Advertisement
modern electric vehicle technology: Modern Electric Vehicle Technology C. C. Chan, K. T. Chau, 2001 A comprehensive and up-to-date reference book on modern electric vehicle technology, which covers the engineering philosophy, state-of-the-art technology, and commercialisation of electrical vehicles. |
modern electric vehicle technology: Modern Electric, Hybrid Electric, and Fuel Cell Vehicles Mehrdad Ehsani, Yimin Gao, Stefano Longo, Kambiz Ebrahimi, 2018-02-02 This book is an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles. It could serve electrical engineers who need to know more about automobiles or automotive engineers who need to know about electrical propulsion systems. For example, this reviewer, who is a specialist in electric machinery, could use this book to better understand the automobiles for which the reviewer is designing electric drive motors. An automotive engineer, on the other hand, might use it to better understand the nature of motors and electric storage systems for application in automobiles, trucks or motorcycles. The early chapters of the book are accessible to technically literate people who need to know something about cars. While the rst chapter is historical in nature, the second chapter is a good introduction to automobiles, including dynamics of propulsion and braking. The third chapter discusses, in some detail, spark ignition and compression ignition (Diesel) engines. The fourth chapter discusses the nature of transmission systems.” —James Kirtley, Massachusetts Institute of Technology, USA “The third edition covers extensive topics in modern electric, hybrid electric, and fuel cell vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented. Featured with design of various vehicle drivetrains, as well as a multi-objective optimization software, it is an estimable work to meet the needs of automotive industry.” —Haiyan Henry Zhang, Purdue University, USA “The extensive combined experience of the authors have produced an extensive volume covering a broad range but detailed topics on the principles, design and architectures of Modern Electric, Hybrid Electric, and Fuel Cell Vehicles in a well-structured, clear and concise manner. The volume offers a complete overview of technologies, their selection, integration & control, as well as an interesting Technical Overview of the Toyota Prius. The technical chapters are complemented with example problems and user guides to assist the reader in practical calculations through the use of common scientic computing packages. It will be of interest mainly to research postgraduates working in this eld as well as established academic researchers, industrial R&D engineers and allied professionals.” —Christopher Donaghy-Sparg, Durham University, United Kingdom The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). The design methodology is described in mathematical terms, step-by-step, and the topics are approached from the overall drive train system, not just individual components. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results. All the chapters have been updated, and two new chapters on Mild Hybrids and Optimal Sizing and Dimensioning and Control are also included • Chapters updated throughout the text. • New homework problems, solutions, and examples. • Includes two new chapters. • Features accompanying MATLABTM software. |
modern electric vehicle technology: The Global Rise of the Modern Plug-In Electric Vehicle John D. Graham, 2021-04-30 We may be standing on the precipice of a revolution in propulsion not seen since the internal combustion engine replaced the horse and buggy. The anticipated proliferation of electric cars will influence the daily lives of motorists, the economies of different countries and regions, urban air quality and global climate change. If you want to understand how quickly the transition is likely to occur, and the factors that will influence the predictions of the pace of the transition, this book will be an illuminating read. |
modern electric vehicle technology: Electric Vehicle Technology Explained James Larminie, John Lowry, 2012-07-11 Fully updated throughout, Electric Vehicle Technology, Second Edition, is a complete guide to the principles, design and applications of electric vehicle technology. Including all the latest advances, it presents clear and comprehensive coverage of the major aspects of electric vehicle development and offers an engineering-based evaluation of electric motor scooters, cars, buses and trains. This new edition includes: important new chapters on types of electric vehicles, including pickup and linear motors, overall efficiencies and energy consumption, and power generation, particularly for zero carbon emissions expanded chapters updating the latest types of EV, types of batteries, battery technology and other rechargeable devices, fuel cells, hydrogen supply, controllers, EV modeling, ancillary system design, and EV and the environment brand new practical examples and case studies illustrating how electric vehicles can be used to substantially reduce carbon emissions and cut down reliance on fossil fuels futuristic concept models, electric and high-speed trains and developments in magnetic levitation and linear motors an examination of EV efficiencies, energy consumption and sustainable power generation. MATLAB® examples can be found on the companion website www.wiley.com/go/electricvehicle2e Explaining the underpinning science and technology, this book is essential for practicing electrical, automotive, power, control and instrumentation engineers working in EV research and development. It is also a valuable reference for academics and students in automotive, mechanical, power and electrical engineering. |
