Advertisement
nanoelectronics free download: Nanoelectronics Fundamentals Hassan Raza, 2019-11-26 This book covers the state of the art in the theoretical framework, computational modeling, and the fabrication and characterization of nanoelectronics devices. It addresses material properties, device physics, circuit analysis, system design, and a range of applications. A discussion on the nanoscale fabrication, characterization and metrology is also included. The book offers a valuable resource for researchers, graduate students, and senior undergraduate students in engineering and natural sciences, who are interested in exploring nanoelectronics from materials, devices, systems, and applications perspectives. |
nanoelectronics free download: Nanoelectronic Materials and Devices Christophe Labbé, Subhananda Chakrabarti, Gargi Raina, B. Bindu, 2017-11-27 This book gathers a collection of papers by international experts that were presented at the International Conference on NextGen Electronic Technologies (ICNETS2-2016). ICNETS2 encompassed six symposia covering all aspects of the electronics and communications domains, including relevant nano/micro materials and devices. Highlighting the latest research on nanoelectronic materials and devices, the book offers a valuable guide for researchers, practitioners and students working in the core areas of functional electronics nanomaterials, nanocomposites for energy application, sensing and high strength materials and simulation of novel device design structures for ultra-low power applications. |
nanoelectronics free download: Nanoelectronics and Nanosystems Karl Goser, 2013-04-17 An accessible introduction for electronic engineers, computer scientists and physicists. The overview covers all aspects from underlying technologies to circuits and systems. The challenge of nanoelectronics is not only to manufacture minute structures but also to develop innovative systems for effective integration of the billions of devices. On the system level, various architectures are presented and important features of systems, such as design strategies, processing power, and reliability are discussed. Many specific technologies are presented, including molecular devices, quantum electronic devices, resonant tunnelling devices, single electron devices, superconducting devices, and even devices for DNA and quantum computing. The book also compares these devices with current silicon technologies and discusses limits of electronics and the future of nanosystems. |
nanoelectronics free download: Nanotechnology and Nanoelectronics Wolfgang Fahrner, 2005-12-05 Split a human hair thirty thousand times, and you have the equivalent of a nanometer. The aim of this work is to provide an introduction into nanotechnology for the s- entifically interested. However, such an enterprise requires a balance between comprehensibility and scientific accuracy. In case of doubt, preference is given to the latter. Much more than in microtechnology – whose fundamentals we assume to be known – a certain range of engineering and natural sciences are interwoven in nanotechnology. For instance, newly developed tools from mechanical engine- ing are essential in the production of nanoelectronic structures. Vice versa, - chanical shifts in the nanometer range demand piezoelectric-operated actuators. Therefore, special attention is given to a comprehensive presentation of the matter. In our time, it is no longer sufficient to simply explain how an electronic device operates; the materials and procedures used for its production and the measuring instruments used for its characterization are equally important. The main chapters as well as several important sections in this book end in an evaluation of future prospects. Unfortunately, this way of separating coherent - scription from reflection and speculation could not be strictly maintained. So- times, the complete description of a device calls for discussion of its inherent - tential; the hasty reader in search of the general perspective is therefore advised to study this work’s technical chapters as well. |
nanoelectronics free download: Granular Nanoelectronics David Ferry, John R. Barker, Carlo Jacoboni, 1991-07-31 The technological means now exists for approaching the fundamentallimiting scales of solid state electronics in which a single carrier can, in principle, represent a single bit in an information flow. In this light, the prospect of chemically, or biologically, engineered molccular-scale structures which might support information processing functions has enticed workers for many years. The one common factor in all suggested molecular switches, ranging from the experimentally feasible proton-tunneling structure, to natural systems such as the micro-tubule, is that each proposed structure deals with individual information carrying entities. Whereas this future molecular electronics faces enormous technical challenges, the same Iimit is already appearing in existing semiconducting quantum wires and small tunneling structures, both superconducting and normal meta! devices, in which the motion of a single eh arge through the tunneling barrier can produce a sufficient voltage change to cut-off further tunneling current. We may compare the above situation with today's Si microelectronics, where each bit is encoded as a very !arge number, not necessarily fixed, of electrons within acharge pulse. The associated reservoirs and sinks of charge carriers may be profitably tapped and manipulated to proviele macro-currents which can be readily amplified or curtailed. On the other band, modern semiconductor ULSI has progressed by adopting a linear scaling principle to the down-sizing of individual semiconductor devices. |
