Advertisement
measurement and detection of radiation third edition: Handbook of Drug Metabolism, Third Edition Paul G. Pearson, Larry C. Wienkers, 2016-04-26 The second edition of a bestseller, this book presents the latest innovative research methods that help break new ground by applying patterns, reuse, and design science to research. The book relies on familiar patterns to provide the solid fundamentals of various research philosophies and techniques as touchstones that demonstrate how to innovate research methods. Filled with practical examples of applying patterns to IT research with an emphasis on reusing research activities to save time and money, this book describes design science research in relation to other information systems research paradigms such as positivist and interpretivist research. |
measurement and detection of radiation third edition: Radiation Detection and Measurement Glenn F. Knoll, 1989 This new edition of the methods and instrumentation used in the detection of ionizing radiation has been revised and updated to reflect recent advances. It covers modern engineering practice, provides useful design information and contains an up-to-date review of the literature. |
measurement and detection of radiation third edition: Measurement and Detection of Radiation Nicholas Tsoulfanidis, Sheldon Landsberger, 2021-09-15 As useful to students and nuclear professionals as its popular predecessors, this fifth edition provides the most up-to-date and accessible introduction to radiation detector materials, systems, and applications. There have been many advances in the field of radiation detection, most notably in practical applications. Incorporating these important developments, Measurement and Detection of Radiation, Fifth Edition provides the most up-to-date and accessible introduction to radiation detector materials, systems, and applications. It also includes more problems and updated references and bibliographies, and step-by-step derivations and numerous examples illustrate key concepts. New to the Fifth Edition: • Expanded chapters on semiconductor detectors, data analysis methods, health physics fundamentals, and nuclear forensics. • Updated references and bibliographies. • New and expanded problems. |
measurement and detection of radiation third edition: Physics for Radiation Protection James E. Martin, 2008-07-11 A highly practical reference for health physicists and other professionals, addressing practical problems in radiation protection, this new edition has been completely revised, updated and supplemented by such new sections as log-normal distribution and digital radiography, as well as new chapters on internal radiation dose and the environmental transport of radionuclides. Designed for readers with limited as well as basic science backgrounds, the handbook presents clear, thorough and up-to-date explanations of the basic physics necessary. It provides an overview of the major discoveries in radiation physics, plus extensive discussion of radioactivity, including sources and materials, as well as calculational methods for radiation exposure, comprehensive appendices and more than 400 figures. The text draws substantially on current resource data available, which is cross-referenced to standard compendiums, providing decay schemes and emission energies for approximately 100 of the most common radionuclides encountered by practitioners. Excerpts from the Chart of the Nuclides, activation cross sections, fission yields, fission-product chains, photon attenuation coefficients, and nuclear masses are also provided. Throughout, the author emphasizes applied concepts and carefully illustrates all topics using real-world examples as well as exercises. A much-needed working resource for health physicists and other radiation protection professionals. |
measurement and detection of radiation third edition: Physics and Engineering of Radiation Detection Syed Naeem Ahmed, 2007-04-12 Physics and Engineering of Radiation Detection presents an overview of the physics of radiation detection and its applications. It covers the origins and properties of different kinds of ionizing radiation, their detection and measurement, and the procedures used to protect people and the environment from their potentially harmful effects. It details the experimental techniques and instrumentation used in different detection systems in a very practical way without sacrificing the physics content. It provides useful formulae and explains methodologies to solve problems related to radiation measurements. With abundance of worked-out examples and end-of-chapter problems, this book enables the reader to understand the underlying physical principles and their applications. Detailed discussions on different detection media, such as gases, liquids, liquefied gases, semiconductors, and scintillators make this book an excellent source of information for students as well as professionals working in related fields. Chapters on statistics, data analysis techniques, software for data analysis, and data acquisition systems provide the reader with necessary skills to design and build practical systems and perform data analysis. - Covers the modern techniques involved in detection and measurement of radiation and the underlying physical principles - Illustrates theoretical and practical details with an abundance of practical, worked-out examples - Provides practice problems at the end of each chapter |
