Advertisement
number theory download: Elements of Number Theory I. M. Vinogradov, 2016-01-14 A very welcome addition to books on number theory.—Bulletin, American Mathematical Society Clear and detailed in its exposition, this text can be understood by readers with no background in advanced mathematics; only a small part requires a working knowledge of calculus. One of the most valuable characteristics of this book is its stress on learning number theory by means of demonstrations and problems. More than 200 problems and full solutions appear in the text, plus 100 numerical exercises. Some of these exercises deal with estimation of trigonometric sums and are especially valuable as introductions to more advanced studies. Translation of 1949 Russian edition. |
number theory download: Three Pearls of Number Theory Aleksandr I?A?kovlevich Khinchin, Frederick Bagemihl, 1998-01-01 These 3 puzzles require proof of a basic law governing the world of numbers. Features van der Waerden's theorem, the Landau-Schnirelmann hypothesis and Mann's theorem, and a solution to Waring's problem. Solutions included. |
number theory download: Elementary Number Theory: Primes, Congruences, and Secrets William Stein, 2008-10-28 This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predeterminedsecret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem. |
number theory download: Discrete Mathematics and Its Applications Kenneth Rosen, 2006-07-26 Discrete Mathematics and its Applications, Sixth Edition, is intended for one- or two-term introductory discrete mathematics courses taken by students from a wide variety of majors, including computer science, mathematics, and engineering. This renowned best-selling text, which has been used at over 500 institutions around the world, gives a focused introduction to the primary themes in a discrete mathematics course and demonstrates the relevance and practicality of discrete mathematics to a wide a wide variety of real-world applications...from computer science to data networking, to psychology, to chemistry, to engineering, to linguistics, to biology, to business, and to many other important fields. |
number theory download: Surveys in Number Theory Krishnaswami Alladi, 2009-03-02 Number theory has a wealth of long-standing problems, the study of which over the years has led to major developments in many areas of mathematics. This volume consists of seven significant chapters on number theory and related topics. Written by distinguished mathematicians, key topics focus on multipartitions, congruences and identities (G. Andrews), the formulas of Koshliakov and Guinand in Ramanujan's Lost Notebook (B. C. Berndt, Y. Lee, and J. Sohn), alternating sign matrices and the Weyl character formulas (D. M. Bressoud), theta functions in complex analysis (H. M. Farkas), representation functions in additive number theory (M. B. Nathanson), and mock theta functions, ranks, and Maass forms (K. Ono), and elliptic functions (M. Waldschmidt). |
number theory download: Number Theory for Computing Song Y. Yan, 2013-11-11 Modern cryptography depends heavily on number theory, with primality test ing, factoring, discrete logarithms (indices), and elliptic curves being perhaps the most prominent subject areas. Since my own graduate study had empha sized probability theory, statistics, and real analysis, when I started work ing in cryptography around 1970, I found myself swimming in an unknown, murky sea. I thus know from personal experience how inaccessible number theory can be to the uninitiated. Thank you for your efforts to case the transition for a new generation of cryptographers. Thank you also for helping Ralph Merkle receive the credit he deserves. Diffie, Rivest, Shamir, Adleman and I had the good luck to get expedited review of our papers, so that they appeared before Merkle's seminal contribu tion. Your noting his early submission date and referring to what has come to be called Diffie-Hellman key exchange as it should, Diffie-Hellman-Merkle key exchange, is greatly appreciated. It has been gratifying to see how cryptography and number theory have helped each other over the last twenty-five years. :'-Jumber theory has been the source of numerous clever ideas for implementing cryptographic systems and protocols while cryptography has been helpful in getting funding for this area which has sometimes been called the queen of mathematics because of its seeming lack of real world applications. Little did they know! Stanford, 30 July 2001 Martin E. Hellman Preface to the Second Edition Number theory is an experimental science. |
number theory download: A Classical Introduction to Modern Number Theory Kenneth Ireland, Michael Rosen, 2013-04-17 This well-developed, accessible text details the historical development of the subject throughout. It also provides wide-ranging coverage of significant results with comparatively elementary proofs, some of them new. This second edition contains two new chapters that provide a complete proof of the Mordel-Weil theorem for elliptic curves over the rational numbers and an overview of recent progress on the arithmetic of elliptic curves. |