nanoelectronics free download: Nanoelectronic Materials Loutfy H. Madkour, 2019-06-27 This book presents synthesis techniques for the preparation of low-dimensional nanomaterials including 0D (quantum dots), 1D (nanowires, nanotubes) and 2D (thin films, few layers), as well as their potential applications in nanoelectronic systems. It focuses on the size effects involved in the transition from bulk materials to nanomaterials; the electronic properties of nanoscale devices; and different classes of nanomaterials from microelectronics to nanoelectronics, to molecular electronics. Furthermore, it demonstrates the structural stability, physical, chemical, magnetic, optical, electrical, thermal, electronic and mechanical properties of the nanomaterials. Subsequent chapters address their characterization, fabrication techniques from lab-scale to mass production, and functionality. In turn, the book considers the environmental impact of nanotechnology and novel applications in the mechanical industries, energy harvesting, clean energy, manufacturing materials, electronics, transistors, health and medical therapy. In closing, it addresses the combination of biological systems with nanoelectronics and highlights examples of nanoelectronic–cell interfaces and other advanced medical applications. The book answers the following questions: • What is different at the nanoscale? • What is new about nanoscience? • What are nanomaterials (NMs)? • What are the fundamental issues in nanomaterials? • Where are nanomaterials found? • What nanomaterials exist in nature? • What is the importance of NMs in our lives? • Why so much interest in nanomaterials? • What is at nanoscale in nanomaterials? • What is graphene? • Are pure low-dimensional systems interesting and worth pursuing? • Are nanotechnology products currently available? • What are sensors? • How can Artificial Intelligence (AI) and nanotechnology work together? • What are the recent advances in nanoelectronic materials? • What are the latest applications of NMs? |
nanoelectronics free download: Graphene Nanoelectronics Hassan Raza, 2012-03-05 Graphene is a perfectly two-dimensional single-atom thin membrane with zero bandgap. It has attracted huge attention due to its linear dispersion around the Dirac point, excellent transport properties, novel magnetic characteristics, and low spin-orbit coupling. Graphene and its nanostructures may have potential applications in spintronics, photonics, plasmonics and electronics. This book brings together a team of experts to provide an overview of the most advanced topics in theory, experiments, spectroscopy and applications of graphene and its nanostructures. It covers the state-of-the-art in tutorial-like and review-like manner to make the book useful not only to experts, but also newcomers and graduate students. |
nanoelectronics free download: Introduction to Nanoelectronics Vladimir V. Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, 2008 A comprehensive textbook on nanoelectronics covering the underlying physics, nanostructures, nanomaterials and nanodevices. |
nanoelectronics free download: Electrical Atomic Force Microscopy for Nanoelectronics Umberto Celano, 2019-08-01 The tremendous impact of electronic devices on our lives is the result of continuous improvements of the billions of nanoelectronic components inside integrated circuits (ICs). However, ultra-scaled semiconductor devices require nanometer control of the many parameters essential for their fabrication. Through the years, this created a strong alliance between microscopy techniques and IC manufacturing. This book reviews the latest progress in IC devices, with emphasis on the impact of electrical atomic force microscopy (AFM) techniques for their development. The operation principles of many techniques are introduced, and the associated metrology challenges described. Blending the expertise of industrial specialists and academic researchers, the chapters are dedicated to various AFM methods and their impact on the development of emerging nanoelectronic devices. The goal is to introduce the major electrical AFM methods, following the journey that has seen our lives changed by the advent of ubiquitous nanoelectronics devices, and has extended our capability to sense matter on a scale previously inaccessible. |
nanoelectronics free download: Nanoelectronics Joachim Knoch, 2020-12-07 The author presents all aspects, in theory and experiments, of nanoelectronic devices starting from field-effect transistors and leading to alternative device concepts such as Schottky-barrier MOSFETs and band-to-band tunnel FETs. Latest advances in Nanoelectronics, as ultralow power nanoscale devices and the realization of silicon MOS spin qubits, are discussed and finally a brief introduction into device simulations is given as well. |
nanoelectronics free download: Integrated Nanoelectronics Vinod Kumar Khanna, 2016-09-16 Keeping nanoelectronics in focus, this book looks at interrelated fields namely nanomagnetics, nanophotonics, nanomechanics and nanobiotechnology, that go hand-in-hand or are likely to be utilized in future in various ways for backing up or strengthening nanoelectronics. Complementary nanosciences refer to the alternative nanosciences that can be combined with nanoelectronics. The book brings students and researchers from multiple disciplines (and therefore with disparate levels of knowledge, and, more importantly, lacunae in this knowledge) together and to expose them to the essentials of integrative nanosciences. The central idea is that the five identified disciplines overlap significantly and arguably cohere into one fundamental nanotechnology discipline. The book caters to interdisciplinary readership in contrast to many of the existing nanotechnology related books that relate to a specific discipline. The book lays special emphasis on nanoelectronics since this field has advanced most rapidly amongst all the nanotechnology disciplines and with significant commercial pervasion. In view of the significant impact that nanotechnology is predicted to have on society, the topics and their interrelationship in this book are of considerable interest and immense value to students, professional engineers, and reserachers. |
nanoelectronics free download: Nanoelectronics Robert Puers, Livio Baldi, Marcel Van de Voorde, Sebastiaan E. van Nooten, 2017-06-19 Offering first-hand insights by top scientists and industry experts at the forefront of R&D into nanoelectronics, this book neatly links the underlying technological principles with present and future applications. A brief introduction is followed by an overview of present and emerging logic devices, memories and power technologies. Specific chapters are dedicated to the enabling factors, such as new materials, characterization techniques, smart manufacturing and advanced circuit design. The second part of the book provides detailed coverage of the current state and showcases real future applications in a wide range of fields: safety, transport, medicine, environment, manufacturing, and social life, including an analysis of emerging trends in the internet of things and cyber-physical systems. A survey of main economic factors and trends concludes the book. Highlighting the importance of nanoelectronics in the core fields of communication and information technology, this is essential reading for materials scientists, electronics and electrical engineers, as well as those working in the semiconductor and sensor industries. |
