More Concise Algebraic Topology

Advertisement



  more concise algebraic topology: More Concise Algebraic Topology J. P. May, K. Ponto, 2012-02 With firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that treat fundamental topics beyond a first course, and many topics now essential to the field are not treated in any textbook. J. Peter May’s A Concise Course in Algebraic Topology addresses the standard first course material, such as fundamental groups, covering spaces, the basics of homotopy theory, and homology and cohomology. In this sequel, May and his coauthor, Kathleen Ponto, cover topics that are essential for algebraic topologists and others interested in algebraic topology, but that are not treated in standard texts. They focus on the localization and completion of topological spaces, model categories, and Hopf algebras. The first half of the book sets out the basic theory of localization and completion of nilpotent spaces, using the most elementary treatment the authors know of. It makes no use of simplicial techniques or model categories, and it provides full details of other necessary preliminaries. With these topics as motivation, most of the second half of the book sets out the theory of model categories, which is the central organizing framework for homotopical algebra in general. Examples from topology and homological algebra are treated in parallel. A short last part develops the basic theory of bialgebras and Hopf algebras.
  more concise algebraic topology: A Concise Course in Algebraic Topology J. Peter May, 2019
  more concise algebraic topology: Algebraic Topology from a Homotopical Viewpoint Marcelo Aguilar, Samuel Gitler, Carlos Prieto, 2008-02-02 The authors present introductory material in algebraic topology from a novel point of view in using a homotopy-theoretic approach. This carefully written book can be read by any student who knows some topology, providing a useful method to quickly learn this novel homotopy-theoretic point of view of algebraic topology.
  more concise algebraic topology: More Concise Algebraic Topology J. Peter May, Kate Ponto, 2019
  more concise algebraic topology: Algebraic Topology - Homotopy and Homology Robert M. Switzer, 2017-12-01 From the reviews: The author has attempted an ambitious and most commendable project. He assumes only a modest knowledge of algebraic topology on the part of the reader to start with, and he leads the reader systematically to the point at which he can begin to tackle problems in the current areas of research centered around generalized homology theories and their applications. ... The author has sought to make his treatment complete and he has succeeded. The book contains much material that has not previously appeared in this format. The writing is clean and clear and the exposition is well motivated. ... This book is, all in all, a very admirable work and a valuable addition to the literature... (S.Y. Husseini in Mathematical Reviews, 1976)
  more concise algebraic topology: Differential Forms in Algebraic Topology Raoul Bott, Loring W. Tu, 2013-04-17 Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.
  more concise algebraic topology: Algebraic Topology Edwin H. Spanier, Edwin Henry Spanier, 1989 This book surveys the fundamental ideas of algebraic topology. The first part covers the fundamental group, its definition and application in the study of covering spaces. The second part turns to homology theory including cohomology, cup products, cohomology operations and topological manifolds. The final part is devoted to Homotropy theory, including basic facts about homotropy groups and applications to obstruction theory.
  more concise algebraic topology: Algebraic Topology: An Intuitive Approach Hajime Satō, 1999 Develops an introduction to algebraic topology mainly through simple examples built on cell complexes. Topics covers include homeomorphisms, topological spaces and cell complexes, homotopy, homology, cohomology, the universal coefficient theorem, fiber bundles and vector bundles, and spectral sequences. Includes chapter summaries, exercises, and answers. Includes an appendix of definitions in sets, topology, and groups. Originally published in Japanese by Iwanami Shoten, Publishers, Tokyo, 1996. Annotation copyrighted by Book News, Inc., Portland, OR
  more concise algebraic topology: A Guide to the Classification Theorem for Compact Surfaces Jean Gallier, Dianna Xu, 2013-02-05 This welcome boon for students of algebraic topology cuts a much-needed central path between other texts whose treatment of the classification theorem for compact surfaces is either too formalized and complex for those without detailed background knowledge, or too informal to afford students a comprehensive insight into the subject. Its dedicated, student-centred approach details a near-complete proof of this theorem, widely admired for its efficacy and formal beauty. The authors present the technical tools needed to deploy the method effectively as well as demonstrating their use in a clearly structured, worked example. Ideal for students whose mastery of algebraic topology may be a work-in-progress, the text introduces key notions such as fundamental groups, homology groups, and the Euler-Poincaré characteristic. These prerequisites are the subject of detailed appendices that enable focused, discrete learning where it is required, without interrupting the carefully planned structure of the core exposition. Gently guiding readers through the principles, theory, and applications of the classification theorem, the authors aim to foster genuine confidence in its use and in so doing encourage readers to move on to a deeper exploration of the versatile and valuable techniques available in algebraic topology.