number theory download: 数论导引 , 2007 本书内容包括素数、无理数、同余、费马定理、连分数、不定方程、二次域、算术函数、分化等。 |
number theory download: Number Theory W.A. Coppel, 2009-10-03 Number Theory is more than a comprehensive treatment of the subject. It is an introduction to topics in higher level mathematics, and unique in its scope; topics from analysis, modern algebra, and discrete mathematics are all included. The book is divided into two parts. Part A covers key concepts of number theory and could serve as a first course on the subject. Part B delves into more advanced topics and an exploration of related mathematics. The prerequisites for this self-contained text are elements from linear algebra. Valuable references for the reader are collected at the end of each chapter. It is suitable as an introduction to higher level mathematics for undergraduates, or for self-study. |
number theory download: Handbook of Number Theory I József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, 2005-11-17 This handbook covers a wealth of topics from number theory, special attention being given to estimates and inequalities. As a rule, the most important results are presented, together with their refinements, extensions or generalisations. These may be applied to other aspects of number theory, or to a wide range of mathematical disciplines. Cross-references provide new insight into fundamental research. Audience: This is an indispensable reference work for specialists in number theory and other mathematicians who need access to some of these results in their own fields of research. |
number theory download: Methods of Solving Number Theory Problems Ellina Grigorieva, 2018-07-06 Through its engaging and unusual problems, this book demonstrates methods of reasoning necessary for learning number theory. Every technique is followed by problems (as well as detailed hints and solutions) that apply theorems immediately, so readers can solve a variety of abstract problems in a systematic, creative manner. New solutions often require the ingenious use of earlier mathematical concepts - not the memorization of formulas and facts. Questions also often permit experimental numeric validation or visual interpretation to encourage the combined use of deductive and intuitive thinking. The first chapter starts with simple topics like even and odd numbers, divisibility, and prime numbers and helps the reader to solve quite complex, Olympiad-type problems right away. It also covers properties of the perfect, amicable, and figurate numbers and introduces congruence. The next chapter begins with the Euclidean algorithm, explores the representations of integer numbers in different bases, and examines continued fractions, quadratic irrationalities, and the Lagrange Theorem. The last section of Chapter Two is an exploration of different methods of proofs. The third chapter is dedicated to solving Diophantine linear and nonlinear equations and includes different methods of solving Fermat’s (Pell’s) equations. It also covers Fermat’s factorization techniques and methods of solving challenging problems involving exponent and factorials. Chapter Four reviews the Pythagorean triple and quadruple and emphasizes their connection with geometry, trigonometry, algebraic geometry, and stereographic projection. A special case of Waring’s problem as a representation of a number by the sum of the squares or cubes of other numbers is covered, as well as quadratic residuals, Legendre and Jacobi symbols, and interesting word problems related to the properties of numbers. Appendices provide a historic overview of number theory and its main developments from the ancient cultures in Greece, Babylon, and Egypt to the modern day. Drawing from cases collected by an accomplished female mathematician, Methods in Solving Number Theory Problems is designed as a self-study guide or supplementary textbook for a one-semester course in introductory number theory. It can also be used to prepare for mathematical Olympiads. Elementary algebra, arithmetic and some calculus knowledge are the only prerequisites. Number theory gives precise proofs and theorems of an irreproachable rigor and sharpens analytical thinking, which makes this book perfect for anyone looking to build their mathematical confidence. |
number theory download: Topics in Multiplicative Number Theory Hugh L. Montgomery, 2006-11-15 These notes are designed to present a survey of the present state of knowledge concerning those subjects touched upon in the last fifty pages of Davenport's Multiplicative Number Theory . |
number theory download: Number Fields Daniel A. Marcus, 2018-07-05 Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises. |