nanoelectronics free download: Semiconductor-On-Insulator Materials for Nanoelectronics Applications Alexei Nazarov, J.-P. Colinge, Francis Balestra, Jean-Pierre Raskin, Francisco Gamiz, V.S. Lysenko, 2011-03-03 Semiconductor-On-Insulator Materials for NanoElectronics Applications” is devoted to the fast evolving field of modern nanoelectronics, and more particularly to the physics and technology of nanoelectronic devices built on semiconductor-on-insulator (SemOI) systems. The book contains the achievements in this field from leading companies and universities in Europe, USA, Brazil and Russia. It is articulated around four main topics: 1. New semiconductor-on-insulator materials; 2. Physics of modern SemOI devices; 3. Advanced characterization of SemOI devices; 4. Sensors and MEMS on SOI. Semiconductor-On-Insulator Materials for NanoElectonics Applications” is useful not only to specialists in nano- and microelectronics but also to students and to the wider audience of readers who are interested in new directions in modern electronics and optoelectronics. |
nanoelectronics free download: Nanoelectronics, Circuits and Communication Systems Vijay Nath, Jyotsna Kumar Mandal, 2018-08-01 This book features selected papers presented at Third International Conference on Nanoelectronics, Circuits and Communication Systems (NCCS 2017). Covering topics such as MEMS and nanoelectronics, wireless communications, optical communication, instrumentation, signal processing, Internet of Things, image processing, bioengineering, green energy, hybrid vehicles, environmental science, weather forecasting, cloud computing, renewable energy, RFID, CMOS sensors, actuators, transducers, telemetry systems, embedded systems, and sensor network applications in mines, it is a valuable resource for young scholars, researchers, and academics. |
nanoelectronics free download: Nanoelectronics: A Molecular View Avik Ghosh, 2016-09-29 'This is one of the best available graduate-level textbooks on electronic transport at the nanoscale. Its unique feature is providing a thorough and completely self-contained treatment of several theoretical formalisms for treating the transport problem. As such, the book is useful not only for the graduate students working in the field of nanoscale electrical transport, but also for the researchers who wish to expand their knowledge of various fundamental issues associated with this rapidly developing field. Of particular note are deep physical insights accompanying the rigorous mathematical derivations in each of the chapters, as well as the clear statement of all the approximations involved in a particular theoretical formalism. This winning combination makes the book very accessible to a reader with basic knowledge of quantum mechanics, solid state theory and thermodynamics/statistical mechanics. I give this book the highest recommendation.' [Read Full Review]Serfei A EgorovUniveristy of Virginia, USAThis book is aimed at senior undergraduates, graduate students and researchers interested in quantitative understanding and modeling of nanomaterial and device physics. With the rapid slow-down of semiconductor scaling that drove information technology for decades, there is a pressing need to understand and model electron flow at its fundamental molecular limits. The purpose of this book is to enable such a deconstruction needed to design the next generation memory, logic, sensor and communication elements. Through numerous case studies and topical examples relating to emerging technology, this book connects 'top down' classical device physics taught in electrical engineering classes with 'bottom up' quantum and many-body transport physics taught in physics and chemistry. The book assumes no more than a nodding acquaintance with quantum mechanics, in addition to knowledge of freshman level mathematics. Segments of this book are useful as a textbook for a course in nano-electronics. |
nanoelectronics free download: Nanoelectronics Vijay Kumar Arora, 2018-10-08 Brings the Band Structure of Carbon-Based Devices into the Limelight A shift to carbon is positioning biology as a process of synthesis in mainstream engineering. Silicon is quickly being replaced with carbon-based electronics, devices are being reduced down to nanometer scale, and further potential applications are being considered. While traditionally, engineers are trained by way of physics, chemistry, and mathematics, Nanoelectronics: Quantum Engineering of Low-Dimensional Nanoensembles establishes biology as an essential basic science for engineers to explore. Unifies Science and Engineering: from Quantum Physics to Nanoengineering Drawing heavily on published papers by the author, this research-driven text offers a complete review of nanoelectronic transport starting from quantum waves, to ohmic and ballistic conduction, and saturation-limited extreme nonequilibrium conditions. In addition, it highlights a new paradigm using non-equilibrium Arora’s Distribution Function (NEADF) and establishes this function as the starting point (from band theory to equilibrium to extreme nonequilibrium carrier statistics). The author focuses on nano-electronic device design and development, including carbon-based devices, and provides you with a vantage point for the global outlook on the future of nanoelectronics devices and ULSI. Encompassing ten chapters, this illuminating text: Converts the electric-field response of drift velocity into current–voltage relationships that are driven by the presence of critical voltage and saturation current arising from the unidirectional drift of carriers Applies the effect of these scaled-down dimensions to nano-MOSFET (metal–oxide–semiconductor field-effect transistor) Considers specialized applications that can be tried through a number of suggested projects that are all feasible with MATLAB® codes Nanoelectronics: Quantum Engineering of Low-Dimensional Nanoensembles contains the latest research in nanoelectronics, identifies problems and other factors to consider when it comes to nanolayer design and application, and ponders future trends. Print Versions of this book also include access to the ebook version. |