modern electric vehicle technology: History of Electric Cars Nigel Burton, 2013-06-30 One hundred years ago electric cars were the most popular automobiles in the world. In the late nineteenth century and at the start of the twentieth century, they outsold every other type of car. And yet, within a couple of decades of the start of the twentieth century, the electric car had vanished. Thousands of battery-powered cars disappeared from the streets, replaced by the internal combustion engine, and their place in the history of the automobile was quietly erased. A century later, electric cars are making a comeback. Fears over pollution and global warming have forced manufacturers to reconsider the electric concept. A History of Electric Cars presents for the first time the full story of electric cars and their hybrid cousins. It examines how and why electric cars failed the first time - and why today's car manufacterers must learn the lessons of the past if they are to avoid repeating previous mistakes all over again. The book examines in detail: Early vehicles such as the Lohner-Porsche petrol-electric hybrid of 1901; Key figures in the history of the electric car development such as Henry Ford; Sir Clive Sinclair's plans to build a number of electric vehicles, designed to sit alongside the Sinclair C5; The return of the electric technology to vehicles as diverse as the NASA Lunar Rover, commuting vehicles and supercars; Future developments in electric cars. For the first time the full story of electric cars and their hybrids are examined.The hidden past of the electric automobile is uncovered and its future developments are discussed. Superbly illustrated with 300 colour photographs, many of which are rare and original sketch designs. Nigel Burton has written and lectured on cars and automotive history for more than twenty years. |
modern electric vehicle technology: Modern Electric Vehicle Technology C. C. Chan, 2001 |
modern electric vehicle technology: Electric Vehicle Integration into Modern Power Networks Rodrigo Garcia-Valle, João A. Peças Lopes, 2012-11-29 Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources. New business models and control management architectures, as well as the communication infrastructure required to integrate electric vehicles as active demand are presented. Finally, regulatory issues of integrating electric vehicles into modern power systems are addressed. Inspired by two courses held under the EES-UETP umbrella in 2010 and 2011, this contributed volume consists of nine chapters written by leading researchers and professionals from the industry as well as academia. |
modern electric vehicle technology: Hybrid Electric Vehicles Chris Mi, M. Abul Masrur, David Wenzhong Gao, 2011-05-23 Modern Hybrid Electric Vehicles provides vital guidance to help a new generation of engineers master the principles of and further advance hybrid vehicle technology. The authors address purely electric, hybrid electric, plug-in hybrid electric, hybrid hydraulic, fuel cell, and off-road hybrid vehicle systems. They focus on the power and propulsion systems for these vehicles, including issues related to power and energy management. They concentrate on material that is not readily available in other hybrid electric vehicle (HEV) books such as design examples for hybrid vehicles, and cover new developments in the field including electronic CVT, plug-in hybrid, and new power converters and controls. Covers hybrid vs. pure electric, HEV system architecture (including plug-in and hydraulic), off-road and other industrial utility vehicles, non-ground-vehicle applications like ships, locomotives, aircrafts, system reliability, EMC, storage technologies, vehicular power and energy management, diagnostics and prognostics, and electromechanical vibration issues. Contains core fundamentals and principles of modern hybrid vehicles at component level and system level. Provides graduate students and field engineers with a text suitable for classroom teaching or self-study. |
modern electric vehicle technology: The Tech Behind Electric Cars Matthew Allan Chandler, 2019-08 Electric cars have come a long way since the first gasoline-electric hybrid vehicles hit the market in the late 1990s. Some modern electric cars boast a range of nearly 300 miles (483 kilometers) on one charge. And they're not all for the tame of heart. Some electric-powered sports cars can reach top speeds of 250 miles (402 km) per hour! Take young readers on a journey through the technology that makes electric cars so amazing. |
modern electric vehicle technology: Hybrid Electric Vehicles Chris Mi, M. Abul Masrur, 2017-11-29 The latest developments in the field of hybrid electric vehicles Hybrid Electric Vehicles provides an introduction to hybrid vehicles, which include purely electric, hybrid electric, hybrid hydraulic, fuel cell vehicles, plug-in hybrid electric, and off-road hybrid vehicular systems. It focuses on the power and propulsion systems for these vehicles, including issues related to power and energy management. Other topics covered include hybrid vs. pure electric, HEV system architecture (including plug-in & charging control and hydraulic), off-road and other industrial utility vehicles, safety and EMC, storage technologies, vehicular power and energy management, diagnostics and prognostics, and electromechanical vibration issues. Hybrid Electric Vehicles, Second Edition is a comprehensively updated new edition with four new chapters covering recent advances in hybrid vehicle technology. New areas covered include battery modelling, charger design, and wireless charging. Substantial details have also been included on the architecture of hybrid excavators in the chapter related to special hybrid vehicles. Also included is a chapter providing an overview of hybrid vehicle technology, which offers a perspective on the current debate on sustainability and the environmental impact of hybrid and electric vehicle technology. Completely updated with new chapters Covers recent developments, breakthroughs, and technologies, including new drive topologies Explains HEV fundamentals and applications Offers a holistic perspective on vehicle electrification Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, Second Edition is a great resource for researchers and practitioners in the automotive industry, as well as for graduate students in automotive engineering. |