number theory download: Introduction to Analytic Number Theory Tom M. Apostol, 1998-05-28 This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory. For this reason, the book starts with the most elementary properties of the natural integers. Nevertheless, the text succeeds in presenting an enormous amount of material in little more than 300 pages.-—MATHEMATICAL REVIEWS |
number theory download: Directions in Number Theory Ellen E. Eischen, Ling Long, Rachel Pries, Katherine E. Stange, 2016-09-26 Exploring the interplay between deep theory and intricate computation, this volume is a compilation of research and survey papers in number theory, written by members of the Women In Numbers (WIN) network, principally by the collaborative research groups formed at Women In Numbers 3, a conference at the Banff International Research Station in Banff, Alberta, on April 21-25, 2014. The papers span a wide range of research areas: arithmetic geometry; analytic number theory; algebraic number theory; and applications to coding and cryptography. The WIN conference series began in 2008, with the aim of strengthening the research careers of female number theorists. The series introduced a novel research-mentorship model: women at all career stages, from graduate students to senior members of the community, joined forces to work in focused research groups on cutting-edge projects designed and led by experienced researchers. The goals for Women In Numbers 3 were to establish ambitious new collaborations between women in number theory, to train junior participants about topics of current importance, and to continue to build a vibrant community of women in number theory. Forty-two women attended the WIN3 workshop, including 15 senior and mid-level faculty, 15 junior faculty and postdocs, and 12 graduate students. |
number theory download: Research Directions in Number Theory Jennifer S. Balakrishnan, Amanda Folsom, Matilde Lalín, Michelle Manes, 2019-08-01 These proceedings collect several number theory articles, most of which were written in connection to the workshop WIN4: Women in Numbers, held in August 2017, at the Banff International Research Station (BIRS) in Banff, Alberta, Canada. It collects papers disseminating research outcomes from collaborations initiated during the workshop as well as other original research contributions involving participants of the WIN workshops. The workshop and this volume are part of the WIN network, aimed at highlighting the research of women and gender minorities in number theory as well as increasing their participation and boosting their potential collaborations in number theory and related fields. |
number theory download: Algebraic Number Theory Jürgen Neukirch, 2013-03-14 From the review: The present book has as its aim to resolve a discrepancy in the textbook literature and ... to provide a comprehensive introduction to algebraic number theory which is largely based on the modern, unifying conception of (one-dimensional) arithmetic algebraic geometry. ... Despite this exacting program, the book remains an introduction to algebraic number theory for the beginner... The author discusses the classical concepts from the viewpoint of Arakelov theory.... The treatment of class field theory is ... particularly rich in illustrating complements, hints for further study, and concrete examples.... The concluding chapter VII on zeta-functions and L-series is another outstanding advantage of the present textbook.... The book is, without any doubt, the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available. W. Kleinert in: Zentralblatt für Mathematik, 1992 |
number theory download: Topics in Number Theory Basil Gordon, Sarvadaman Chowla, 1999-03-31 This volume contains the proceedings of the Topics in Number Theory Conference held at the Pennsylvania State University from July 31 through August 3, 1997. It contains seventeen research papers covering many areas of number theory; among them are contributions from four of the eight plenary speakers |
number theory download: Introduction to Number Theory L.-K. Hua, 2012-12-06 To Number Theory Translated from the Chinese by Peter Shiu With 14 Figures Springer-Verlag Berlin Heidelberg New York 1982 HuaLooKeng Institute of Mathematics Academia Sinica Beijing The People's Republic of China PeterShlu Department of Mathematics University of Technology Loughborough Leicestershire LE 11 3 TU United Kingdom ISBN -13 : 978-3-642-68132-5 e-ISBN -13 : 978-3-642-68130-1 DOl: 10.1007/978-3-642-68130-1 Library of Congress Cataloging in Publication Data. Hua, Loo-Keng, 1910 -. Introduc tion to number theory. Translation of: Shu lun tao yin. Bibliography: p. Includes index. 1. Numbers, Theory of. I. Title. QA241.H7513.5 12'.7.82-645. ISBN-13:978-3-642-68132-5 (U.S.). AACR2 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, reuse of illustra tions, broadcasting, reproductiOli by photocopying machine or similar means, and storage in data banks. Under {sect} 54 of the German Copyright Law where copies are made for other than private use a fee is payable to VerwertungsgeselIschaft Wort, Munich. © Springer-Verlag Berlin Heidelberg 1982 Softcover reprint of the hardcover 1st edition 1982 Typesetting: Buchdruckerei Dipl.-Ing. Schwarz' Erben KG, Zwettl. 214113140-5432 I 0 Preface to the English Edition The reasons for writing this book have already been given in the preface to the original edition and it suffices to append a few more points |