nanoelectronics free download: Introduction to the Physics of Nanoelectronics Seng Ghee Tan, Mansoor B. A Jalil, 2012-03-28 This book provides an introduction to the physics of nanoelectronics, with a focus on the theoretical aspects of nanoscale devices. The book begins with an overview of the mathematics and quantum mechanics pertaining to nanoscale electronics, to facilitate the understanding of subsequent chapters. It goes on to encompass quantum electronics, spintronics, Hall effects, carbon and graphene electronics, and topological physics in nanoscale devices.Theoretical methodology is developed using quantum mechanical and non-equilibrium Green's function (NEGF) techniques to calculate electronic currents and elucidate their transport properties at the atomic scale. The spin Hall effect is explained and its application to the emerging field of spintronics – where an electron's spin as well as its charge is utilised – is discussed. Topological dynamics and gauge potential are introduced with the relevant mathematics, and their application in nanoelectronic systems is explained. Graphene, one of the most promising carbon-based nanostructures for nanoelectronics, is also explored. - Begins with an overview of the mathematics and quantum mechanics pertaining to nanoscale electronics - Encompasses quantum electronics, spintronics, Hall effects, carbon and graphene electronics, and topological physics in nanoscale devices - Comprehensively introduces topological dynamics and gauge potential with the relevant mathematics, and extensively discusses their application in nanoelectronic systems |
nanoelectronics free download: Nanoelectronics and Materials Development Abhijit Kar, 2016-07-27 The current edited book presents some of the most advanced research findings in the field of nanotechnology and its application in materials development in a very concise form. The main focus of the book is dragged toward those materials where electronic properties are manipulated for development of advanced materials. We have discussed about the extensive usage of nanotechnology and its impact on various facets of the chip-making practice from materials to devices such as basic memory, quantum dots, nanotubes, nanowires, graphene-like 2D materials, and CIGS thin-film solar cells as energy-harvesting devices. Researchers as well as students can gain valuable insights into the different processing of nanomaterials, characterization procedures of the materials in nanoscale, and their different functional properties and applications. |
nanoelectronics free download: The Physics of Nanoelectronics Tero T. Heikkilä, 2013-02-01 Advances in nanotechnology have allowed physicists and engineers to miniaturize electronic structures to the limit where finite-size related phenomena start to impact their properties. This book discusses such phenomena and models made for their description. The book starts from the semiclassical description of nonequilibrium effects, details the scattering theory used for quantum transport calculations, and explains the main interference effects. It also describes how to treat fluctuations and correlations, how interactions affect transport through small islands, and how superconductivity modifies these effects. The last two chapters describe new emerging fields related with graphene and nanoelectromechanics. The focus of the book is on the phenomena rather than formalism, but the book still explains in detail the main models constructed for these phenomena. It also introduces a number of electronic devices, including the single-electron transistor, the superconducting tunnel junction refrigerator, and the superconducting quantum bit. |
nanoelectronics free download: Fundamentals of Nanoelectronics George W. Hanson, 2008 For undergraduate courses in nanoelectronics. This is the first actual nanoelectronics textbook for undergraduate engineering and applied sciences students. It provides an introduction to nanoelectronics, as well as a self-contained overview of the necessary physical concepts -- taking a fairly gentle but serious approach to a field that will be extremely important in the near future. |
nanoelectronics free download: Quantum Transport Supriyo Datta, 2005-06-16 This book presents the conceptual framework underlying the atomistic theory of matter, emphasizing those aspects that relate to current flow. This includes some of the most advanced concepts of non-equilibrium quantum statistical mechanics. No prior acquaintance with quantum mechanics is assumed. Chapter 1 provides a description of quantum transport in elementary terms accessible to a beginner. The book then works its way from hydrogen to nanostructures, with extensive coverage of current flow. The final chapter summarizes the equations for quantum transport with illustrative examples showing how conductors evolve from the atomic to the ohmic regime as they get larger. Many numerical examples are used to provide concrete illustrations and the corresponding Matlab codes can be downloaded from the web. Videostreamed lectures, keyed to specific sections of the book, are also available through the web. This book is primarily aimed at senior and graduate students. |
