the beginning of each chapter or unit, which involves studying the text, writing, debugging and running programs, visualizing the results, and the expressing in words what has been done and what can be concluded. Then there are exercises and problems at the end of each chapter for the reader to work on their own (with model programs given for that purpose). |
python programming using problem solving approach: Programming for Computations - Python Svein Linge, Hans Petter Langtangen, 2016-07-25 This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification. |
python programming using problem solving approach: Think Python Allen B. Downey, 2015-12-02 If you want to learn how to program, working with Python is an excellent way to start. This hands-on guide takes you through the language a step at a time, beginning with basic programming concepts before moving on to functions, recursion, data structures, and object-oriented design. This second edition and its supporting code have been updated for Python 3. Through exercises in each chapter, youâ??ll try out programming concepts as you learn them. Think Python is ideal for students at the high school or college level, as well as self-learners, home-schooled students, and professionals who need to learn programming basics. Beginners just getting their feet wet will learn how to start with Python in a browser. Start with the basics, including language syntax and semantics Get a clear definition of each programming concept Learn about values, variables, statements, functions, and data structures in a logical progression Discover how to work with files and databases Understand objects, methods, and object-oriented programming Use debugging techniques to fix syntax, runtime, and semantic errors Explore interface design, data structures, and GUI-based programs through case studies |
python programming using problem solving approach: Visual Basic and Algorithmic Thinking for the Complete Beginner Aristides Bouras, 2024-06-20 Explore the essentials of computer programming and algorithmic thinking with Visual Basic. This comprehensive course is designed for beginners to master the core concepts and practical applications. Key Features Comprehensive coverage of Visual Basic and algorithms with practical exercises and examples Introduction to programming fundamentals, & in-depth exploration of advanced structures Introduction to arrays, subprograms, and object-oriented programming Book DescriptionThis course begins with a fundamental overview of how computers operate, setting a solid foundation for your learning. You'll then delve into the essentials of Visual Basic, exploring integrated development environments and necessary software packages. As you progress, you'll tackle basic algorithmic concepts, variables, constants, and how to handle input and output efficiently. Moving forward, the course introduces you to control structures, starting with sequence control, and advancing through various decision structures, including single, dual, and multiple-alternative decisions. You'll gain practical experience with flowcharts and decision-making processes, equipping you with the skills to manage complex programming scenarios. The latter part of the course focuses on loop control structures, both simple and nested, and teaches you to implement them effectively through practical exercises and flowcharts. Finally, you'll explore advanced topics such as data structures, including one-dimensional and two-dimensional arrays, and dictionaries. The course also covers subprograms and object-oriented programming, ensuring you have a comprehensive understanding of Visual Basic. With a practical approach, this course is designed to build your confidence in programming, enabling you to tackle real-world problems with ease.What you will learn Understand how computers work and the basics of Visual Basic Install and configure essential software packages Use variables, constants, and handle input/output effectively Apply operators and create trace tables Implement sequence, decision, and loop control structures Explore object-oriented programming and file handling Who this book is for This course is ideal for a wide range of learners. Complete beginners with no prior programming experience will find it particularly beneficial, as it starts from the basics and builds up gradually. High school and college students looking to strengthen their understanding of programming fundamentals will also benefit from this comprehensive guide. Additionally, professionals from non-technical fields who wish to acquire programming skills for career advancement or personal interest will find the course accessible and rewarding. |
python programming using problem solving approach: Python Programming in Context Julie Anderson, Jon Anderson, 2024-04-15 Python Programming in Context, Fourth Edition provides a comprehensive and accessible introduction to Python fundamentals. Updated with Python 3.10, the Fourth Edition offers a thorough overview of multiple applied areas, including image processing, cryptography, astronomy, the Internet, and bioinformatics. Taking an active learning approach, each chapter starts with a comprehensive real-world project that teaches core design techniques and Python programming to immediately engage students. An ideal first language for learners entering the rapidly expanding fields of computer science, data science, and scientific programing, Python gives students a solid platform of key problem-solving skills that translate easily across programming languages. This text is designed to be a first course in computer science that focuses on problem-solving, with language features being introduced as needed to solve the problem at hand. |