number theory download: Theory of Numbers George Ballard Mathews, 1892 |
number theory download: Sequences, Groups, and Number Theory Valérie Berthé, Michel Rigo, 2018-05-02 This collaborative book presents recent trends on the study of sequences, including combinatorics on words and symbolic dynamics, and new interdisciplinary links to group theory and number theory. Other chapters branch out from those areas into subfields of theoretical computer science, such as complexity theory and theory of automata. The book is built around four general themes: number theory and sequences, word combinatorics, normal numbers, and group theory. Those topics are rounded out by investigations into automatic and regular sequences, tilings and theory of computation, discrete dynamical systems, ergodic theory, numeration systems, automaton semigroups, and amenable groups. This volume is intended for use by graduate students or research mathematicians, as well as computer scientists who are working in automata theory and formal language theory. With its organization around unified themes, it would also be appropriate as a supplemental text for graduate level courses. |
number theory download: Geometry, Algebra, Number Theory, and Their Information Technology Applications Amir Akbary, Sanoli Gun, 2018-09-18 This volume contains proceedings of two conferences held in Toronto (Canada) and Kozhikode (India) in 2016 in honor of the 60th birthday of Professor Kumar Murty. The meetings were focused on several aspects of number theory: The theory of automorphic forms and their associated L-functions Arithmetic geometry, with special emphasis on algebraic cycles, Shimura varieties, and explicit methods in the theory of abelian varieties The emerging applications of number theory in information technology Kumar Murty has been a substantial influence in these topics, and the two conferences were aimed at honoring his many contributions to number theory, arithmetic geometry, and information technology. |
number theory download: Basic Number Theory. Andre Weil, 2013-12-14 Itpzf}JlOV, li~oxov uoq>ZUJlCJ. 7:WV Al(JX., llpoj1. AE(Jj1. The first part of this volume is based on a course taught at Princeton University in 1961-62; at that time, an excellent set ofnotes was prepared by David Cantor, and it was originally my intention to make these notes available to the mathematical public with only quite minor changes. Then, among some old papers of mine, I accidentally came across a long-forgotten manuscript by ChevaIley, of pre-war vintage (forgotten, that is to say, both by me and by its author) which, to my taste at least, seemed to have aged very welt It contained abrief but essentially com plete account of the main features of c1assfield theory, both local and global; and it soon became obvious that the usefulness of the intended volume would be greatly enhanced if I inc1uded such a treatment of this topic. It had to be expanded, in accordance with my own plans, but its outline could be preserved without much change. In fact, I have adhered to it rather c10sely at some critical points. |
number theory download: Number Theory Zenon Ivanovich Borevich, 1986 |
number theory download: Number Theory and Its History Oystein Ore, 2012-07-06 Unusually clear, accessible introduction covers counting, properties of numbers, prime numbers, Aliquot parts, Diophantine problems, congruences, much more. Bibliography. |
number theory download: Number Theory in Function Fields Michael Rosen, 2013-04-18 Elementary number theory is concerned with the arithmetic properties of the ring of integers, Z, and its field of fractions, the rational numbers, Q. Early on in the development of the subject it was noticed that Z has many properties in common with A = IF[T], the ring of polynomials over a finite field. Both rings are principal ideal domains, both have the property that the residue class ring of any non-zero ideal is finite, both rings have infinitely many prime elements, and both rings have finitely many units. Thus, one is led to suspect that many results which hold for Z have analogues of the ring A. This is indeed the case. The first four chapters of this book are devoted to illustrating this by presenting, for example, analogues of the little theorems of Fermat and Euler, Wilson's theorem, quadratic (and higher) reciprocity, the prime number theorem, and Dirichlet's theorem on primes in an arithmetic progression. All these results have been known for a long time, but it is hard to locate any exposition of them outside of the original papers. Algebraic number theory arises from elementary number theory by con sidering finite algebraic extensions K of Q, which are called algebraic num ber fields, and investigating properties of the ring of algebraic integers OK C K, defined as the integral closure of Z in K. |