nanoelectronics free download: Nanoelectronic Device Applications Handbook James E. Morris, Krzysztof Iniewski, 2017-11-22 Nanoelectronic Device Applications Handbook gives a comprehensive snapshot of the state of the art in nanodevices for nanoelectronics applications. Combining breadth and depth, the book includes 68 chapters on topics that range from nano-scaled complementary metal–oxide–semiconductor (CMOS) devices through recent developments in nano capacitors and AlGaAs/GaAs devices. The contributors are world-renowned experts from academia and industry from around the globe. The handbook explores current research into potentially disruptive technologies for a post-CMOS world. These include: Nanoscale advances in current MOSFET/CMOS technology Nano capacitors for applications such as electronics packaging and humidity sensors Single electron transistors and other electron tunneling devices Quantum cellular automata and nanomagnetic logic Memristors as switching devices and for memory Graphene preparation, properties, and devices Carbon nanotubes (CNTs), both single CNT and random network Other CNT applications such as terahertz, sensors, interconnects, and capacitors Nano system architectures for reliability Nanowire device fabrication and applications Nanowire transistors Nanodevices for spintronics The book closes with a call for a new generation of simulation tools to handle nanoscale mechanisms in realistic nanodevice geometries. This timely handbook offers a wealth of insights into the application of nanoelectronics. It is an invaluable reference and source of ideas for anyone working in the rapidly expanding field of nanoelectronics. |
nanoelectronics free download: Nanophysics and Nanotechnology Edward L. Wolf, 2015-08-04 Long awaited new edition of this highly successful textbook, provides once more a unique introduction to the concepts, techniques and applications of nanoscale systems by covering its entire spectrum up to recent findings on graphene. |
nanoelectronics free download: 2D Nanoelectronics Mircea Dragoman, Daniela Dragoman, 2016-12-01 This book is dedicated to the new two-dimensional one-atomic-layer-thick materials such as graphene, metallic chalcogenides, silicene and other 2D materials. The book describes their main physical properties and applications in nanoelctronics, photonics, sensing and computing. A large part of the book deals with graphene and its amazing physical properties. Another important part of the book deals with semiconductor monolayers such as MoS2 with impressive applications in photonics, and electronics. Silicene and germanene are the atom-thick counterparts of silicon and germanium with impressive applications in electronics and photonics which are still unexplored. Consideration of two-dimensional electron gas devices conclude the treatment. The physics of 2DEG is explained in detail and the applications in THz and IR region are discussed. Both authors are working currently on these 2D materials developing theory and applications. |
nanoelectronics free download: Plasmonic Nanoelectronics and Sensing Er-Ping Li, Hong-Son Chu, 2014-02-13 Plasmonic nanostructures provide new ways of manipulating the flow of light with nanostructures and nanoparticles exhibiting optical properties never before seen in the macro-world. Covering plasmonic technology from fundamental theory to real world applications, this work provides a comprehensive overview of the field. • Discusses the fundamental theory of plasmonics, enabling a deeper understanding of plasmonic technology • Details numerical methods for modeling, design and optimization of plasmonic nanostructures • Includes step-by-step design guidelines for active and passive plasmonic devices, demonstrating the implementation of real devices in the standard CMOS nanoscale electronic-photonic integrated circuit to help cut design, fabrication and characterisation time and cost • Includes real-world case studies of plasmonic devices and sensors, explaining the benefits and downsides of different nanophotonic integrated circuits and sensing platforms. Ideal for researchers, engineers and graduate students in the fields of nanophotonics and nanoelectronics as well as optical biosensing. |
nanoelectronics free download: Introduction to Microelectronics to Nanoelectronics Manoj Kumar Majumder, Vijay Rao Kumbhare, Aditya Japa, Brajesh Kumar Kaushik, 2020-11-25 Focussing on micro- and nanoelectronics design and technology, this book provides thorough analysis and demonstration, starting from semiconductor devices to VLSI fabrication, designing (analog and digital), on-chip interconnect modeling culminating with emerging non-silicon/ nano devices. It gives detailed description of both theoretical as well as industry standard HSPICE, Verilog, Cadence simulation based real-time modeling approach with focus on fabrication of bulk and nano-devices. Each chapter of this proposed title starts with a brief introduction of the presented topic and ends with a summary indicating the futuristic aspect including practice questions. Aimed at researchers and senior undergraduate/graduate students in electrical and electronics engineering, microelectronics, nanoelectronics and nanotechnology, this book: Provides broad and comprehensive coverage from Microelectronics to Nanoelectronics including design in analog and digital electronics. Includes HDL, and VLSI design going into the nanoelectronics arena. Discusses devices, circuit analysis, design methodology, and real-time simulation based on industry standard HSPICE tool. Explores emerging devices such as FinFETs, Tunnel FETs (TFETs) and CNTFETs including their circuit co-designing. Covers real time illustration using industry standard Verilog, Cadence and Synopsys simulations. |
nanoelectronics free download: Nano-Electronic Devices Dragica Vasileska, Stephen M. Goodnick, 2014-11-26 This book surveys the advanced simulation methods needed for proper modeling of state-of-the-art nanoscale devices. It systematically describes theoretical approaches and the numerical solutions that are used in explaining the operation of both power devices as well as nano-scale devices. It clearly explains for what types of devices a particular method is suitable, which is the most critical point that a researcher faces and has to decide upon when modeling semiconductor devices. |