measurement and detection of radiation third edition: Radiation Detection Douglas McGregor, J. Kenneth Shultis, 2020-08-19 Radiation Detection: Concepts, Methods, and Devices provides a modern overview of radiation detection devices and radiation measurement methods. The book topics have been selected on the basis of the authors’ many years of experience designing radiation detectors and teaching radiation detection and measurement in a classroom environment. This book is designed to give the reader more than a glimpse at radiation detection devices and a few packaged equations. Rather it seeks to provide an understanding that allows the reader to choose the appropriate detection technology for a particular application, to design detectors, and to competently perform radiation measurements. The authors describe assumptions used to derive frequently encountered equations used in radiation detection and measurement, thereby providing insight when and when not to apply the many approaches used in different aspects of radiation detection. Detailed in many of the chapters are specific aspects of radiation detectors, including comprehensive reviews of the historical development and current state of each topic. Such a review necessarily entails citations to many of the important discoveries, providing a resource to find quickly additional and more detailed information. This book generally has five main themes: Physics and Electrostatics needed to Design Radiation Detectors Properties and Design of Common Radiation Detectors Description and Modeling of the Different Types of Radiation Detectors Radiation Measurements and Subsequent Analysis Introductory Electronics Used for Radiation Detectors Topics covered include atomic and nuclear physics, radiation interactions, sources of radiation, and background radiation. Detector operation is addressed with chapters on radiation counting statistics, radiation source and detector effects, electrostatics for signal generation, solid-state and semiconductor physics, background radiations, and radiation counting and spectroscopy. Detectors for gamma-rays, charged-particles, and neutrons are detailed in chapters on gas-filled, scintillator, semiconductor, thermoluminescence and optically stimulated luminescence, photographic film, and a variety of other detection devices. |
measurement and detection of radiation third edition: Handbook of Radioactivity Analysis Michael F. L'Annunziata, 2012-12-02 Handbook of Radioactivity Analysis is written by experts in the measurement of radioactivity. The book describes the broad scope of analytical methods available and instructs the reader on how to select the proper technique. It is intended as a practical manual for research which requires the accurate measurement of radioactivity at all levels, from the low levels encountered in the environment to the high levels measured in radioisotope research. This book contains sample preparation procedures, recommendations on steps to follow, necessary calculations, computer controlled analysis, and high sample throughput techniques. Each chapter includes practical techniques for application to nuclear safety, nuclear safeguards, environmental analysis, weapons disarmament, and assays required for research in biomedicine and agriculture. The fundamentals of radioactivity properties, radionuclide decay, and methods of detection are included to provide the basis for a thorough understanding of the analytical procedures described in the book. Therefore, the Handbook can also be used as a teaching text. - Includes sample preparation techniques for matrices such as soil, air, plant, water, animal tissue, and surface swipes - Provides procedures and guidelines for the analysis of commonly encountered na |
measurement and detection of radiation third edition: Physics and Engineering of Radiation Detection Syed Naeem Ahmed, 2014-11-26 Physics and Engineering of Radiation Detection presents an overview of the physics of radiation detection and its applications. It covers the origins and properties of different kinds of ionizing radiation, their detection and measurement, and the procedures used to protect people and the environment from their potentially harmful effects. The second edition is fully revised and provides the latest developments in detector technology and analyses software. Also, more material related to measurements in particle physics and a complete solutions manual have been added. |
measurement and detection of radiation third edition: Semiconductor Radiation Detectors Gerhard Lutz, 2007-06-15 Starting from basic principles, this book describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. The author, whose own contributions to these developments have been significant, explains the working principles of semiconductor radiation detectors in an intuitive way. Broad coverage is also given to electronic signal readout and to the subject of radiation damage. |
measurement and detection of radiation third edition: An Introduction to Radiation Protection ALAN MARTIN and SAMUEL A. HARBISON, 2013-12-01 |
measurement and detection of radiation third edition: Solar and Infrared Radiation Measurements Frank Vignola, Joseph Michalsky, Thomas Stoffel, 2017-12-19 The rather specialized field of solar and infrared radiation measurement has become more and more important in the face of growing demands by the renewable energy and climate change research communities for data that are more accurate and have increased temporal and spatial resolution. Updating decades of acquired knowledge in the field, Solar and Infrared Radiation Measurements details the strengths and weaknesses of instruments used to conduct such solar and infrared radiation measurements. Topics covered include: Radiometer design and performance Equipment calibration, installation, operation, and maintenance Data quality assessment Methods to use measured data to estimate irradiance for any surface With a broad range of content that will benefit students and more experienced readers alike, this resource serves as a primer and technical reference that presents the basic terminology and fundamentals for resource assessment. It explores the history of solar radiation instruments and addresses direct normal, global, diffuse, and tilted measurements, as well as the characteristics of instruments used for these measurements. The authors consider methods of assessing the uncertainty of solar measurements and then cover albedo, infrared, net, and spectral irradiance measurements and instrumentation. The book devotes a section to other meteorological instruments, and another to the basics for installing and operating a solar monitoring station. Appendices include information on solar resource assessment modeling and satellite-derived irradiance, along with other useful material. This book’s authors are experts who each have more than 30 years of experience developing and operating multiple measurement stations, working with industry to improve radiometry, and conducting various research projects. |