modern electric vehicle technology: Modern Electric Vehicle Technology C. C. Chan, K. T. Chau, 2023 Written for a wide audience, Modern Electric Vehicle Technology offers a multidisciplinary approach to the history and development of electric and hybrid electric vehicles. It also covers the marketing and commercialisation of such vehicles. |
modern electric vehicle technology: Electric Powertrain John G. Hayes, G. Abas Goodarzi, 2017-11-13 The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives. The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. Introduces and holistically integrates the key EV powertrain technologies. Provides a comprehensive overview of existing and emerging automotive solutions. Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. Presents many examples of powertrain technologies from leading manufacturers. Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. Investigates the environmental motivating factors and impacts of electromobility. Presents a structured university teaching stream from introductory undergraduate to postgraduate. Includes real-world problems and assignments of use to design engineers, researchers, and students alike. Features a companion website with numerous references, problems, solutions, and practical assignments. Includes introductory material throughout the book for the general scientific reader. Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The resource is a structured, holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students. |
modern electric vehicle technology: Advanced Battery Management Technologies for Electric Vehicles Rui Xiong, Weixiang Shen, 2019-02-26 A comprehensive examination of advanced battery management technologies and practices in modern electric vehicles Policies surrounding energy sustainability and environmental impact have become of increasing interest to governments, industries, and the general public worldwide. Policies embracing strategies that reduce fossil fuel dependency and greenhouse gas emissions have driven the widespread adoption of electric vehicles (EVs), including hybrid electric vehicles (HEVs), pure electric vehicles (PEVs) and plug-in electric vehicles (PHEVs). Battery management systems (BMSs) are crucial components of such vehicles, protecting a battery system from operating outside its Safe Operating Area (SOA), monitoring its working conditions, calculating and reporting its states, and charging and balancing the battery system. Advanced Battery Management Technologies for Electric Vehicles is a compilation of contemporary model-based state estimation methods and battery charging and balancing techniques, providing readers with practical knowledge of both fundamental concepts and practical applications. This timely and highly-relevant text covers essential areas such as battery modeling and battery state of charge, energy, health and power estimation methods. Clear and accurate background information, relevant case studies, chapter summaries, and reference citations help readers to fully comprehend each topic in a practical context. Offers up-to-date coverage of modern battery management technology and practice Provides case studies of real-world engineering applications Guides readers from electric vehicle fundamentals to advanced battery management topics Includes chapter introductions and summaries, case studies, and color charts, graphs, and illustrations Suitable for advanced undergraduate and graduate coursework, Advanced Battery Management Technologies for Electric Vehicles is equally valuable as a reference for professional researchers and engineers. |
modern electric vehicle technology: How your car works - Your guide to the components & systems of modern cars, including hybrid & electric vehicles Arvid Linde, 2014-03-31 Do you know how your car works? This book dissects and explains one of the finest inventions ever made. Written in a simple, jargon-free language and packed with illustrations and cutaways, it will suit everyone wishing to know more about what makes their car work. |
modern electric vehicle technology: The Electric Car Michael Hereward Westbrook, 2001 Considerable work has gone into electric car and battery development in the last ten years, with the prospect of substantial improvements in range and performance in battery cars as well as in hybrids and those using fuel cells. This book covers the development of electric cars, from their early days, to new hybrid models in production. Most of the coverage is focused on the very latest technological issues faced by automotive engineers working on electric cars, as well as the key business factors vital for the successful transfer of electric cars into the mass market. |
modern electric vehicle technology: Electric Vehicle Engineering (Pb) Enge, 2020-11-24 |
modern electric vehicle technology: Electric and Hybrid Cars Curtis Darrel Anderson, Judy Anderson, 2005 Presents an illustrated history of electric and hybrid cars produced during the early twentieth century, the companies that built them, political and environmental aspects, marketing strategies, and general attitude by consumers. |