number theory download: Number Theory Benjamin Fine, Gerhard Rosenberger, 2016-09-27 Now in its second edition, this textbook provides an introduction and overview of number theory based on the density and properties of the prime numbers. This unique approach offers both a firm background in the standard material of number theory, as well as an overview of the entire discipline. All of the essential topics are covered, such as the fundamental theorem of arithmetic, theory of congruences, quadratic reciprocity, arithmetic functions, and the distribution of primes. New in this edition are coverage of p-adic numbers, Hensel's lemma, multiple zeta-values, and elliptic curve methods in primality testing. Key topics and features include: A solid introduction to analytic number theory, including full proofs of Dirichlet's Theorem and the Prime Number Theorem Concise treatment of algebraic number theory, including a complete presentation of primes, prime factorizations in algebraic number fields, and unique factorization of ideals Discussion of the AKS algorithm, which shows that primality testing is one of polynomial time, a topic not usually included in such texts Many interesting ancillary topics, such as primality testing and cryptography, Fermat and Mersenne numbers, and Carmichael numbers The user-friendly style, historical context, and wide range of exercises that range from simple to quite difficult (with solutions and hints provided for select exercises) make Number Theory: An Introduction via the Density of Primes ideal for both self-study and classroom use. Intended for upper level undergraduates and beginning graduates, the only prerequisites are a basic knowledge of calculus, multivariable calculus, and some linear algebra. All necessary concepts from abstract algebra and complex analysis are introduced where needed. |
number theory download: Applied Number Theory Harald Niederreiter, Arne Winterhof, 2016-10-22 This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas. Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars’ GPS systems, in online banking, etc. Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters 2-5 and offer a glimpse of advanced results that are presented without proofs and require more advanced mathematical skills. In the last chapter they review several further applications of number theory, ranging from check-digit systems to quantum computation and the organization of raster-graphics memory. Upper-level undergraduates, graduates and researchers in the field of number theory will find this book to be a valuable resource. |
number theory download: Number Theory Kuldeep Singh, 2020 Number Theory: Step by Step is an undergraduate-level introduction to number theory that assumes no prior knowledge, but works to gradually increase the reader's confidence and ability to tackle more difficult number theory material. |
number theory download: Number Theory Benjamin Fine, Gerhard Rosenberger, 2007-06-04 This book provides an introduction and overview of number theory based on the distribution and properties of primes. This unique approach provides both a firm background in the standard material as well as an overview of the whole discipline. All the essential topics are covered: fundamental theorem of arithmetic, theory of congruences, quadratic reciprocity, arithmetic functions, and the distribution of primes. Analytic number theory and algebraic number theory both receive a solid introductory treatment. The book’s user-friendly style, historical context, and wide range of exercises make it ideal for self study and classroom use. |
number theory download: Equidistribution in Number Theory, An Introduction Andrew Granville, Zeév Rudnick, 2007-04-08 From July 11th to July 22nd, 2005, a NATO advanced study institute, as part of the series “Seminaire ́ de mathematiques ́ superieures”, ́ was held at the U- versite ́ de Montreal, ́ on the subject Equidistribution in the theory of numbers. There were about one hundred participants from sixteen countries around the world. This volume presents details of the lecture series that were given at the school. Across the broad panorama of topics that constitute modern number t- ory one nds shifts of attention and focus as more is understood and better questions are formulated. Over the last decade or so we have noticed incre- ing interest being paid to distribution problems, whether of rational points, of zeros of zeta functions, of eigenvalues, etc. Although these problems have been motivated from very di?erent perspectives, one nds that there is much in common, and presumably it is healthy to try to view such questions as part of a bigger subject. It is for this reason we decided to hold a school on “Equidistribution in number theory” to introduce junior researchers to these beautiful questions, and to determine whether di?erent approaches can in uence one another. There are far more good problems than we had time for in our schedule. We thus decided to focus on topics that are clearly inter-related or do not requirealotofbackgroundtounderstand. |