measurement and detection of radiation third edition: Gas Turbine Combustion, Fourth Edition Arthur H. Lefebvre, Dilip R. Ballal, Timothy C. Lieuwen, Joseph Zelina, 2011-06-22 This book presents a complete global examination of the complications, diagnoses, and management of HIV infections. This is essential for the HIV specialist and for those involved in HIV care, this book provides: information on the constantly changing and expanding drug therapies and treatment strategies for HIV the latest developments and frequently updated treatment guidelines includes new chapter on global efforts against HIV/AIDS. Draws from author's international experience includes a chapter on HIV and aging-hot topic in the field looks at the expansion and routinization of HIV testing a complete global examination of the complications, diagnoses, and management of HIV infections expert and authoriatative advice from Joseph R. Masci; Director of Medicine at Elmhurst Hospital Center in New York, who is highly respected in the field user friendly sections: core curriculum in HIV medicine, special populations, and systems of care up-to-date references, ensuring you have access to the most recent information |
measurement and detection of radiation third edition: Principles Of Radiation Interaction In Matter And Detection (3rd Edition) Claude Leroy, Pier-giorgio Rancoita, 2011-09-23 This book, like the first and second editions, addresses the fundamental principles of interaction between radiation and matter and the principles of particle detection and detectors in a wide scope of fields, from low to high energy, including space physics and medical environment. It provides abundant information about the processes of electromagnetic and hadronic energy deposition in matter, detecting systems, performance of detectors and their optimization.The third edition includes additional material covering, for instance: mechanisms of energy loss like the inverse Compton scattering, corrections due to the Landau-Pomeranchuk-Migdal effect, an extended relativistic treatment of nucleus-nucleus screened Coulomb scattering, and transport of charged particles inside the heliosphere. Furthermore, the displacement damage (NIEL) in semiconductors has been revisited to account for recent experimental data and more comprehensive comparisons with results previously obtained.This book will be of great use to graduate students and final-year undergraduates as a reference and supplement for courses in particle, astroparticle, space physics and instrumentation. A part of the book is directed toward courses in medical physics. The book can also be used by researchers in experimental particle physics at low, medium, and high energy who are dealing with instrumentation. |
measurement and detection of radiation third edition: Radiochemistry and Nuclear Chemistry Gregory Choppin, Jan-Olov Liljenzin, Jan Rydberg, 2002 Origin of Nuclear Science; Nuclei, Isotopes and Isotope Separation; Nuclear Mass and Stability; Unstable Nuclei and Radioactive Decay; Radionuclides in Nature; Absorption of Nuclear Radiation; Radiation Effects on Matter; Detection and Measurement Techniques; Uses of Radioactive Tracers; Cosmic Radiation and Elementary Particles; Nuclear Structure; Energetics of Nuclear Reactions; Particle Accelerators; Mechanics and Models of Nuclear Reactions; Production of Radionuclides; The Transuranium Elements; Thermonuclear Reactions: the Beginning and the Future; Radiation Biology and Radiation Protection; Principles of Nuclear Power; Nuclear Power Reactors; Nuclear Fuel Cycle; Behavior of Radionuclides in the Environment; Appendices; Solvent Extraction Separations; Answers to Exercises; Isotope Chart; Periodic Table of the Elements; Quantities and Units; Fundamental Constants; Energy Conversion Factors; Element and Nuclide Index; Subject Index. |
measurement and detection of radiation third edition: Radiometry and the Detection of Optical Radiation Robert W. Boyd, 1983-05-10 Presents a treatment of fundamental aspects of the generation, transfer and detection of optical and infra-red radiation. Emphasis placed on practical aspects of radiometry in detection. Discusses formal principles of radiometry, signal-to-noise considerations in the detection of optical radiation, and the operation of various radiation detectors. Includes tables and graphs of blackbody functions. |