modern electric vehicle technology: Advanced Electric Drive Vehicles Ali Emadi, 2014-10-24 Electrification is an evolving paradigm shift in the transportation industry toward more efficient, higher performance, safer, smarter, and more reliable vehicles. There is in fact a clear trend to move from internal combustion engines (ICEs) to more integrated electrified powertrains. Providing a detailed overview of this growing area, Advanced Electric Drive Vehicles begins with an introduction to the automotive industry, an explanation of the need for electrification, and a presentation of the fundamentals of conventional vehicles and ICEs. It then proceeds to address the major components of electrified vehicles—i.e., power electronic converters, electric machines, electric motor controllers, and energy storage systems. This comprehensive work: Covers more electric vehicles (MEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), range-extended electric vehicles (REEVs), and all-electric vehicles (EVs) including battery electric vehicles (BEVs) and fuel cell vehicles (FCVs) Describes the electrification technologies applied to nonpropulsion loads, such as power steering and air-conditioning systems Discusses hybrid battery/ultra-capacitor energy storage systems, as well as 48-V electrification and belt-driven starter generator systems Considers vehicle-to-grid (V2G) interface and electrical infrastructure issues, energy management, and optimization in advanced electric drive vehicles Contains numerous illustrations, practical examples, case studies, and challenging questions and problems throughout to ensure a solid understanding of key concepts and applications Advanced Electric Drive Vehicles makes an ideal textbook for senior-level undergraduate or graduate engineering courses and a user-friendly reference for researchers, engineers, managers, and other professionals interested in transportation electrification. |
modern electric vehicle technology: Car Wars John J. Fialka, 2015-09-22 Drawing from the last decade of his 26-year career at the Wall Street Journal, where he covered energy and environmental matters, ClimateWire founder and industry insider John Fialka brings to life this thrilling and important story about American's rejection and second obsession with the electric car. The resurgence of the electric car in modern life is a tale of adventurers, men and women who bucked the complete dominance of the fossil fueled car to seek something cleaner, simpler and cheaper. Award-winning former Wall Street Journal reporter John Fialka documents the early days of the electric car, from the M.I.T./Caltech race between prototypes in the summer of 1968 to the 1987 victory of the Sunraycer in the world's first race featuring solar powered cars. Thirty years later, the electric has captured the imagination and pocketbooks of American consumers. Organizations like the U.S. Department of Energy and the state of California, along with companies from the old-guard of General Motors and Toyota as well as upstart young players like Tesla Motors and Elon Musk have embraced the once-extinct technology. The electric car has steadily gained traction in the U.S. and around the world. We are watching the start of a trillion dollar, worldwide race to see who will dominate one of the biggest commercial upheavals of the 21st century. |
modern electric vehicle technology: Electric and Hybrid Vehicles Amir Khajepour, M. Saber Fallah, Avesta Goodarzi, 2014-03-05 An advanced level introductory book covering fundamental aspects, design and dynamics of electric and hybrid electric vehicles There is significant demand for an understanding of the fundamentals, technologies, and design of electric and hybrid electric vehicles and their components from researchers, engineers, and graduate students. Although there is a good body of work in the literature, there is still a great need for electric and hybrid vehicle teaching materials. Electric and Hybrid Vehicles: Technologies, Modeling and Control – A Mechatronic Approach is based on the authors’ current research in vehicle systems and will include chapters on vehicle propulsion systems, the fundamentals of vehicle dynamics, EV and HEV technologies, chassis systems, steering control systems, and state, parameter and force estimations. The book is highly illustrated, and examples will be given throughout the book based on real applications and challenges in the automotive industry. Designed to help a new generation of engineers needing to master the principles of and further advances in hybrid vehicle technology Includes examples of real applications and challenges in the automotive industry with problems and solutions Takes a mechatronics approach to the study of electric and hybrid electric vehicles, appealing to mechanical and electrical engineering interests Responds to the increase in demand of universities offering courses in newer electric vehicle technologies |
modern electric vehicle technology: The Electric Vehicle Gijs Mom, 2013-02-15 Winner of the Engineer-Historian Award from the International History and Heritage Committee of the American Society of Mechanical Engineers, and the Nicholas-Joseph Cugnot Award given by the Society of Automotive Historians Recent attention to hybrid cars that run on both gasoline and electric batteries has made the electric car an apparent alternative to the internal combustion engine and its attendant environmental costs and geopolitical implications. Few people realize that the electric car—neither a recent invention nor a historical curiosity—has a story as old as that of the gasoline-powered automobile, and that at one time many in the nascent automobile industry believed battery-powered engines would become the dominant technology. In both Europe and America, electric cars and trucks succeeded in meeting the needs of a wide range of consumers. Before World War II, as many as 30,000 electric cars and more than 10,000 electric trucks plied American roads; European cities were busy with, electrically propelled fire engines, taxis, delivery vans, buses, heavy trucks and private cars. Even so, throughout the century-long history of electric propulsion, the widespread conviction it was an inferior technology remained stubbornly in place, an assumption mirrored in popular and scholarly memory. In The Electric Vehicle, Gijs Mom challenges this view, arguing that at the beginning of the