number theory download: Number Theory George E. Andrews, 2012-04-30 Undergraduate text uses combinatorial approach to accommodate both math majors and liberal arts students. Covers the basics of number theory, offers an outstanding introduction to partitions, plus chapters on multiplicativity-divisibility, quadratic congruences, additivity, and more. |
number theory download: A Course in Number Theory and Cryptography Neal Koblitz, 2012-09-05 . . . both Gauss and lesser mathematicians may be justified in rejoic ing that there is one science [number theory] at any rate, and that their own, whose very remoteness from ordinary human activities should keep it gentle and clean. - G. H. Hardy, A Mathematician's Apology, 1940 G. H. Hardy would have been surprised and probably displeased with the increasing interest in number theory for application to ordinary human activities such as information transmission (error-correcting codes) and cryptography (secret codes). Less than a half-century after Hardy wrote the words quoted above, it is no longer inconceivable (though it hasn't happened yet) that the N. S. A. (the agency for U. S. government work on cryptography) will demand prior review and clearance before publication of theoretical research papers on certain types of number theory. In part it is the dramatic increase in computer power and sophistica tion that has influenced some of the questions being studied by number theorists, giving rise to a new branch of the subject, called computational number theory. This book presumes almost no background in algebra or number the ory. Its purpose is to introduce the reader to arithmetic topics, both ancient and very modern, which have been at the center of interest in applications, especially in cryptography. For this reason we take an algorithmic approach, emphasizing estimates of the efficiency of the techniques that arise from the theory. |
number theory download: An Introductory Course in Elementary Number Theory Wissam Raji, 2016-08-18 These notes serve as course notes for an undergraduate course in number theory. Most if not all universities worldwide offer introductory courses in numbertheory for math majors and in many cases as an elective course. The notes contain a useful introduction to important topics that need to be addressedin a course in number theory. Proofs of basic theorems are presented inan interesting and comprehensive way that can be read and understood even bynon-majors with the exception in the last three chapters where a background inanalysis, measure theory and abstract algebra is required. The exercises are carefullychosen to broaden the understanding of the concepts. Moreover, these notesshed light on analytic number theory, a subject that is rarely seen or approachedby undergraduate students. One of the unique characteristics of these notes is thecareful choice of topics and its importance in the theory of numbers. The freedomis given in the last two chapters because of the advanced nature of the topics thatare presented. Thanks to professor Pavel Guerzhoy from University of Hawaii for his contributionin chapter six on continued fraction and to Professor Ramez Maalouf fromNotre Dame University, Lebanon for his contribution to chapter eight. |
number theory download: You Can Count on Monsters Richard Evan Schwartz, 2015-03-19 This book is a unique teaching tool that takes math lovers on a journey designed to motivate kids (and kids at heart) to learn the fun of factoring and prime numbers. This volume visually explores the concepts of factoring and the role of prime and composite numbers. The playful and colorful monsters are designed to give children (and even older audiences) an intuitive understanding of the building blocks of numbers and the basics of multiplication. The introduction and appendices can also help adult readers answer questions about factoring from their young audience. The artwork is crisp and creative and the colors are bright and engaging, making this volume a welcome deviation from standard math texts. Any person, regardless of age, can profit from reading this book. Readers will find themselves returning to its pages for a very long time, continually learning from and getting to know the monsters as their knowledge expands. You Can Count on Monsters is a magnificent addition for any math education program and is enthusiastically recommended to every teacher, parent and grandparent, student, child, or other individual interested in exploring the visually fascinating world of the numbers 1 through 100. |