nanoelectronics free download: Chips 2020 Bernd Hoefflinger, 2012-01-19 The chips in present-day cell phones already contain billions of sub-100-nanometer transistors. By 2020, however, we will see systems-on-chips with trillions of 10-nanometer transistors. But this will be the end of the miniaturization, because yet smaller transistors, containing just a few control atoms, are subject to statistical fluctuations and thus no longer useful. We also need to worry about a potential energy crisis, because in less than five years from now, with current chip technology, the internet alone would consume the total global electrical power! This book presents a new, sustainable roadmap towards ultra-low-energy (femto-Joule), high-performance electronics. The focus is on the energy-efficiency of the various chip functions: sensing, processing, and communication, in a top-down spirit involving new architectures such as silicon brains, ultra-low-voltage circuits, energy harvesting, and 3D silicon technologies. Recognized world leaders from industry and from the research community share their views of this nanoelectronics future. They discuss, among other things, ubiquitous communication based on mobile companions, health and care supported by autonomous implants and by personal carebots, safe and efficient mobility assisted by co-pilots equipped with intelligent micro-electromechanical systems, and internet-based education for a billion people from kindergarden to retirement. This book should help and interest all those who will have to make decisions associated with future electronics: students, graduates, educators, and researchers, as well as managers, investors, and policy makers. Introduction: Towards Sustainable 2020 Nanoelectronics.- From Microelectronics to Nanoelectronics.- The Future of Eight Chip Technologies.- Analog–Digital Interfaces.- Interconnects and Transceivers.- Requirements and Markets for Nanoelectronics.- ITRS: The International Technology Roadmap for Semiconductors.- Nanolithography.- Power-Efficient Design Challenges.- Superprocessors and Supercomputers.- Towards Terabit Memories.- 3D Integration for Wireless Multimedia.- The Next-Generation Mobile User-Experience.- MEMS (Micro-Electro-Mechanical Systems) for Automotive and Consumer.- Vision Sensors and Cameras.- Digital Neural Networks for New Media.- Retinal Implants for Blind Patients.- Silicon Brains.- Energy Harvesting and Chip Autonomy.- The Energy Crisis.- The Extreme-Technology Industry.- Education and Research for the Age of Nanoelectronics.- 2020 World with Chips. |
nanoelectronics free download: Nonequilibrium Quantum Transport Physics In Nanosystems: Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology Felix A Buot, 2009-08-05 This book presents the first comprehensive treatment of discrete phase-space quantum mechanics and the lattice Weyl-Wigner formulation of energy band dynamics, by the originator of these theoretical techniques. The author's quantum superfield theoretical formulation of nonequilibrium quantum physics is given in real time, without the awkward use of artificial time contour employed in previous formulations. These two main quantum theoretical techniques combine to yield general (including quasiparticle-pairing dynamics) and exact quantum transport equations in phase-space, appropriate for nanodevices. The derivation of transport formulas in mesoscopic physics from the general quantum transport equations is also treated. Pioneering nanodevices are discussed in the light of the quantum-transport physics equations, and an in-depth treatment of the physics of resonant tunneling devices is given. Operator Hilbert-space methods and quantum tomography are discussed. Discrete phase-space quantum mechanics on finite fields is treated for completeness and by virtue of its relevance to quantum computing. The phenomenological treatment of evolution superoperator and measurements is given to help clarify the general quantum transport theory. Quantum computing and information theory is covered to demonstrate the foundational aspects of discrete quantum dynamics, particularly in deriving a complete set of multiparticle entangled basis states. |
nanoelectronics free download: Nanotechnology Research Directions: IWGN Workshop Report R.S. Williams, P. Alivisatos, 2013-03-09 energy production, environmental management, transportation, communication, computation, and education. As the twenty-first century unfolds, nanotechnology's impact on the health, wealth, and security of the world's people is expected to be at least as significant as the combined influences in this century of antibiotics, the integrated circuit, and human-made polymers. Dr. Neal Lane, Advisor to the President for Science and Technology and former National Science Foundation (NSF) director, stated at a Congressional hearing in April 1998, If I were asked for an area of science and engineering that will most likely produce the breakthroughs of tomorrow, I would point to nanoscale science and engineering. Recognizing this potential, the White House Office of Science and Technology Policy (OSTP) and the Office of Management and Budget (OMB) have issued a joint memorandum to Federal agency heads that identifies nanotechnology as a research priority area for Federal investment in fiscal year 2001. This report charts Nanotechnology Research Directions, as developed by the Interagency W orking Group on Nano Science, Engineering, and Technology (IWGN) of the National Science and Technology Council (NSTC). The report incorporates the views of leading experts from government, academia, and the private sector. It reflects the consensus reached at an IWGN-sponsored workshop held on January 27-29, 1999, and detailed in contributions submitted thereafter by members of the V. S. science and engineering community. (See Appendix A for a list of contributors. |
nanoelectronics free download: NANO-CHIPS 2030 Boris Murmann, Bernd Hoefflinger, 2020-06-08 In this book, a global team of experts from academia, research institutes and industry presents their vision on how new nano-chip architectures will enable the performance and energy efficiency needed for AI-driven advancements in autonomous mobility, healthcare, and man-machine cooperation. Recent reviews of the status quo, as presented in CHIPS 2020 (Springer), have prompted the need for an urgent reassessment of opportunities in nanoelectronic information technology. As such, this book explores the foundations of a new era in nanoelectronics that will drive progress in intelligent chip systems for energy-efficient information technology, on-chip deep learning for data analytics, and quantum computing. Given its scope, this book provides a timely compendium that hopes to inspire and shape the future of nanoelectronics in the decades to come. |