python programming using problem solving approach: Invent Your Own Computer Games with Python, 4th Edition Al Sweigart, 2016-12-16 Invent Your Own Computer Games with Python will teach you how to make computer games using the popular Python programming language—even if you’ve never programmed before! Begin by building classic games like Hangman, Guess the Number, and Tic-Tac-Toe, and then work your way up to more advanced games, like a text-based treasure hunting game and an animated collision-dodging game with sound effects. Along the way, you’ll learn key programming and math concepts that will help you take your game programming to the next level. Learn how to: –Combine loops, variables, and flow control statements into real working programs –Choose the right data structures for the job, such as lists, dictionaries, and tuples –Add graphics and animation to your games with the pygame module –Handle keyboard and mouse input –Program simple artificial intelligence so you can play against the computer –Use cryptography to convert text messages into secret code –Debug your programs and find common errors As you work through each game, you’ll build a solid foundation in Python and an understanding of computer science fundamentals. What new game will you create with the power of Python? The projects in this book are compatible with Python 3. |
python programming using problem solving approach: Introduction to Data Science Laura Igual, Santi Seguí, 2017-02-22 This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website. |
python programming using problem solving approach: Introduction to Programming in Python Robert Sedgewick, Kevin Wayne, Robert Dondero, 2015 Introduction to Programming in Python: An Interdisciplinary Approach emphasizes interesting and important problems, not toy applications. The authors focus on Python's most useful and significant features, rather than aiming for exhaustive coverage that bores novices. All of this book's code has been crafted and tested for compatibility with both Python 2 and Python 3, making it relevant to every programmer and any course, now and for many years to come. An extensive amount of supplementary information is available at introcs.cs.princeton.edu/python. With source code, I/O libraries, solutions to selected exercises, and much more, this companion website empowers people to use their own computers to teach and learn the material. |
python programming using problem solving approach: Introduction to Computer Science Using Python Charles Dierbach, 2015 |
python programming using problem solving approach: PROBLEM SOLVING IN DATA STRUCTURES & ALGORITHMS USING PYTHON. HEMANT. JAIN, 2022 |
python programming using problem solving approach: The Practice of Computing Using Python William F. Punch, Richard Enbody, 2012-02-28 NOTE: You are purchasing a standalone product; MyProgrammingLab does not come packaged with this content. If you would like to purchase both the physical text and MyProgrammingLabsearch for ISBN-10: 0132992833/ISBN-13: 9780132992831 . That package includes ISBN-10: 013280557X/ISBN-13: 9780132805575 and ISBN-10: 0132831325/ISBN-13: 9780132831321. MyProgrammingLab should only be purchased when required by an instructor. A problem-solving approach to programming with Python. The Practice of Computing Using Python introduces CS1 students (majors and non-majors) to computational thinking using Python. With data-manipulation as a theme, readers quickly see the value in what they’re learning and leave the course with a set of immediately useful computational skills that can be applied to problems they encounter in future pursuits. The book takes an “object-use-first” approach—writing classes is covered only after students have mastered using objects. This edition is available with MyProgrammingLab, an innovative online homework and assessment tool. Through the power of practice and immediate personalized feedback, MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of programming. |
python programming using problem solving approach: 101 Python Challenges with Solutions / Code Listings Philippe Kerampran, 2017-04-17 This selection of 101 Python programming challenges is targeted at both learners and educators who want to find a challenging and enthusing approach to develop their programming skills using Python. In this book you will find a fully working solution to each of the 101 challenges in the form of annotated Python code listings. We believe that being able to work on these challenges and reverse-engineer the given code will give you a fantastic opportunity to improve your Python skills while discovering new programing techniques. This selection of challenges from the 101computing.net blog will cover all of the essential skills used in procedural programming, focusing on the key programming constructs: sequencing, selection and iteration. The 101 challenges are organised into ten chapters to help you discover and practise using a range of programming strategies using a step by step approach. |
python programming using problem solving approach: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site. |