measurement and detection of radiation third edition: Radioactivity: Introduction and History Michael F. L'Annunziata, 2007-08-23 Radioactivity: Introduction and History provides an introduction to radioactivity from natural and artificial sources on earth and radiation of cosmic origins. This book answers many questions for the student, teacher, and practitioner as to the origins, properties, detection and measurement, and applications of radioactivity. Written at a level that most students and teachers can appreciate, it includes many calculations that students and teachers may use in class work. Radioactivity: Introduction and History also serves as a refresher for experienced practitioners who use radioactive sources in his or her field of work. Also included are historical accounts of the lives and major achievements of many famous pioneers and Nobel Laureates who have contributed to our knowledge of the science of radioactivity.* Provides entry-level overview of every form of radioactivity including natural and artificial sources, and radiation of cosmic origin.* Includes many solved problems to practical questions concerning nuclear radiation and its interaction with matter * Historical accounts of the major achievements of pioneers and Nobel Laureates, who have contributed to our current knowledge of radioactivity |
measurement and detection of radiation third edition: Handbook of Radioactivity Analysis Michael F. L'Annunziata, 2020-03-03 Handbook of Radioactivity Analysis: Radiation Physics and Detectors, Volume One, and Radioanalytical Applications, Volume Two, Fourth Edition, is an authoritative reference on the principles, practical techniques and procedures for the accurate measurement of radioactivity - everything from the very low levels encountered in the environment, to higher levels measured in radioisotope research, clinical laboratories, biological sciences, radionuclide standardization, nuclear medicine, nuclear power, and fuel cycle facilities, and in the implementation of nuclear forensic analysis and nuclear safeguards. It includes sample preparation techniques for all types of matrices found in the environment, including soil, water, air, plant matter and animal tissue, and surface swipes.Users will find a detailed discussion of our current understanding of the atomic nucleus, nuclear stability and decay, nuclear radiation, and the interaction of radiation with matter relating to the best methods for radionuclide detection and measurement. - Spans two volumes, Radiation Physics and Detectors and Radioanalytical Applications - Includes a much-expanded treatment of calculations required in the measurement of radionuclide decay, energy of decay, nuclear reactions, radiation attenuation, nuclear recoil, cosmic radiation, and synchrotron radiation - Includes the latest advances in liquid and solid scintillation analysis, alpha- and gamma spectrometry, mass spectrometric analysis, gas ionization and nuclear track analysis, and neutron detection and measurement - Covers high-sample-throughput microplate techniques and multi-detector assay methods |
measurement and detection of radiation third edition: Handbook of Particle Detection and Imaging Claus Grupen, Irène Buvat, 2012-01-08 The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science. |
measurement and detection of radiation third edition: The Physics of Radiation Therapy Faiz M. Khan, 2012-03-28 Dr. Khan's classic textbook on radiation oncology physics is now in its thoroughly revised and updated Fourth Edition. It provides the entire radiation therapy team—radiation oncologists, medical physicists, dosimetrists, and radiation therapists—with a thorough understanding of the physics and practical clinical applications of advanced radiation therapy technologies, including 3D-CRT, stereotactic radiotherapy, HDR, IMRT, IGRT, and proton beam therapy. These technologies are discussed along with the physical concepts underlying treatment planning, treatment delivery, and dosimetry. This Fourth Edition includes brand-new chapters on image-guided radiation therapy (IGRT) and proton beam therapy. Other chapters have been revised to incorporate the most recent developments in the field. This edition also features more than 100 full-color illustrations throughout. A companion Website will offer the fully searchable text and an image bank. |
measurement and detection of radiation third edition: Techniques for Nuclear and Particle Physics Experiments William R. Leo, 2012-12-06 Not quite six years have passed since the appearance of the first edition of this book. This is not a long period. Yet the rapid pace of scientific and technological development today is such that any book on experimental technique must be wary of becoming ob solete in some way or another even in such a short span of time. Thus, when the publisher Springer-Verlag informed me of the need for a new printing of this book, I decided it was an opportune moment to update some of the chapters as well as to include some new material. The result is this second edition. The most notable changes have been in Chapters 2 and 3. In the latter, which con cerns radiation protection, most of the sections have been rewritten to take into account the new recommendations from the International Commission on Radiation Protection, the most important of which are the new dose limits for exposure to ionizing radiation. In addition, emphasis has now been put on the use of SI units in dosimetry, i.e., the Gray and Sievert, which have now become standard. |
measurement and detection of radiation third edition: Radiation Protection and Dosimetry Michael G. Stabin, 2007-09-12 This book provides a comprehensive yet accessible overview of all relevant topics in the field of radiation protection (health physics). The text is organized to introduce the reader to basic principles of radiation emission and propagation, to review current knowledge and historical aspects of the biological effects of radiation, and to cover important operational topics such as radiation shielding and dosimetry. The author’s website contains materials for instructors including PowerPoint slides for lectures and worked-out solutions to end-of-chapter exercises. The book serves as an essential handbook for practicing health physics professionals. |