  more concise algebraic topology: Introduction to Algebraic Topology Holger Kammeyer, 2022-06-21 This textbook provides a succinct introduction to algebraic topology. It follows a modern categorical approach from the beginning and gives ample motivation throughout so that students will find this an ideal first encounter to the field. Topics are treated in a self-contained manner, making this a convenient resource for instructors searching for a comprehensive overview of the area. It begins with an outline of category theory, establishing the concepts of functors, natural transformations, adjunction, limits, and colimits. As a first application, van Kampen's theorem is proven in the groupoid version. Following this, an excursion to cofibrations and homotopy pushouts yields an alternative formulation of the theorem that puts the computation of fundamental groups of attaching spaces on firm ground. Simplicial homology is then defined, motivating the Eilenberg-Steenrod axioms, and the simplicial approximation theorem is proven. After verifying the axioms for singular homology, various versions of the Mayer-Vietoris sequence are derived and it is shown that homotopy classes of self-maps of spheres are classified by degree.The final chapter discusses cellular homology of CW complexes, culminating in the uniqueness theorem for ordinary homology. Introduction to Algebraic Topology is suitable for a single-semester graduate course on algebraic topology. It can also be used for self-study, with numerous examples, exercises, and motivating remarks included.
  more concise algebraic topology: Fundamentals of Algebraic Topology Steven H. Weintraub, 2014-10-31 This rapid and concise presentation of the essential ideas and results of algebraic topology follows the axiomatic foundations pioneered by Eilenberg and Steenrod. The approach of the book is pragmatic: while most proofs are given, those that are particularly long or technical are omitted, and results are stated in a form that emphasizes practical use over maximal generality. Moreover, to better reveal the logical structure of the subject, the separate roles of algebra and topology are illuminated. Assuming a background in point-set topology, Fundamentals of Algebraic Topology covers the canon of a first-year graduate course in algebraic topology: the fundamental group and covering spaces, homology and cohomology, CW complexes and manifolds, and a short introduction to homotopy theory. Readers wishing to deepen their knowledge of algebraic topology beyond the fundamentals are guided by a short but carefully annotated bibliography.
  more concise algebraic topology: Modern Classical Homotopy Theory Jeffrey Strom, 2023-01-19 The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.
  more concise algebraic topology: Simplicial Objects in Algebraic Topology J. P. May, 1992 Simplicial sets are discrete analogs of topological spaces. They have played a central role in algebraic topology ever since their introduction in the late 1940s, and they also play an important role in other areas such as geometric topology and algebraic geometry. On a formal level, the homotopy theory of simplicial sets is equivalent to the homotopy theory of topological spaces. In view of this equivalence, one can apply discrete, algebraic techniques to perform basic topological constructions. These techniques are particularly appropriate in the theory of localization and completion of topological spaces, which was developed in the early 1970s. Since it was first published in 1967, Simplicial Objects in Algebraic Topology has been the standard reference for the theory of simplicial sets and their relationship to the homotopy theory of topological spaces. J. Peter May gives a lucid account of the basic homotopy theory of simplicial sets, together with the equivalence of homotopy theories alluded to above. The central theme is the simplicial approach to the theory of fibrations and bundles, and especially the algebraization of fibration and bundle theory in terms of twisted Cartesian products. The Serre spectral sequence is described in terms of this algebraization. Other topics treated in detail include Eilenberg-MacLane complexes, Postnikov systems, simplicial groups, classifying complexes, simplicial Abelian groups, and acyclic models. Simplicial Objects in Algebraic Topology presents much of the elementary material of algebraic topology from the semi-simplicial viewpoint. It should prove very valuable to anyone wishing to learn semi-simplicial topology. [May] has included detailed proofs, and he has succeeded very well in the task of organizing a large body of previously scattered material.—Mathematical Review
  more concise algebraic topology: Basic Algebraic Topology Anant R. Shastri, 2013-10-23 Building on rudimentary knowledge of real analysis, point-set topology, and basic algebra, Basic Algebraic Topology provides plenty of material for a two-semester course in algebraic topology. The book first introduces the necessary fundamental concepts, such as relative homotopy, fibrations and cofibrations, category theory, cell complexes, and simplicial complexes. It then focuses on the fundamental group, covering spaces and elementary aspects of homology theory. It presents the central objects of study in topology visualization: manifolds. After developing the homology theory with coefficients, homology of the products, and cohomology algebra, the book returns to the study of manifolds, discussing Poincaré duality and the De Rham theorem. A brief introduction to cohomology of sheaves and Čech cohomology follows. The core of the text covers higher homotopy groups, Hurewicz’s isomorphism theorem, obstruction theory, Eilenberg-Mac Lane spaces, and Moore-Postnikov decomposition. The author then relates the homology of the total space of a fibration to that of the base and the fiber, with applications to characteristic classes and vector bundles. The book concludes with the basic theory of spectral sequences and several applications, including Serre’s seminal work on higher homotopy groups. Thoroughly classroom-tested, this self-contained text takes students all the way to becoming algebraic topologists. Historical remarks throughout the text make the subject more meaningful to students. Also suitable for researchers, the book provides references for further reading, presents full proofs of all results, and includes numerous exercises of varying levels.