python programming using problem solving approach: Python for Scientists John M. Stewart, 2017-07-20 Scientific Python is taught from scratch in this book via copious, downloadable, useful and adaptable code snippets. Everything the working scientist needs to know is covered, quickly providing researchers and research students with the skills to start using Python effectively. |
python programming using problem solving approach: Python Workout Reuven M. Lerner, 2020-08-04 The only way to master a skill is to practice. In Python Workout, author Reuven M. Lerner guides you through 50 carefully selected exercises that invite you to flex your programming muscles. As you take on each new challenge, you’ll build programming skill and confidence. Summary The only way to master a skill is to practice. In Python Workout, author Reuven M. Lerner guides you through 50 carefully selected exercises that invite you to flex your programming muscles. As you take on each new challenge, you’ll build programming skill and confidence. The thorough explanations help you lock in what you’ve learned and apply it to your own projects. Along the way, Python Workout provides over four hours of video instruction walking you through the solutions to each exercise and dozens of additional exercises for you to try on your own. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology To become a champion Python programmer you need to work out, building mental muscle with your hands on the keyboard. Each carefully selected exercise in this unique book adds to your Python prowess—one important skill at a time. About the book Python Workout presents 50 exercises that focus on key Python 3 features. In it, expert Python coach Reuven Lerner guides you through a series of small projects, practicing the skills you need to tackle everyday tasks. You’ll appreciate the clear explanations of each technique, and you can watch Reuven solve each exercise in the accompanying videos. What's inside 50 hands-on exercises and solutions Coverage of all Python data types Dozens more bonus exercises for extra practice About the reader For readers with basic Python knowledge. About the author Reuven M. Lerner teaches Python and data science to companies around the world. Table of Contents 1 Numeric types 2 Strings 3 Lists and tuples 4 Dictionaries and sets 5 Files 6 Functions 7 Functional programming with comprehensions 8 Modules and packages 9 Objects 10 Iterators and generators |
python programming using problem solving approach: Conceptual Programming with Python Thorsten Altenkirch, Isaac Triguero, 2019 Thorsten and Isaac have written this book based on a programming course we teach for Master's Students at the School of Computer Science of the University of Nottingham. The book is intended for students with little or no background in programming coming from different backgrounds educationally as well as culturally. It is not mainly a Python course but we use Python as a vehicle to teach basic programming concepts. Hence, the words conceptual programming in the title. We cover basic concepts about data structures, imperative programming, recursion and backtracking, object-oriented programming, functional programming, game development and some basics of data science. |
python programming using problem solving approach: Elements of Programming Interviews Adnan Aziz, Tsung-Hsien Lee, Amit Prakash, 2012 The core of EPI is a collection of over 300 problems with detailed solutions, including 100 figures, 250 tested programs, and 150 variants. The problems are representative of questions asked at the leading software companies. The book begins with a summary of the nontechnical aspects of interviewing, such as common mistakes, strategies for a great interview, perspectives from the other side of the table, tips on negotiating the best offer, and a guide to the best ways to use EPI. The technical core of EPI is a sequence of chapters on basic and advanced data structures, searching, sorting, broad algorithmic principles, concurrency, and system design. Each chapter consists of a brief review, followed by a broad and thought-provoking series of problems. We include a summary of data structure, algorithm, and problem solving patterns. |
python programming using problem solving approach: A Concise Introduction to Programming in Python Mark J. Johnson, 2018-04-17 A Concise Introduction to Programming in Python, Second Edition provides a hands-on and accessible introduction to writing software in Python, with no prior programming experience required. The Second Edition was thoroughly reorganized and rewritten based on classroom experience to incorporate: A spiral approach, starting with turtle graphics, and then revisiting concepts in greater depth using numeric, textual, and image data Clear, concise explanations written for beginning students, emphasizing core principles A variety of accessible examples, focusing on key concepts Diagrams to help visualize new concepts New sections on recursion and exception handling, as well as an earlier introduction of lists, based on instructor feedback The text offers sections designed for approximately one class period each, and proceeds gradually from procedural to object-oriented design. Examples, exercises, and projects are included from diverse application domains, including finance, biology, image processing, and textual analysis. It also includes a brief How-To sections that introduce optional topics students may be interested in exploring. The text is written to be read, making it a good fit in flipped classrooms. Designed for either classroom use or self-study, all example programs and solutions to odd-numbered exercises (except for projects) are available at: http://www.central.edu/go/conciseintro/. |