measurement and detection of radiation third edition: Fundamentals of Nuclear Pharmacy Gopal B. Saha, 2013-06-29 A new edition of a book is warranted when the book is successful and there are many new developments in the related discipline. Both have occurred for this book during the past 7 years since its second edition. The growth and development in nuclear pharmacy and radiopharmaceutical chemistry along with the continued success of the book have convinced us to update the book; hence this third edition. This book is a ramification of my nuclear pharmacy courses offered to pharmacy students specializing in nuclear pharmacy, nuclear medicine resi dents, and nuclear medicine technology students. The book is written in an integrated form from the basic concept of atomic structure to the practical clinical uses of radiopharmaceuticals. It serves both as a textbook on nu clear pharmacy for pharmacy students and nuclear medicine technologists, and as a useful reference book for many professionals related to nuclear medicine, such as nuclear medicine physicians and radiologists. The book contains 12 chapters. Each chapter is written as comprehen sively as possible based on my personal experience and understanding. At the end of each chapter, a section of pertinent questions and problems and so me suggested reading materials are included. I have made justifiably many additions and deletions as weIl as some reorganization in this edition. Chapter 3 is entirely dedicated to instru ments for radiation detection and measurement, including brief description of gas detectors, gamma-detecting instruments, and tomographic scanners. |
measurement and detection of radiation third edition: Fundamentals of Nuclear Science and Engineering J. Kenneth Shultis, Richard E. Faw, 2007-09-07 Since the publication of the bestselling first edition, there have been numerous advances in the field of nuclear science. In medicine, accelerator based teletherapy and electron-beam therapy have become standard. New demands in national security have stimulated major advances in nuclear instrumentation.An ideal introduction to the fundamentals of nuclear science and engineering, this book presents the basic nuclear science needed to understand and quantify an extensive range of nuclear phenomena. New to the Second Edition— A chapter on radiation detection by Douglas McGregor Up-to-date coverage of radiation hazards, reactor designs, and medical applications Flexible organization of material that allows for quick reference This edition also takes an in-depth look at particle accelerators, nuclear fusion reactions and devices, and nuclear technology in medical diagnostics and treatment. In addition, the author discusses applications such as the direct conversion of nuclear energy into electricity. The breadth of coverage is unparalleled, ranging from the theory and design characteristics of nuclear reactors to the identification of biological risks associated with ionizing radiation. All topics are supplemented with extensive nuclear data compilations to perform a wealth of calculations. Providing extensive coverage of physics, nuclear science, and nuclear technology of all types, this up-to-date second edition of Fundamentals of Nuclear Science and Engineering is a key reference for any physicists or engineer. |
measurement and detection of radiation third edition: Tissue Optics Valery Tuchin, 2015 This third edition of the biomedical optics classic Tissue Optics covers the continued intensive growth in tissue optics—in particular, the field of tissue diagnostics and imaging—that has occurred since 2007. As in the first two editions, Part I describes fundamentals and basic research, and Part II presents instrumentation and medical applications. However, for the reader’s convenience, this third edition has been reorganized into 14 chapters instead of 9. The chapters covering optical coherence tomography, digital holography and interferometry, controlling optical properties of tissues, nonlinear spectroscopy, and imaging have all been substantially updated. The book is intended for researchers, teachers, and graduate and undergraduate students specializing in the physics of living systems, biomedical optics and biophotonics, laser biophysics, and applications of lasers in biomedicine. It can also be used as a textbook for courses in medical physics, medical engineering, and medical biology. |
measurement and detection of radiation third edition: The Essential Physics of Medical Imaging Jerrold T. Bushberg, J. Anthony Seibert, Edwin M. Leidholdt, John M. Boone, 2011-12-28 This renowned work is derived from the authors' acclaimed national review course (“Physics of Medical Imaging) at the University of California-Davis for radiology residents. The text is a guide to the fundamental principles of medical imaging physics, radiation protection and radiation biology, with complex topics presented in the clear and concise manner and style for which these authors are known. Coverage includes the production, characteristics and interactions of ionizing radiation used in medical imaging and the imaging modalities in which they are used, including radiography, mammography, fluoroscopy, computed tomography and nuclear medicine. Special attention is paid to optimizing patient dose in each of these modalities. Sections of the book address topics common to all forms of diagnostic imaging, including image quality and medical informatics as well as the non-ionizing medical imaging modalities of MRI and ultrasound. The basic science important to nuclear imaging, including the nature and production of radioactivity, internal dosimetry and radiation detection and measurement, are presented clearly and concisely. Current concepts in the fields of radiation biology and radiation protection relevant to medical imaging, and a number of helpful appendices complete this comprehensive textbook. The text is enhanced by numerous full color charts, tables, images and superb illustrations that reinforce central concepts. The book is ideal for medical imaging professionals, and teachers and students in medical physics and biomedical engineering. Radiology residents will find this text especially useful in bolstering their understanding of imaging physics and related topics prior to board exams. |