automobile age neither the internal combustion engine nor the battery-powered vehicle enjoyed a clear advantage. He explores the technology and marketing/consumer-ratio faction relationship over four generations of electric-vehicle design, with separate chapters on privately owned passenger cars and commercial vehicles. Mom makes comparisons among European countries and between Europe and America. He finds that the electric vehicle offered many advantages, among them greater reliability and control, less noise and pollution. He also argues that a nexus of factors—cultural (underpowered and less rugged, electric cars seemed feminine at a time when most car buyers were men), structural (the shortcomings of battery technology at the time), and systemic (the infrastructural problems of changing large numbers of batteries)—ultimately gave an edge to the internal combustion engine. One hopes, as a new generation of electric vehicles becomes a reality, The Electric Vehicle offers a long-overdue reassessment of the place of this technology in the history of street transportation. |
modern electric vehicle technology: Advances in Battery Technologies for Electric Vehicles Bruno Scrosati, Jrgen Garche, Werner Tillmetz, 2015-06-01 Advances in Battery Technologies for Electric Vehicles provides an in-depth look into the research being conducted on the development of more efficient batteries capable of long distance travel. The text contains an introductory section on the market for battery and hybrid electric vehicles, then thoroughly presents the latest on lithium-ion battery technology. Readers will find sections on battery pack design and management, a discussion of the infrastructure required for the creation of a battery powered transport network, and coverage of the issues involved with end-of-life management for these types of batteries. Provides an in-depth look into new research on the development of more efficient, long distance travel batteries Contains an introductory section on the market for battery and hybrid electric vehicles Discusses battery pack design and management and the issues involved with end-of-life management for these types of batteries |
modern electric vehicle technology: Electric Vehicles Seref Soylu, 2011-09-06 In this book, theoretical basis and design guidelines for electric vehicles have been emphasized chapter by chapter with valuable contribution of many researchers who work on both technical and regulatory sides of the field. Multidisciplinary research results from electrical engineering, chemical engineering and mechanical engineering were examined and merged together to make this book a guide for industry, academia and policy maker. |
modern electric vehicle technology: Electric Vehicles Gerald B. Raines, 2009 With ever increasing concern on environmental protection and energy conservation, there is a fast growing interest in electric vehicles (EVs) from automakers, governments and customers. As electric propulsion is the core of EVs, there is a pressing need for researchers to develop advanced electric motor drives for various classes of EVs, including the battery, hybrid and fuel cell vehicles. Such issues are addressed in this book. The development and use of a fuel cell based power system for propulsion of electric aircrafts is discussed. A study done on the flight mechanics of the new aircraft, to verify the new flight performance, is also examined. Electric powered two-wheelers have risen in popularity in China over the past several years. This book investigates the growth of these electric two-wheelers in China and compares their environmental and safety impacts to those of alternative modes of transportation. Futhermore, the design and implementation of a hardware-in-the-loop system for the development, verification, and validation of algorithms used to construct state estimators for batteries and supercapacitors is addressed. There are several different kinds of devices that can be used to achieve electrochemical energy conversion. Some of these conversion technologies are reviewed, as well as their impact on the environment. The method used to control a power-train of a hybrid electric vehicle is discussed as well as how both the engine and the electric machine may achieve respective higher efficiencies after using this method. The regulated and unregulated emissions of diesel engines operating on different sulfur content fuels are also looked at. Energy efficiency issues include research and development priorities, funding for climate-related efficiency programs, implementation of equipment efficiency standards, regulation of vehicle fuel efficiency, and electricity industry ratemaking for energy efficiency profitability. Such issues are addressed in this book. |
modern electric vehicle technology: New Generation of Electric Vehicles Zoran Stevic, 2012-12-19 Important factor in political decision-making is a public opinion as well. Therefore, it is very important to raise global ecological awareness and wider public education regarding ecology. Goal of this book is to bring closer to the readers new drive technologies that are intended to environment and nature protection. The book presents modern technique achievements and technologies applied in the implementation of electric vehicles. Special attention was paid to energy efficiency of EV's. Also today's trends, mathematical models and computer design elements of future cars are presented. |
modern electric vehicle technology: Electric Vehicle Machines and Drives K. T. Chau, 2015-05-13 A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material |