  more concise algebraic topology: An Introduction to Homological Algebra Charles A. Weibel, 1994 A portrait of the subject of homological algebra as it exists today.
  more concise algebraic topology: Elementary Topology O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov, This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises.
  more concise algebraic topology: Lectures on Algebraic Topology Sergeĭ Vladimirovich Matveev, 2006 Algebraic topology is the study of the global properties of spaces by means of algebra. It is an important branch of modern mathematics with a wide degree of applicability to other fields, including geometric topology, differential geometry, functional analysis, differential equations, algebraic geometry, number theory, and theoretical physics. This book provides an introduction to the basic concepts and methods of algebraic topology for the beginner. It presents elements of both homology theory and homotopy theory, and includes various applications. The author's intention is to rely on the geometric approach by appealing to the reader's own intuition to help understanding. The numerous illustrations in the text also serve this purpose. Two features make the text different from the standard literature: first, special attention is given to providing explicit algorithms for calculating the homology groups and for manipulating the fundamental groups. Second, the book contains many exercises, all of which are supplied with hints or solutions. This makes the book suitable for both classroom use and for independent study.
  more concise algebraic topology: A Basic Course in Algebraic Topology William S. Massey, 2019-06-28 This textbook is intended for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. These topics are developed systematically, avoiding all unnecessary definitions, terminology, and technical machinery. The text consists of material from the first five chapters of the author's earlier book, Algebraic Topology; an Introduction (GTM 56) together with almost all of his book, Singular Homology Theory (GTM 70). The material from the two earlier books has been substantially revised, corrected, and brought up to date.
  more concise algebraic topology: Stable Homotopy and Generalised Homology John Frank Adams, 1974 J. Frank Adams, the founder of stable homotopy theory, gave a lecture series at the University of Chicago in 1967, 1970, and 1971, the well-written notes of which are published in this classic in algebraic topology. The three series focused on Novikov's work on operations in complex cobordism, Quillen's work on formal groups and complex cobordism, and stable homotopy and generalized homology. Adams's exposition of the first two topics played a vital role in setting the stage for modern work on periodicity phenomena in stable homotopy theory. His exposition on the third topic occupies the bulk of the book and gives his definitive treatment of the Adams spectral sequence along with many detailed examples and calculations in KU-theory that help give a feel for the subject.
  more concise algebraic topology: Abstract Homotopy and Simple Homotopy Theory Klaus Heiner Kamps, Timothy Porter, 1997 This book provides a thorough and well-written guide to abstract homotopy theory. It could well serve as a graduate text in this topic, or could be studied independently by someone with a background in basic algebra, topology, and category theory.
  more concise algebraic topology: Elements of Homology Theory V. V. Prasolov, 2025-02-04 The book is a continuation of the previous book by the author (Elements of Combinatorial and Differential Topology, Graduate Studies in Mathematics, Volume 74, American Mathematical Society, 2006). It starts with the definition of simplicial homology and cohomology, with many examples and applications. Then the Kolmogorov–Alexander multiplication in cohomology is introduced. A significant part of the book is devoted to applications of simplicial homology and cohomology to obstruction theory, in particular, to characteristic classes of vector bundles. The later chapters are concerned with singular homology and cohomology, and Čech and de Rham cohomology. The book ends with various applications of homology to the topology of manifolds, some of which might be of interest to experts in the area. The book contains many problems; almost all of them are provided with hints or complete solutions.
  more concise algebraic topology: Basic Category Theory Tom Leinster, 2014-07-24 A short introduction ideal for students learning category theory for the first time.
  more concise algebraic topology: Localization of Nilpotent Groups and Spaces Peter Hilton, Guido Mislin, Joe Roitberg, 2016-06-03 North-Holland Mathematics Studies, 15: Localization of Nilpotent Groups and Spaces focuses on the application of localization methods to nilpotent groups and spaces. The book first discusses the localization of nilpotent groups, including localization theory of nilpotent groups, properties of localization in N, further properties of localization, actions of a nilpotent group on an abelian group, and generalized Serre classes of groups. The book then examines homotopy types, as well as mixing of homotopy types, localizing H-spaces, main (pullback) theorem, quasifinite nilpotent spaces, localization of nilpotent complexes, and nilpotent spaces. The manuscript takes a look at the applications of localization theory, including genus and H-spaces, finite H-spaces, and non-cancellation phenomena. The publication is a vital source of data for mathematicians and researchers interested in the localization of nilpotent groups and spaces.