measurement and detection of radiation third edition: Radiation and Detectors Lucio Cerrito, 2017-05-11 This textbook provides an introduction to radiation, the principles of interaction between radiation and matter, and the exploitation of those principles in the design of modern radiation detectors. Both radiation and detectors are given equal attention and their interplay is carefully laid out with few assumptions made about the prior knowledge of the student. Part I is dedicated to radiation, broadly interpreted in terms of energy and type, starting with an overview of particles and forces, an extended review of common natural and man-made sources of radiation, and an introduction to particle accelerators. Particular attention is paid to real life examples, which place the types of radiation and their energy in context. Dosimetry is presented from a modern, user-led point of view, and relativistic kinematics is introduced to give the basic knowledge needed to handle the more formal aspects of radiation dynamics and interaction. The explanation of the physics principles of interaction between radiation and matter is given significant space to allow a deeper understanding of the various technologies based on those principles. Following an introduction to the ionisation mechanism, detectors are introduced in Part II, grouped according to the physical principle that underpins their functionality, with chapters covering gaseous detectors, semiconductor detectors, the scintillation process and light detectors. The final two chapters describe the phenomenology of showers and the design of calorimeters, and cover additional phenomena including Cherenkov and transition radiation and the detection of neutrinos. An appendix offers the reader a useful review of statistics and probability distributions. The mathematical formalism is kept to a minimum throughout and simple derivations are presented to guide the reasoning and facilitate understanding of the working principles. The book is unique in its wide scope and introductory level, and is suitable for undergraduate and graduate students in physics and engineering. The reader will acquire an awareness of how radiation and its exploitation are becoming increasingly relevant in the modern world, with over 140 experimental figures, detector schematics and photographs helping to relate the material to a broader research context. |
measurement and detection of radiation third edition: Introduction to Instrumentation and Measurements Robert B. Northrop, 2018-09-03 Weighing in on the growth of innovative technologies, the adoption of new standards, and the lack of educational development as it relates to current and emerging applications, the third edition of Introduction to Instrumentation and Measurements uses the authors’ 40 years of teaching experience to expound on the theory, science, and art of modern instrumentation and measurements (I&M). What’s New in This Edition: This edition includes material on modern integrated circuit (IC) and photonic sensors, micro-electro-mechanical (MEM) and nano-electro-mechanical (NEM) sensors, chemical and radiation sensors, signal conditioning, noise, data interfaces, and basic digital signal processing (DSP), and upgrades every chapter with the latest advancements. It contains new material on the designs of micro-electro-mechanical (MEMS) sensors, adds two new chapters on wireless instrumentation and microsensors, and incorporates extensive biomedical examples and problems. Containing 13 chapters, this third edition: Describes sensor dynamics, signal conditioning, and data display and storage Focuses on means of conditioning the analog outputs of various sensors Considers noise and coherent interference in measurements in depth Covers the traditional topics of DC null methods of measurement and AC null measurements Examines Wheatstone and Kelvin bridges and potentiometers Explores the major AC bridges used to measure inductance, Q, capacitance, and D Presents a survey of sensor mechanisms Includes a description and analysis of sensors based on the giant magnetoresistive effect (GMR) and the anisotropic magnetoresistive (AMR) effect Provides a detailed analysis of mechanical gyroscopes, clinometers, and accelerometers Contains the classic means of measuring electrical quantities Examines digital interfaces in measurement systems Defines digital signal conditioning in instrumentation Addresses solid-state chemical microsensors and wireless instrumentation Introduces mechanical microsensors (MEMS and NEMS) Details examples of the design of measurement systems Introduction to Instrumentation and Measurements is written with practicing engineers and scientists in mind, and is intended to be used in a classroom course or as a reference. It is assumed that the reader has taken core EE curriculum courses or their equivalents. |