number theory download: Elementary Number Theory with Programming Marty Lewinter, Jeanine Meyer, 2015-05-06 A highly successful presentation of the fundamental concepts of number theory and computer programming Bridging an existing gap between mathematics and programming, Elementary Number Theory with Programming provides a unique introduction to elementary number theory with fundamental coverage of computer programming. Written by highly-qualified experts in the fields of computer science and mathematics, the book features accessible coverage for readers with various levels of experience and explores number theory in the context of programming without relying on advanced prerequisite knowledge and concepts in either area. Elementary Number Theory with Programming features comprehensive coverage of the methodology and applications of the most well-known theorems, problems, and concepts in number theory. Using standard mathematical applications within the programming field, the book presents modular arithmetic and prime decomposition, which are the basis of the public-private key system of cryptography. In addition, the book includes: Numerous examples, exercises, and research challenges in each chapter to encourage readers to work through the discussed concepts and ideas Select solutions to the chapter exercises in an appendix Plentiful sample computer programs to aid comprehension of the presented material for readers who have either never done any programming or need to improve their existing skill set A related website with links to select exercises An Instructor’s Solutions Manual available on a companion website Elementary Number Theory with Programming is a useful textbook for undergraduate and graduate-level students majoring in mathematics or computer science, as well as an excellent supplement for teachers and students who would like to better understand and appreciate number theory and computer programming. The book is also an ideal reference for computer scientists, programmers, and researchers interested in the mathematical applications of programming. |
number theory download: A Course in Number Theory H. E. Rose, 1995 The second edition of this undergraduate textbook is now available in paperback. Covering up-to-date as well as established material, it is the only textbook which deals with all the main areas of number theory, taught in the third year of a mathematics course. Each chapter ends with a collection of problems, and hints and sketch solutions are provided at the end of the book, together with useful tables. |
number theory download: Algebraic Number Theory and Fermat's Last Theorem Ian Stewart, David Tall, 2001-12-12 First published in 1979 and written by two distinguished mathematicians with a special gift for exposition, this book is now available in a completely revised third edition. It reflects the exciting developments in number theory during the past two decades that culminated in the proof of Fermat's Last Theorem. Intended as a upper level textbook, it |
number theory download: A Friendly Introduction to Number Theory Joseph H. Silverman, 2013-10-03 For one-semester undergraduate courses in Elementary Number Theory. A Friendly Introduction to Number Theory, Fourth Edition is designed to introduce students to the overall themes and methodology of mathematics through the detailed study of one particular facet—number theory. Starting with nothing more than basic high school algebra, students are gradually led to the point of actively performing mathematical research while getting a glimpse of current mathematical frontiers. The writing is appropriate for the undergraduate audience and includes many numerical examples, which are analyzed for patterns and used to make conjectures. Emphasis is on the methods used for proving theorems rather than on specific results. |
number theory download: Introduction to Modern Number Theory Yu. I. Manin, Alexei A. Panchishkin, 2010-10-19 This edition has been called ‘startlingly up-to-date’, and in this corrected second printing you can be sure that it’s even more contemporaneous. It surveys from a unified point of view both the modern state and the trends of continuing development in various branches of number theory. Illuminated by elementary problems, the central ideas of modern theories are laid bare. Some topics covered include non-Abelian generalizations of class field theory, recursive computability and Diophantine equations, zeta- and L-functions. This substantially revised and expanded new edition contains several new sections, such as Wiles' proof of Fermat's Last Theorem, and relevant techniques coming from a synthesis of various theories. |
Number Web - スポーツ総合雑誌ナンバー
Number Webオリジナルのスポーツコラムを配信、また雑誌発売の情報や編集部からの各種お知らせを読者へお伝えしています。
<阪神タイガース90周年記念> 猛虎猛打列伝。 - Number1118 …
Sports Graphic Number 1118・1119 号 <阪神タイガース90周年記念> 猛虎猛打列伝。 2025年4月24日発売 900円(税込) 雑誌、電子書籍を購入する. で読む
スポーツコラム - Number Web - ナンバー
Number Webのスポーツコラム一覧ページです。旬の話題を、深く掘り下げたスポーツコラムで是非!