  more concise algebraic topology: Introduction to Topology V. A. Vasilʹev, 2001 This English translation of a Russian book presents the basic notions of differential and algebraic topology, which are indispensable for specialists and useful for research mathematicians and theoretical physicists. In particular, ideas and results are introduced related to manifolds, cell spaces, coverings and fibrations, homotopy groups, homology and cohomology, intersection index, etc. The author notes, The lecture note origins of the book left a significant imprint on itsstyle. It contains very few detailed proofs: I tried to give as many illustrations as possible and to show what really occurs in topology, not always explaining why it occurs. He concludes, As a rule, only those proofs (or sketches of proofs) that are interesting per se and have importantgeneralizations are presented.
  more concise algebraic topology: Simplicial Homotopy Theory Paul Gregory Goerss, J. F. Jardine, 1999 Since the beginning of the modern era of algebraic topology, simplicial methods have been used systematically and effectively for both computation and basic theory. With the development of Quillen's concept of a closed model category and, in particular, a simplicial model category, this collection of methods has become the primary way to describe non-abelian homological algebra and to address homotopy-theoretical issues in a variety of fields, including algebraic K-theory. This book supplies a modern exposition of these ideas, emphasizing model category theoretical techniques. Discussed here are the homotopy theory of simplicial sets, and other basic topics such as simplicial groups, Postnikov towers, and bisimplicial sets. The more advanced material includes homotopy limits and colimits, localization with respect to a map and with respect to a homology theory, cosimplicial spaces, and homotopy coherence. Interspersed throughout are many results and ideas well-known to experts, but uncollected in the literature. Intended for second-year graduate students and beyond, this book introduces many of the basic tools of modern homotopy theory. An extensive background in topology is not assumed.
  more concise algebraic topology: Algebraic and Differential Topology R. V. Gamkrelidze, 1987-03-06 Algebraic and Differential Topology presents in a clear, concise, and detailed manner the fundamentals of homology theory. It first defines the concept of a complex and its Betti groups, then discusses the topolgoical invariance of a Betti group. The book next presents various applications of homology theory, such as mapping of polyhedrons onto other polyhedrons as well as onto themselves. The third volume in L.S. Pontryagin's Selected Works, this book provides as many insights into algebraic topology for today's mathematician as it did when the author was making his initial endeavors into this field.
  more concise algebraic topology: Category Theory in Context Emily Riehl, 2017-03-09 Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.
  more concise algebraic topology: Manifolds, Sheaves, and Cohomology Torsten Wedhorn, 2016-07-25 This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples.
  more concise algebraic topology: Essentials of Topology with Applications Steven G. Krantz, 2009-07-28 Brings Readers Up to Speed in This Important and Rapidly Growing AreaSupported by many examples in mathematics, physics, economics, engineering, and other disciplines, Essentials of Topology with Applications provides a clear, insightful, and thorough introduction to the basics of modern topology. It presents the traditional concepts of topological
  more concise algebraic topology: Applications of Algebraic Topology S. Lefschetz, 1975-05-13 This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.
  more concise algebraic topology: Topology Stefan Waldmann, 2014-08-05 This book provides a concise introduction to topology and is necessary for courses in differential geometry, functional analysis, algebraic topology, etc. Topology is a fundamental tool in most branches of pure mathematics and is also omnipresent in more applied parts of mathematics. Therefore students will need fundamental topological notions already at an early stage in their bachelor programs. While there are already many excellent monographs on general topology, most of them are too large for a first bachelor course. Topology fills this gap and can be either used for self-study or as the basis of a topology course.
  more concise algebraic topology: A Taste of Topology Volker Runde, 2007-12-07 This should be a revelation for mathematics undergraduates. Having evolved from Runde’s notes for an introductory topology course at the University of Alberta, this essential text provides a concise introduction to set-theoretic topology, as well as some algebraic topology. It is accessible to undergraduates from the second year on, and even beginning graduate students can benefit from some sections. The well-chosen selection of examples is accessible to students who have a background in calculus and elementary algebra, but not necessarily in real or complex analysis. In places, Runde’s text treats its material differently to other books on the subject, providing a fresh perspective.