python programming using problem solving approach: Hands-On Genetic Algorithms with Python Eyal Wirsansky, 2020-01-31 Explore the ever-growing world of genetic algorithms to solve search, optimization, and AI-related tasks, and improve machine learning models using Python libraries such as DEAP, scikit-learn, and NumPy Key Features Explore the ins and outs of genetic algorithms with this fast-paced guide Implement tasks such as feature selection, search optimization, and cluster analysis using Python Solve combinatorial problems, optimize functions, and enhance the performance of artificial intelligence applications Book DescriptionGenetic algorithms are a family of search, optimization, and learning algorithms inspired by the principles of natural evolution. By imitating the evolutionary process, genetic algorithms can overcome hurdles encountered in traditional search algorithms and provide high-quality solutions for a variety of problems. This book will help you get to grips with a powerful yet simple approach to applying genetic algorithms to a wide range of tasks using Python, covering the latest developments in artificial intelligence. After introducing you to genetic algorithms and their principles of operation, you'll understand how they differ from traditional algorithms and what types of problems they can solve. You'll then discover how they can be applied to search and optimization problems, such as planning, scheduling, gaming, and analytics. As you advance, you'll also learn how to use genetic algorithms to improve your machine learning and deep learning models, solve reinforcement learning tasks, and perform image reconstruction. Finally, you'll cover several related technologies that can open up new possibilities for future applications. By the end of this book, you'll have hands-on experience of applying genetic algorithms in artificial intelligence as well as in numerous other domains.What you will learn Understand how to use state-of-the-art Python tools to create genetic algorithm-based applications Use genetic algorithms to optimize functions and solve planning and scheduling problems Enhance the performance of machine learning models and optimize deep learning network architecture Apply genetic algorithms to reinforcement learning tasks using OpenAI Gym Explore how images can be reconstructed using a set of semi-transparent shapes Discover other bio-inspired techniques, such as genetic programming and particle swarm optimization Who this book is for This book is for software developers, data scientists, and AI enthusiasts who want to use genetic algorithms to carry out intelligent tasks in their applications. Working knowledge of Python and basic knowledge of mathematics and computer science will help you get the most out of this book. |
python programming using problem solving approach: Computer Simulation Yahya Esmail Osais, 2017-11-28 Computer simulation is an effective and popular universal tool that can be applied to almost all disciplines. Requiring only basic knowledge of programming, mathematics, and probability theory, Computer Simulation: A Foundational Approach Using Python takes a hands-on approach to programming to introduce the fundamentals of computer simulation. The main target of the book is computer science and engineering students who are interested mainly in directly applying the techniques to their research problems. The book will be of great interest to senior undergraduate and starting graduate students in the fields of computer science and engineering and industrial engineering. |
python programming using problem solving approach: HT THINK LIKE A COMPUTER SCIEN Jeffrey Elkner, Allen B. Downey, Chris Meyers, 2016-10-04 The goal of this book is to teach you to think like a computer scientist. This way of thinking combines some of the best features of mathematics, engineering, and natural science. Like mathematicians, computer scientists use formal languages to denote ideas (specifically computations). Like engineers, they design things, assembling components into systems and evaluating tradeoffs among alternatives. Like scientists, they observe the behavior of complex systems, form hypotheses, and test predictions. The single most important skill for a computer scientist is problem solving. Problem solving means the ability to formulate problems, think creatively about solutions, and express a solution clearly and accurately. As it turns out, the process of learning to program is an excellent opportunity to practice problem-solving skills. That's why this chapter is called, The way of the program. On one level, you will be learning to program, a useful skill by itself. On another level, you will use programming as a means to an end. As we go along, that end will become clearer. |
Is there a "not equal" operator in Python? - Stack Overflow
Jun 16, 2012 · Python is dynamically, but strongly typed, and other statically typed languages would complain about comparing different types. There's also the else clause: # This will …
What does colon equal (:=) in Python mean? - Stack Overflow
In Python this is simply =. To translate this pseudocode into Python you would need to know the data structures being referenced, and a bit more of the algorithm implementation. Some notes …
What is Python's equivalent of && (logical-and) in an if-statement?