nanoelectronics free download: Introductory Nanoelectronics Vinod Kumar Khanna, 2020-07-21 This introductory text develops the reader’s fundamental understanding of core principles and experimental aspects underlying the operation of nanoelectronic devices. The author makes a thorough and systematic presentation of electron transport in quantum-confined systems such as quantum dots, quantum wires, and quantum wells together with Landauer-Büttiker formalism and non-equilibrium Green’s function approach. The coverage encompasses nanofabrication techniques and characterization tools followed by a comprehensive exposition of nanoelectronic devices including resonant tunneling diodes, nanoscale MOSFETs, carbon nanotube FETs, high-electron-mobility transistors, single-electron transistors, and heterostructure optoelectronic devices. The writing throughout is simple and straightforward, with clearly drawn illustrations and extensive self-study exercises for each chapter. Introduces the basic concepts underlying the operation of nanoelectronic devices. Offers a broad overview of the field, including state-of-the-art developments. Covers the relevant quantum and solid-state physics and nanoelectronic device principles. Written in lucid language with accessible mathematical treatment. Includes extensive end-of-chapter exercises and many insightful diagrams. |
nanoelectronics free download: Nanoelectronics, Circuits and Communication Systems Vijay Nath, J.K. Mandal, 2021-12-02 This book features selected papers presented at the Fifth International Conference on Nanoelectronics, Circuits and Communication Systems (NCCS 2019). It covers a range of topics, including nanoelectronic devices, microelectronics devices, material science, machine learning, Internet of things, cloud computing, computing systems, wireless communication systems, advances in communication 5G and beyond. Further, it discusses VLSI circuits and systems, MEMS, IC design and testing, electronic system design and manufacturing, speech signal processing, digital signal processing, FPGA-based wireless communication systems and FPGA-based system design, Industry 4.0, e-farming, semiconductor memories, and IC fault detection and correction. |
nanoelectronics free download: Computational Electronics Dragica Vasileska, Stephen M. Goodnick, Gerhard Klimeck, 2017-12-19 Starting with the simplest semiclassical approaches and ending with the description of complex fully quantum-mechanical methods for quantum transport analysis of state-of-the-art devices, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation provides a comprehensive overview of the essential techniques and methods for effectively analyzing transport in semiconductor devices. With the transistor reaching its limits and new device designs and paradigms of operation being explored, this timely resource delivers the simulation methods needed to properly model state-of-the-art nanoscale devices. The first part examines semiclassical transport methods, including drift-diffusion, hydrodynamic, and Monte Carlo methods for solving the Boltzmann transport equation. Details regarding numerical implementation and sample codes are provided as templates for sophisticated simulation software. The second part introduces the density gradient method, quantum hydrodynamics, and the concept of effective potentials used to account for quantum-mechanical space quantization effects in particle-based simulators. Highlighting the need for quantum transport approaches, it describes various quantum effects that appear in current and future devices being mass-produced or fabricated as a proof of concept. In this context, it introduces the concept of effective potential used to approximately include quantum-mechanical space-quantization effects within the semiclassical particle-based device simulation scheme. Addressing the practical aspects of computational electronics, this authoritative resource concludes by addressing some of the open questions related to quantum transport not covered in most books. Complete with self-study problems and numerous examples throughout, this book supplies readers with the practical understanding required to create their own simulators. |
nanoelectronics free download: Current at the Nanoscale Colm Durkan, 2008 |
nanoelectronics free download: DNA Beyond Genes Vadim V. Demidov, 2021-01-30 This is the first book portraying to a wide readership many fields of DNA in the world of materials altogether in a single volume. The book provides underlying concepts and state-of-art developments in the emerging fields of DNA electronics, structural DNA nanotechnology, DNA computing and DNA data storage, DNA machines and nanorobots. Future possibilities of innovative DNA-based technologies, such as DNA cryptography, DNA identity tags, DNA nanostructures in biosensing and nanomedicine, as well as DNA-based nanoelectronics are all covered, too. This book is valuable for university students studying engineering and technology; biotech, nanotech, and medical device R&D managers, practitioners and investors; and IP analysts who would like to extend their background in advanced DNA technologies. It is nicely illustrated, which makes it very readable, and it conveys science and principles in a lively language to appeal to a broad audience, from professionals and academics to students and lay readers. Advance Praise for DNA Beyond Genes: “Most students of DNA, and lay readers as well, are interested in the absolutely essential role it plays in biology. However, the properties which make DNA the carrier of genetic information also make it an extraordinary material that can be used as the backbone for a wide variety of nanoengineering applications – these range from information storage and computation to molecular machines and devices to artfully designed logos and symbols. The perfect self-recognition of DNA sequences makes it an ideal building block to synthesize more and more elaborate constructions and imaginative scientists have probably only just scratched the surface of what can eventually be created. Here for the first time in this wonderful book Vadim Demidov explores the full range of the non-biological applications of DNA.” Charles R. Cantor Professor Emeritus of Biomedical Engineering, Boston University Member of the USA National Academy of Sciences |