  more concise algebraic topology: Groups, Rings and Fields David A.R. Wallace, 2012-12-06 David Wallace has written a text on modern algebra which is suitable for a first course in the subject given to mathematics undergraduates. It aims to promote a feeling for the evolutionary and historical development of algebra. It assumes some familiarity with complex numbers, matrices and linear algebra which are commonly taught during the first year of an undergraduate course. Each chapter contains examples, exercises and solutions, perfectly suited to aid self-study. All arguments in the text are carefully crafted to promote understanding and enjoyment for the reader.
  more concise algebraic topology: Topology Tai-Danae Bradley, Tyler Bryson, John Terilla, 2020-08-18 A graduate-level textbook that presents basic topology from the perspective of category theory. This graduate-level textbook on topology takes a unique approach: it reintroduces basic, point-set topology from a more modern, categorical perspective. Many graduate students are familiar with the ideas of point-set topology and they are ready to learn something new about them. Teaching the subject using category theory—a contemporary branch of mathematics that provides a way to represent abstract concepts—both deepens students' understanding of elementary topology and lays a solid foundation for future work in advanced topics. After presenting the basics of both category theory and topology, the book covers the universal properties of familiar constructions and three main topological properties—connectedness, Hausdorff, and compactness. It presents a fine-grained approach to convergence of sequences and filters; explores categorical limits and colimits, with examples; looks in detail at adjunctions in topology, particularly in mapping spaces; and examines additional adjunctions, presenting ideas from homotopy theory, the fundamental groupoid, and the Seifert van Kampen theorem. End-of-chapter exercises allow students to apply what they have learned. The book expertly guides students of topology through the important transition from undergraduate student with a solid background in analysis or point-set topology to graduate student preparing to work on contemporary problems in mathematics.
  more concise algebraic topology: Essential Topology Martin D. Crossley, 2011-02-11 This book brings the most important aspects of modern topology within reach of a second-year undergraduate student. It successfully unites the most exciting aspects of modern topology with those that are most useful for research, leaving readers prepared and motivated for further study. Written from a thoroughly modern perspective, every topic is introduced with an explanation of why it is being studied, and a huge number of examples provide further motivation. The book is ideal for self-study and assumes only a familiarity with the notion of continuity and basic algebra.
  more concise algebraic topology: Formal Geometry and Bordism Operations Eric Peterson, 2019 Delivers a broad, conceptual introduction to chromatic homotopy theory, focusing on contact with arithmetic and algebraic geometry.
  more concise algebraic topology: Algebraic K-Theory and Its Applications Jonathan Rosenberg, 2012-12-06 Algebraic K-Theory plays an important role in many areas of modern mathematics: most notably algebraic topology, number theory, and algebraic geometry, but even including operator theory. The broad range of these topics has tended to give the subject an aura of inapproachability. This book, based on a course at the University of Maryland in the fall of 1990, is intended to enable graduate students or mathematicians working in other areas not only to learn the basics of algebraic K-Theory, but also to get a feel for its many applications. The required prerequisites are only the standard one-year graduate algebra course and the standard introductory graduate course on algebraic and geometric topology. Many topics from algebraic topology, homological algebra, and algebraic number theory are developed as needed. The final chapter gives a concise introduction to cyclic homology and its interrelationship with K-Theory.
  more concise algebraic topology: Galois Theory and Its Algebraic Background D. J. H. Garling, 2021-07-22 Galois Theory, the theory of polynomial equations and their solutions, is one of the most fascinating and beautiful subjects of pure mathematics. Using group theory and field theory, it provides a complete answer to the problem of the solubility of polynomial equations by radicals: that is, determining when and how a polynomial equation can be solved by repeatedly extracting roots using elementary algebraic operations. This textbook contains a fully detailed account of Galois Theory and the algebra that it needs and is suitable both for those following a course of lectures and the independent reader (who is assumed to have no previous knowledge of Galois Theory). The second edition has been significantly revised and re-ordered; the first part develops the basic algebra that is needed, and the second a comprehensive account of Galois Theory. There are applications to ruler-and- compass constructions, and to the solution of classical mathematical problems of ancient times. There are new exercises throughout, and carefully-selected examples will help the reader develop a clear understanding of the mathematical theory.
  more concise algebraic topology: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
  more concise algebraic topology: A History of Algebraic and Differential Topology, 1900 - 1960 Jean Dieudonné, 2009-06-09 This book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincaré and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it! —MathSciNet
phrase usage - "in more details" or "in detail" - English Language ...
Oct 8, 2020 · A more detailed explanation of the word "detail" is included below. OR I will describe the various meanings of the word "detail" in detail below or if you think this explanation has …