Sep 13, 2023 · There is no bitwise negation in Python (just the bitwise inverse operator ~ - but that is not equivalent to not). See also 6.6. Unary arithmetic and bitwise/binary operations and …
What does the "at" (@) symbol do in Python? - Stack Overflow
Jun 17, 2011 · Functions, in Python, are first class objects - which means you can pass a function as an argument to another function, and return functions. Decorators do both of these things. If …
python - What is the purpose of the -m switch? - Stack Overflow
You must run python my_script.py from the directory where the file is located. Alternatively - python path/to/my_script.py. However, you can run python -m my_script (ie refer to the script …
What does [:-1] mean/do in python? - Stack Overflow
Mar 20, 2013 · Working on a python assignment and was curious as to what [:-1] means in the context of the following code: instructions = f.readline()[:-1] Have searched on here on S.O. and …
python - Errno 13 Permission denied - Stack Overflow
Jul 16, 2020 · The problem here is your user doesn't have proper rights/permissions to open the file this means that you'd need to grant some administrative privileges to your python ide …
python - Iterating over dictionaries using 'for' loops - Stack Overflow
Jul 21, 2010 · In Python 3.x, iteritems() was replaced with simply items(), which returns a set-like view backed by the dict, like iteritems() but even better. This is also available in 2.7 as …
python - What exactly do "u" and "r" string prefixes do, and what …
There are two types of string in Python 2: the traditional str type and the newer unicode type. If you type a string literal without the u in front you get the old str type which stores 8-bit …
python - How do I execute a program or call a system command?
Note on Python version: If you are still using Python 2, subprocess.call works in a similar way. ProTip: shlex.split can help you to parse the command for run, call, and other subprocess …
Is there a "not equal" operator in Python? - Stack Overflow
Jun 16, 2012 · Python is dynamically, but strongly typed, and other statically typed languages would complain about comparing different types. There's also the else clause: # This will …
What does colon equal (:=) in Python mean? - Stack Overflow
In Python this is simply =. To translate this pseudocode into Python you would need to know the data structures being referenced, and a bit more of the algorithm implementation. Some notes …
What is Python's equivalent of && (logical-and) in an if-statement?
Sep 13, 2023 · There is no bitwise negation in Python (just the bitwise inverse operator ~ - but that is not equivalent to not). See also 6.6. Unary arithmetic and bitwise/binary operations and …
What does the "at" (@) symbol do in Python? - Stack Overflow
Jun 17, 2011 · Functions, in Python, are first class objects - which means you can pass a function as an argument to another function, and return functions. Decorators do both of these things. If …
python - What is the purpose of the -m switch? - Stack Overflow
You must run python my_script.py from the directory where the file is located. Alternatively - python path/to/my_script.py. However, you can run python -m my_script (ie refer to the script …
What does [:-1] mean/do in python? - Stack Overflow
Mar 20, 2013 · Working on a python assignment and was curious as to what [:-1] means in the context of the following code: instructions = f.readline()[:-1] Have searched on here on S.O. and …
python - Errno 13 Permission denied - Stack Overflow
Jul 16, 2020 · The problem here is your user doesn't have proper rights/permissions to open the file this means that you'd need to grant some administrative privileges to your python ide …
python - Iterating over dictionaries using 'for' loops - Stack Overflow
Jul 21, 2010 · In Python 3.x, iteritems() was replaced with simply items(), which returns a set-like view backed by the dict, like iteritems() but even better. This is also available in 2.7 as …
python - What exactly do "u" and "r" string prefixes do, and what …
There are two types of string in Python 2: the traditional str type and the newer unicode type. If you type a string literal without the u in front you get the old str type which stores 8-bit …
python - How do I execute a program or call a system command?
Note on Python version: If you are still using Python 2, subprocess.call works in a similar way. ProTip: shlex.split can help you to parse the command for run, call, and other subprocess …