革命前夜~1994年の近鉄バファローズ - Number Web - ナンバー
4 days ago · Number Webの連載コラム「革命前夜~1994年の近鉄バファローズ」の一覧ページです。旬の話題を、深く掘り下げたスポーツコラムで是非!
大谷翔平30歳vsジャッジ33歳「打球速度は ... - Number Web
Jun 5, 2025 · 酒の肴に野球の記録back number 大谷翔平30歳vsジャッジ33歳「打球速度は大谷が上だが…なぜ飛距離はジャッジ? 」今季44ホームラン徹底比較で“2人 ...
球体とリズム - Number Web
May 31, 2025 · 【登録無料】Numberメールマガジン好評配信中。スポーツの「今」をメールでお届け!
「野茂は野球ができなくなるんじゃないか ... - Number Web
May 30, 2025 · 江夏豊はNumber主催の「たったひとりの引退式」でメジャー挑戦を表明した ©Bungeishunju 「絶対無理やな、って思ってたんです。
「そんなのありえないっすよ」のハズが ... - Number Web
May 19, 2025 · 箱根駅伝pressback number 「そんなのありえないっすよ」のハズが…高校駅伝で話題の“集団転校”問題 転校して“来られた側”の胸中は? 経験者が ...
将棋 - Number Web - ナンバー
Number Web『将棋』一覧ページ。将棋関連の話題を深く掘り下げた記事を公開中。
Sports Graphic Number More
Jun 5, 2025 · そして長嶋は大々的に「4番1000日構想」を打ち上げた。小俣が補足する。 「長嶋さんには日本の4番バッターに育てたいという思いがあった。そう ...
Number Web - スポーツ総合雑誌ナンバー
Number Webオリジナルのスポーツコラムを配信、また雑誌発売の情報や編集部からの各種お知らせを読者へお伝えしています。
<阪神タイガース90周年記念> 猛虎猛打列伝。 - Number1118 …
Sports Graphic Number 1118・1119 号 <阪神タイガース90周年記念> 猛虎猛打列伝。 2025年4月24日発売 900円(税込) 雑誌、電子書籍を購入する. で読む
スポーツコラム - Number Web - ナンバー
Number Webのスポーツコラム一覧ページです。旬の話題を、深く掘り下げたスポーツコラムで是非!
革命前夜~1994年の近鉄バファローズ - Number Web - ナンバー
4 days ago · Number Webの連載コラム「革命前夜~1994年の近鉄バファローズ」の一覧ページです。旬の話題を、深く掘り下げたスポーツコラムで是非!
大谷翔平30歳vsジャッジ33歳「打球速度は ... - Number Web
Jun 5, 2025 · 酒の肴に野球の記録back number 大谷翔平30歳vsジャッジ33歳「打球速度は大谷が上だが…なぜ飛距離はジャッジ? 」今季44ホームラン徹底比較で“2人 ...
球体とリズム - Number Web
May 31, 2025 · 【登録無料】Numberメールマガジン好評配信中。スポーツの「今」をメールでお届け!
「野茂は野球ができなくなるんじゃないか ... - Number Web
May 30, 2025 · 江夏豊はNumber主催の「たったひとりの引退式」でメジャー挑戦を表明した ©Bungeishunju 「絶対無理やな、って思ってたんです。
「そんなのありえないっすよ」のハズが ... - Number Web
May 19, 2025 · 箱根駅伝pressback number 「そんなのありえないっすよ」のハズが…高校駅伝で話題の“集団転校”問題 転校して“来られた側”の胸中は? 経験者が ...
将棋 - Number Web - ナンバー
Number Web『将棋』一覧ページ。将棋関連の話題を深く掘り下げた記事を公開中。
Sports Graphic Number More
Jun 5, 2025 · そして長嶋は大々的に「4番1000日構想」を打ち上げた。小俣が補足する。 「長嶋さんには日本の4番バッターに育てたいという思いがあった。そう ...