further VS. more - English Language Learners Stack Exchange
more reputation on Stack Exchange Example in one sentence: We need more money for further research. On interchangeability: When both extension and countability are correct, you can …

Use of some more - English Language Learners Stack Exchange
Dec 28, 2019 · Person B then states that there are some more slices: There are some more slices if you want to eat. This could be anywhere from two to six slices, so less than half or more …

When to use "more likely" and "most likely" in a sentence
Janus is more likely to commit crime than Mike because Janus has a history of mania. However, if you wanted to use "most likely" you would say: Janus is most likely [in the group] to commit …

adjectives - "Most simple" or "Simplest" - English Language …
Dec 5, 2020 · The superlative is formed in different ways according to the length of the base adjective. If it has one syllable, then the letters -est are added. If the word has three syllables …

Could you tell me If I can use the words “more strict” and “Most …
I got confused with “ stricter and more strict”, strictest and most strict”. What is the rule about this or both are correct? Let me make a sentence with stricter . Dan is stricter than Ryan about …

"You are" vs. "you're" — what is the difference between them?
@JohnLawler I’m betting that non-native speakers are seldom taught that many such “contractions” occur naturally in speaking because of reduction of unstressed pieces — more …

meaning - What is the difference between S' and 'S? - English …
Jul 1, 2019 · We use only an apostrophe (') after plural nouns that end in -s: "my sons' toys" means that I have more than one son and these are their toys. We use 's for possession with …

What is the difference between in depth and in-depth?
Sep 5, 2016 · It seems that in depth is like two separate words like I have studied this subject in some depth. But in-depth is like one word and an adjective He has an in-depth knowledge of …

What else can we say instead of "I see" or "I understand"?
Jan 31, 2015 · The original poster is correct that "I understand" is more formal than "I see", and that both "I understand" and "I see" are often used by doctors who are listening to patients. If …

phrase usage - "in more details" or "in detail" - English Language ...
Oct 8, 2020 · A more detailed explanation of the word "detail" is included below. OR I will describe the various meanings of the word "detail" in detail below or if you think this explanation has …

further VS. more - English Language Learners Stack Exchange
more reputation on Stack Exchange Example in one sentence: We need more money for further research. On interchangeability: When both extension and countability are correct, you can …

Use of some more - English Language Learners Stack Exchange
Dec 28, 2019 · Person B then states that there are some more slices: There are some more slices if you want to eat. This could be anywhere from two to six slices, so less than half or more …

When to use "more likely" and "most likely" in a sentence
Janus is more likely to commit crime than Mike because Janus has a history of mania. However, if you wanted to use "most likely" you would say: Janus is most likely [in the group] to commit …

adjectives - "Most simple" or "Simplest" - English Language …
Dec 5, 2020 · The superlative is formed in different ways according to the length of the base adjective. If it has one syllable, then the letters -est are added. If the word has three syllables …

Could you tell me If I can use the words “more strict” and “Most …
I got confused with “ stricter and more strict”, strictest and most strict”. What is the rule about this or both are correct? Let me make a sentence with stricter . Dan is stricter than Ryan about …

"You are" vs. "you're" — what is the difference between them?
@JohnLawler I’m betting that non-native speakers are seldom taught that many such “contractions” occur naturally in speaking because of reduction of unstressed pieces — more …

meaning - What is the difference between S' and 'S? - English …
Jul 1, 2019 · We use only an apostrophe (') after plural nouns that end in -s: "my sons' toys" means that I have more than one son and these are their toys. We use 's for possession with …

What is the difference between in depth and in-depth?
Sep 5, 2016 · It seems that in depth is like two separate words like I have studied this subject in some depth. But in-depth is like one word and an adjective He has an in-depth knowledge of …

What else can we say instead of "I see" or "I understand"?
Jan 31, 2015 · The original poster is correct that "I understand" is more formal than "I see", and that both "I understand" and "I see" are often used by doctors who are listening to patients. If …