modern electric vehicle technology: Electric and Hybrid Vehicles Iqbal Husain, 2021-02-22 A thoroughly revised third edition of this widely praised, bestselling textbook presents a comprehensive systems-level perspective of electric and hybrid vehicles with emphasis on technical aspects, mathematical relationships and basic design guidelines. The emerging technologies of electric vehicles require the dedication of current and future engineers, so the target audience for the book is the young professionals and students in engineering eager to learn about the area. The book is concise and clear, its mathematics are kept to a necessary minimum and it contains a well-balanced set of contents of the complex technology. Engineers of multiple disciplines can either get a broader overview or explore in depth a particular aspect of electric or hybrid vehicles. Additions in the third edition include simulation-based design analysis of electric and hybrid vehicles and their powertrain components, particularly that of traction inverters, electric machines and motor drives. The technology trends to incorporate wide bandgap power electronics and reduced rare-earth permanent magnet electric machines in the powertrain components have been highlighted. Charging stations are a critical component for the electric vehicle infrastructure, and hence, a chapter on vehicle interactions with the power grid has been added. Autonomous driving is another emerging technology, and a chapter is included describing the autonomous driving system architecture and the hardware and software needs for such systems. The platform has been set in this book for system-level simulations to develop models using various softwares used in academia and industry, such as MATLAB®/Simulink, PLECS, PSIM, Motor-CAD and Altair Flux. Examples and simulation results are provided in this edition using these software tools. The third edition is a timely revision and contribution to the field of electric vehicles that has reached recently notable markets in a more and more environmentally sensitive world. |
modern electric vehicle technology: The Car that Could Michael Shnayerson, 1996 Unprecedented secrecy surrounded the early development of General Motors's Impact. Shnayerson watched the story unfold from a position of access never granted a reporter before--literally from the inside of the pace-setting GM Impact program. This is the first book to penetrate the silence surrounding GM's risky and successful decision to become the world's first mass producer of the electric car. |
modern electric vehicle technology: Propulsion Systems for Hybrid Vehicles John M. Miller, 2008 Offering in-depth coverage of hybrid propulsion topics, energy storage systems and modelling, and supporting electrical systems, this book will be an invaluable resource for practising engineers and managers involved in all aspects of hybrid vehicle development, modelling, simulation and testing. |
modern electric vehicle technology: Light and Heavy Vehicle Technology Malcolm James Nunney, 2007 This edition contains new material covering the latest development in electronics, alternative fuels, emissions and diesel systems. |
modern electric vehicle technology: Electric and Hybrid Vehicles Gianfranco Pistoia, 2010-07-27 Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market reviews the performance, cost, safety, and sustainability of battery systems for hybrid electric vehicles (HEVs) and electric vehicles (EVs), including nickel-metal hydride batteries and Li-ion batteries. Throughout this book, especially in the first chapters, alternative vehicles with different power trains are compared in terms of lifetime cost, fuel consumption, and environmental impact. The emissions of greenhouse gases are particularly dealt with. The improvement of the battery, or fuel cell, performance and governmental incentives will play a fundamental role in determining how far and how substantial alternative vehicles will penetrate into the market. An adequate recharging infrastructure is of paramount importance for the diffusion of vehicles powered by batteries and fuel cells, as it may contribute to overcome the so-called range anxiety. Thus, proposed battery charging techniques are summarized and hydrogen refueling stations are described. The final chapter reviews the state of the art of the current models of hybrid and electric vehicles along with the powertrain solutions adopted by the major automakers. - Contributions from the worlds leading industry and research experts - Executive summaries of specific case studies - Information on basic research and application approaches |
modern electric vehicle technology: Energy Systems for Electric and Hybrid Vehicles K. T. Chau, 2016 Electric and hybrid vehicles have been globally identified to be the most environmentally friendly road transportation. This book provides comprehensive coverage of energy systems for electric and hybrid vehicles with a focus on the three main energy system technologies - energy sources, battery charging and vehicle-to-grid systems. |
modern electric vehicle technology: Modern Automotive Technology James E. Duffy, 1998 Modern Automotive Technology details the construction, operation, diagnosis, service, and repair of late-model automobiles and light trucks. This comprehensive text uses a building block approach that starts with the fundamental principles of system operation and progresses gradually to complex diagnostic and service procedures. Short sentences, concise definitions, and thousands of color illustrations help students learn quickly and easily The 1998 edition has been extensively revised and provides thorough coverage of the latest developments in the automotive field, including OBD II diagnostics, IM 240 testing, misfire monitoring, air bag systems, anti-lock brakes, and security systems. Organized around the eight ASE automobile test areas, this text is a valuable resource for students preparing for a career in automotive technology, as well as experienced technicians preparing for the ASE Certification/Recertification Tests. |