nanoelectronics free download: Nanotechnology for Microelectronics and Optoelectronics Raúl José Martín-Palma, José Martínez-Duart, Fernando Agullo-Rueda, 2006-05-26 When solids are reduced to the nanometer scale, they exibit new and exciting behaviours which constitute the basis for a new generation of electronic devices. Nanotechnology for Microelectronics and Optoelectronics outlines in detail the fundamental solid-state physics concepts that explain the new properties of matter caused by this reduction of solids to the nanometer scale. Applications of these electronic properties is also explored, helping students and researchers to appreciate the current status and future potential of nanotechnology as applied to the electronics industry. - Explains the behavioural changes which occur in solids at the nanoscale, making them the basis of a new generation of electronic devices - Laid out in text-reference style: a cohesive and specialised introduction to the fundamentals of nanoelectronics and nanophotonics for students and researchers alike |
nanoelectronics free download: Women in Nanotechnology Pamela M. Norris, Lisa E. Friedersdorf, 2020-08-14 This book celebrates a few examples of the many women who have advanced the field of nanotechnology. The book opens with an overview of the field, illuminating how nanotechnology is opening the door to manipulating matter on a scale one billionth of a meter. Then the use of nanotechnology to improve science and scientific literacy is discussed, and strategies for incorporating nanotechnology in K-12 education are presented. Next, an array of female scientists provide technical descriptions of how their work is impacting their respective areas. Topics include applications in the energy, electronics, water, communication and health care sectors, among others. The book closes with a historical perspective on the U.S. National Nanotechnology Initiative and future prospects for nanotechnology. This book provides the opportunity to appreciate some of the key advancements made by women engineers in nanotechnology and to become inspired by the ingenuity and creativity, collaborative nature, and altruistic inventiveness of women engineers. Includes contributions from leading female scientists in nanotechnology Highlights topics in nanotechnology ranging from health care, to sensors, to alternative energy, to clean water, to nanoelectronics Presents an opportunity to learn about the breadth, depth and impact of the field of nanotechnology and women’s important contributions to it |
nanoelectronics free download: Applications of Nanomaterials in Sensors and Diagnostics Adisorn Tuantranont, 2013-06-25 Recent progress in the synthesis of nanomaterials and our fundamental understanding of their properties has led to significant advances in nanomaterial-based gas, chemical and biological sensors. Leading experts around the world highlight the latest findings on a wide range of nanomaterials including nanoparticles, quantum dots, carbon nanotubes, molecularly imprinted nanostructures or plastibodies, nanometals, DNA-based structures, smart nanomaterials, nanoprobes, magnetic nanomaterials, organic molecules like phthalocyanines and porphyrins, and the most amazing novel nanomaterial, called graphene. Various sensing techniques such as nanoscaled electrochemical detection, functional nanomaterial-amplified optical assays, colorimetry, fluorescence and electrochemiluminescence, as well as biomedical diagnosis applications, e.g. for cancer and bone disease, are thoroughly reviewed and explained in detail. This volume will provide an invaluable source of information for scientists working in the field of nanomaterial-based technology as well as for advanced students in analytical chemistry, biochemistry, electrochemistry, material science, micro- and nanotechnology. |
nanoelectronics free download: An Introduction to Nanoscience and Nanotechnology Alain Nouailhat, 2008 This book recalls the basics required for an understanding of the nanoworld (quantum physics, molecular biology, micro and nanoelectronics) and gives examples of applications in various fields: materials, energy, devices, data management and life sciences. It is clearly shown how the nanoworld is at the crossing point of knowledge and innovation. Written by an expert who spent a large part of his professional life in the field, the title also gives a general insight into the evolution of nanosciences and nanotechnologies. The reader is thus provided with an introduction to this complex area with different tracks for further personal comprehension and reflection. This guided and illustrated tour also reveals the importance of the nanoworld in everyday life.--Publisher. |
Nanoelectronics - Wikipedia
Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small …
Nanoelectronics: Applications, Examples, and Definition
May 29, 2025 · Nanoelectronics based on non-volatile memory like resistive random-access memory (RRAM) and phase-change memory (PCM) offer lower power consumption, faster …
Nanoelectronics - Definition and Applications - Nanowerk
The term nanoelectronics refers to the use of nanotechnology in electronic components. These components are often only a few nanometers in size. However, the tinier electronic …
Nanoelectronics - Basic concept, approaches, devices
Aug 13, 2017 · The basics of nanoelectronics along with different approaches like nanofabrication are explained. Devices like nanoradio,and computers are also explained.
Introduction to Nanoelectronics - MIT OpenCourseWare
To describe electrons at the nanoscale, we will begin with an introduction to the principles of quantum mechanics, including quantization, the wave-particle duality, wavefunctions and …
Nanoelectronics - Wikipedia
Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small …
Nanoelectronics: Applications, Examples, and Definition
May 29, 2025 · Nanoelectronics based on non-volatile memory like resistive random-access memory (RRAM) and phase-change memory (PCM) offer lower power consumption, faster …
Nanoelectronics - Definition and Applications - Nanowerk
The term nanoelectronics refers to the use of nanotechnology in electronic components. These components are often only a few nanometers in size. However, the tinier electronic …
Nanoelectronics - Basic concept, approaches, devices
Aug 13, 2017 · The basics of nanoelectronics along with different approaches like nanofabrication are explained. Devices like nanoradio,and computers are also explained.
Introduction to Nanoelectronics - MIT OpenCourseWare
To describe electrons at the nanoscale, we will begin with an introduction to the principles of quantum mechanics, including quantization, the wave-particle duality, wavefunctions and …