measurement and detection of radiation third edition: Radioactivity Michael F. L'Annunziata, 2016-05-13 A recipient of the PROSE 2017 Honorable Mention in Chemistry & Physics, Radioactivity: Introduction and History, From the Quantum to Quarks, Second Edition provides a greatly expanded overview of radioactivity from natural and artificial sources on earth, radiation of cosmic origins, and an introduction to the atom and its nucleus. The book also includes historical accounts of the lives, works, and major achievements of many famous pioneers and Nobel Laureates from 1895 to the present. These leaders in the field have contributed to our knowledge of the science of the atom, its nucleus, nuclear decay, and subatomic particles that are part of our current knowledge of the structure of matter, including the role of quarks, leptons, and the bosons (force carriers). Users will find a completely revised and greatly expanded text that includes all new material that further describes the significant historical events on the topic dating from the 1950s to the present. - Provides a detailed account of nuclear radiation – its origin and properties, the atom, its nucleus, and subatomic particles including quarks, leptons, and force carriers (bosons) - Includes fascinating biographies of the pioneers in the field, including captivating anecdotes and insights - Presents meticulous accounts of experiments and calculations used by pioneers to confirm their findings |
measurement and detection of radiation third edition: Pixel Detectors Leonardo Rossi, Peter Fischer, Tilman Rohe, Norbert Wermes, 2006-07-08 Pixel detectors are a particularly important class of particle and radiation detection devices. They have an extremely broad spectrum of applications, ranging from high-energy physics to the photo cameras of everyday life. This book is a general purpose introduction into the fundamental principles of pixel detector technology and semiconductor-based hybrid pixel devices. Although these devices were developed for high-energy ionizing particles and radiation beyond visible light, they are finding new applications in many other areas. This book will therefore benefit all scientists and engineers working in any laboratory involved in developing or using particle detection. |
measurement and detection of radiation third edition: Practical Applications of Infrared Thermal Sensing and Imaging Equipment Herbert Kaplan, 2007 \- Preface - List of Figures - List of Tables - List of Acronyms and Abbreviations - Preface - Introduction - Basics of Noncontact Thermal Measurement - Matching the Instrument to the Application - Instruments Overview - Using IR Sensing and Imaging Instruments - Introduction to Applications - Plant Condition Monitoring and Predictive Maintenance - Buildings and Infrastructure - Materials Testing - Product and Process Monitoring Control - Night Vision, Security, and Surveillance - Life Sciences Thermography - Appendix A: Commercial Instrument Performance Characteristics - Appendix B: Manufacturers of IR Sensing and Imaging Instruments - Appendix C: Table of Generic Normal Emissivities of Materials - Appendix D: A Glossary of Terms for the Infrared Thermographer |
measurement and detection of radiation third edition: Photoneutron Sources B. W. Sargent, 1946 |
measurement and detection of radiation third edition: Introduction to Radiological Physics and Radiation Dosimetry Frank Herbert Attix, 2008-09-26 A straightforward presentation of the broad concepts underlying radiological physics and radiation dosimetry for the graduate-level student. Covers photon and neutron attenuation, radiation and charged particle equilibrium, interactions of photons and charged particles with matter, radiotherapy dosimetry, as well as photographic, calorimetric, chemical, and thermoluminescence dosimetry. Includes many new derivations, such as Kramers X-ray spectrum, as well as topics that have not been thoroughly analyzed in other texts, such as broad-beam attenuation and geometrics, and the reciprocity theorem. Subjects are layed out in a logical sequence, making the topics easier for students to follow. Supplemented with numerous diagrams and tables. |
measurement and detection of radiation third edition: Practical Radiotherapy Pam Cherry, Angela M. Duxbury, 2009-09-08 Practical Radiotherapy introduces the reader to the physicsand equipment that is central to radiotherapy practice. This SecondEdition has been extensively revised and is fully up to date withkey developments in equipment and practice, namely: stereotacicradiosurgery, CT SIM and SIM CT, portal imaging, MLC and HDRbrachytherapy. Practical Radiotherapy is written by anexperienced team of practitioners and teachers who present adifficult and dry subject in a reader-friendly manner, covering allof the required core information. |
measurement and detection of radiation third edition: Detection of Optical and Infrared Radiation R. H. Kingston, 2013-04-17 This text treats the fundamentals of optical and infrared detection in terms of the behavior of the radiation field, the physical properties of the detector, and the statistical behavior of the detector output. Both incoherent and coherent detection are treated in a unified manner, after which selected applications are analyzed, following an analysis of atmospheric effects and signal statistics. The material was developed during a one-semester course at M.I.T. in 1975, revised and presented again in 1976 at Lincoln Laboratory, and rewritten for publication in 1977. Chapter 1 reviews the derivation of Planck's thermal radiation law and also presents several fundamental concepts used throughout the text. These include the three thermal distribution laws (Boltzmann, Fermi-Dirac, Bose Einstein), spontaneous and stimulated emission, and the definition and counting of electromagnetic modes of space. Chapter 2 defines and analyzes the perfect photon detector and calculates the ultimate sensitivity in the presence of thermal radiation. In Chapter 3, we turn from incoherent or power detection to coherent or heterodyne detection and use the concept of orthogonal spatial modes to explain the antenna theorem and the mixing theorem. Chapters 4 through 6 then present a detailed analysis of the sensitivity of vacuum and semiconductor detectors, including the effects of amplifier noise. |