modern electric vehicle technology: Vehicle-to-Grid Lance Noel, Gerardo Zarazua de Rubens, Johannes Kester, Benjamin K. Sovacool, 2019-01-04 This book defines and charts the barriers and future of vehicle-to-grid technology: a technology that could dramatically reduce emissions, create revenue, and accelerate the adoption of battery electric cars. This technology connects the electric power grid and the transportation system in ways that will enable electric vehicles to store renewable energy and offer valuable services to the electricity grid and its markets. To understand the complex features of this emergent technology, the authors explore the current status and prospect of vehicle-to-grid, and detail the sociotechnical barriers that may impede its fruitful deployment. The book concludes with a policy roadmap to advise decision-makers on how to optimally implement vehicle-to-grid and capture its benefits to society while attempting to avoid the impediments discussed earlier in the book. |
modern electric vehicle technology: Energy for Future Presidents: The Science Behind the Headlines Richard Muller, 2012-08-06 The author of Physics for Future Presidents returns to educate readers on the most crucial conundrum facing the nation: energy. |
modern electric vehicle technology: Electric Vehicle Technology Dr. Mohd. Asif Gandhi, Dr. J.S.V.Siva Kumar, Dr. Ashes Maji, Dr. S. Sakthivel Padaiyatchi, 2025-02-07 Electric Vehicle Technology the principles, design, and advancements in electric vehicle (EV) systems. Key topics such as battery technologies, power electronics, electric drivetrains, charging infrastructure, and energy management, this book provides in-depth insights into the evolving EV industry. It examines sustainability, performance optimization, and emerging innovations shaping the future of transportation. Designed for engineers, researchers, and enthusiasts, the book bridges theoretical concepts with practical applications, making it an essential resource for understanding the transformation from conventional to electric mobility. |
modern electric vehicle technology: Atlantic Automobilism Gijs Mom, 2014-12-01 Our continued use of the combustion engine car in the 21st century, despite many rational arguments against it, makes it more and more difficult to imagine that transport has a sustainable future. Offering a sweeping transatlantic perspective, this book explains the current obsession with automobiles by delving deep into the motives of early car users. It provides a synthesis of our knowledge about the emergence and persistence of the car, using a broad range of material including novels, poems, films, and songs to unearth the desires that shaped our present “car society.” Combining social, psychological, and structural explanations, the author concludes that the ability of cars to convey transcendental experience, especially for men, explains our attachment to the vehicle. |
modern electric vehicle technology: Electric and Hybrid Vehicles Tom Denton, 2016-04-06 The first book on electric and hybrid vehicles (EVs) written specifically for automotive students and vehicle owners Clear diagrams, photos and flow charts outline the charging infrastructure, how EV technology works, and how to repair and maintain hybrid and electric vehicles Optional IMI online eLearning materials enable students to study the subject further and test their knowledge Full coverage of IMI Level 2 Award in Hybrid Electric Vehicle Operation and Maintenance, IMI Level 3 Award in Hybrid Electric Vehicle Repair and Replacement, IMI Accreditation, C&G and other EV/Hybrid courses. The first book on electric and hybrid vehicles (endorsed by the IMI) starts with an introduction to the market, covering the different types of electric vehicle, costs and emissions, and the charging infrastructure, before moving on to explain how hybrid and electric vehicles work. A chapter on electrical technology introduces learners to subjects such as batteries, control systems and charging which are then covered in more detail within their own chapters. The book also covers the maintenance and repair procedures of these vehicles, including fault finding, servicing, repair and first-responder information. Case studies are used throughout to illustrate different technologies. |
modern electric vehicle technology: Modeling and Simulation for Electric Vehicle Applications Mohamed Amine Fakhfakh, 2016-10-05 The book presents interesting topics from the area of modeling and simulation of electric vehicles application. The results presented by the authors of the book chapters are very interesting and inspiring. The book will familiarize the readers with the solutions and enable the readers to enlarge them by their own research. It will be useful for students of Electrical Engineering; it helps them solve practical problems. |
modern electric vehicle technology: Electric Vehicles Nil Patel, Akash Kumar Bhoi, Sanjeevikumar Padmanaban, Jens Bo Holm-Nielsen, 2020-11-25 This book focuses on the latest emerging technologies in electric vehicles (EV), and their economic and environmental impact. The topics covered include different types of EV such as hybrid electrical vehicle (HEV), battery electrical vehicle (BEV), fuel cell electrical vehicle (FCEV), plug-in hybrid electrical vehicle (PHEV). Theoretical background and practical examples of conventional electrical machines, advanced electrical machines, battery energy sources, on-board charging and off-board charging techniques, and optimization methods are presented here. This book can be useful for students, researchers and practitioners interested in different problems and challenges associated with electric vehicles. |
Modern Optical
At Modern Optical, we believe all families deserve fashionable, affordable eyewear. Founded in 1974 by my father, Yale Weissman, Modern remains family-owned and operated as well as a …
MODERN Definition & Meaning - Merriam-Webster
The meaning of MODERN is of, relating to, or characteristic of the present or the immediate past : contemporary. How to use modern in a sentence.
MODERN | English meaning - Cambridge Dictionary
MODERN definition: 1. designed and made using the most recent ideas and methods: 2. of the present or recent times…. Learn more.
Modern - Wikipedia
Modernity, a loosely defined concept delineating a number of societal, economic and ideological features that contrast with "pre-modern" times or societies Late modernity Art
Modern - definition of modern by The Free Dictionary
Characteristic or expressive of recent times or the present; contemporary or up-to-date: a modern lifestyle; a modern way of thinking. 2. a. Of or relating to a recently developed or advanced …
MODERN definition and meaning | Collins English Dictionary
modern is applied to those things that exist in the present age, esp. in contrast to those of a former age or an age long past; hence the word sometimes has the connotation of up-to-date …
Modern Muse Salon | Collierville TN - Facebook
Modern Muse Salon, Collierville, TN. 434 likes · 31 talking about this · 99 were here. Luxury hair salon located in Collierville at the corner of Poplar & Houston Levee!
What does modern mean? - Definitions.net
Modern typically refers to the present or recent times as opposed to the past. It commonly relates to developments or characteristics regarded as representative of contemporary life, or the …
MODERN Definition & Meaning | Dictionary.com
Modern means relating to the present time, as in modern life. It also means up-to-date and not old, as in modern technology. Apart from these general senses, modern is often used in a …
Modern Definition & Meaning - YourDictionary
Modern definition: Of, relating to, or being a living language or group of languages.
Modern Optical
At Modern Optical, we believe all families deserve fashionable, affordable eyewear. Founded in 1974 by my father, Yale Weissman, Modern remains family-owned and operated as well as a …
MODERN Definition & Meaning - Merriam-Webster
The meaning of MODERN is of, relating to, or characteristic of the present or the immediate past : contemporary. How to use modern in a sentence.
MODERN | English meaning - Cambridge Dictionary
MODERN definition: 1. designed and made using the most recent ideas and methods: 2. of the present or recent times…. Learn more.
Modern - Wikipedia
Modernity, a loosely defined concept delineating a number of societal, economic and ideological features that contrast with "pre-modern" times or societies Late modernity Art
Modern - definition of modern by The Free Dictionary
Characteristic or expressive of recent times or the present; contemporary or up-to-date: a modern lifestyle; a modern way of thinking. 2. a. Of or relating to a recently developed or advanced …
MODERN definition and meaning | Collins English Dictionary
modern is applied to those things that exist in the present age, esp. in contrast to those of a former age or an age long past; hence the word sometimes has the connotation of up-to-date …
Modern Muse Salon | Collierville TN - Facebook
Modern Muse Salon, Collierville, TN. 434 likes · 31 talking about this · 99 were here. Luxury hair salon located in Collierville at the corner of Poplar & Houston Levee!
What does modern mean? - Definitions.net
Modern typically refers to the present or recent times as opposed to the past. It commonly relates to developments or characteristics regarded as representative of contemporary life, or the …
MODERN Definition & Meaning | Dictionary.com
Modern means relating to the present time, as in modern life. It also means up-to-date and not old, as in modern technology. Apart from these general senses, modern is often used in a …
Modern Definition & Meaning - YourDictionary
Modern definition: Of, relating to, or being a living language or group of languages.