measurement and detection of radiation third edition: Remote Sensing Robert A. Schowengerdt, 1997 Remote sensing is the use of electromagnetic sensors to monitor the earth's surface and atmosphere. This technique can produce anything from topographic or geologic maps to two- or three- dimensional distributions of environmental parameters to the detection of developing hurricanes or floods. These sensors produce digitized data, so it is important that anyone working in remote sensing is familiar with the techniques used. This updated second edition discusses a unified framework and rationale for designing and evaluating image processing algorithms. |
measurement and detection of radiation third edition: Advanced Heat Transfer Greg F. Naterer, 2018-05-03 Advanced Heat Transfer, Second Edition provides a comprehensive presentation of intermediate and advanced heat transfer, and a unified treatment including both single and multiphase systems. It provides a fresh perspective, with coverage of new emerging fields within heat transfer, such as solar energy and cooling of microelectronics. Conductive, radiative and convective modes of heat transfer are presented, as are phase change modes. Using the latest solutions methods, the text is ideal for the range of engineering majors taking a second-level heat transfer course/module, which enables them to succeed in later coursework in energy systems, combustion, and chemical reaction engineering. |
measurement and detection of radiation third edition: Techniques for Nuclear and Particle Physics Experiments William R. Leo, 1987 |
measurement and detection of radiation third edition: Fundamentals of Nuclear Science and Engineering Third Edition J. Kenneth Shultis, Richard E. Faw, 2016-11-30 Fundamentals of Nuclear Science and Engineering, Third Edition, presents the nuclear science concepts needed to understand and quantify the whole range of nuclear phenomena. Noted for its accessible level and approach, the Third Edition of this long-time bestselling textbook provides overviews of nuclear physics, nuclear power, medicine, propulsion, and radiation detection. Its flexible organization allows for use with Nuclear Engineering majors and those in other disciplines. The Third Edition features updated coverage of the newest nuclear reactor designs, fusion reactors, radiation health risks, and expanded discussion of basic reactor physics with added examples. A complete Solutions Manual and figure slides for classroom projection are available for instructors adopting the text. |
measurement and detection of radiation third edition: Evolution of Silicon Sensor Technology in Particle Physics Frank Hartmann, 2008-12-01 In the post era of the Z and W discovery, after the observation of Jets at UA1 and UA2 at CERN, John Ellis visioned at a HEP conference at Lake Tahoe, California in 1983 “To proceed with high energy particle physics, one has to tag the avour of the quarks!” This statement re ects the need for a highly precise tracking device, being able to resolve secondary and tertiary vertices within high-particle densities. Since the d- tance between the primary interaction point and the secondary vertex is proportional tothelifetimeoftheparticipatingparticle,itisanexcellentquantitytoidentifypar- cle avour in a very fast and precise way. In colliding beam experiments this method was applied especially to tag the presence of b quarks within particle jets. It was rst introduced in the DELPHI experiment at LEP but soon followed by all collider - periments to date. The long expected t quark discovery was possible mainly with the help of the CDF silicon vertex tracker, providing the b quark information. In the beginning of the 21st century the new LHC experiments are beginning to take 2 shape. CMS with its 206m of silicon area is perfectly suited to cope with the high luminosity environment. Even larger detectors are envisioned for the far future, like the SiLC project for the International Linear Collider. Silicon sensors matured from small 1in. single-sided devices to large 6in. double-sided, double metal detectors and to 6in. single-sided radiation hard sensors. |
measurement and detection of radiation third edition: Detectors for Particle Radiation Konrad Kleinknecht, 1998-12-10 A clear, concise, comprehensive review of detectors of high-energy particles and radiation; thoroughly revised and updated. |
Measurement | Journal | ScienceDirect.com by Elsevier
Read the latest articles of Measurement at ScienceDirect.com, Elsevier’s leading platform of peer-reviewed scholarly literature
Measurement - Wikipedia
Measurement is the quantification of attributes of an object or event, which can be used to compare with other objects or events. [1] [2] In other words, measurement is a process of determining …
Measurement - Units, Chart | What is Measurement?
Measurement refers to the comparison of an unknown quantity with a known quantity. The result of a measurement is a numeric value with certain units. We can measure the length, mass, capacity …
Measurement | Definition, Types, Instruments, & Facts | Britannica
6 days ago · Measurement, the process of associating numbers with physical quantities and phenomena. Measurement is fundamental to the sciences; to engineering, construction, and …
What is Measurement? Definition, Types, Scale, Units, Examples
Measurement is a process of measuring, which is done by assigning values to properties of objects. Learn the definition, different measuring units with examples.
MEASUREMENT Definition & Meaning - Merriam-Webster
The meaning of MEASUREMENT is the act or process of measuring. How to use measurement in a sentence.
Measurement – Definition, Types, Instruments, Facts - Examples
Aug 6, 2024 · Measurement is the process of quantifying or determining the size, length, quantity, or extent of something. It involves using standardized units to express the magnitude of a …
Metronome measurement USA Today Crossword - Answers.org
1 day ago · Metronome measurement; Metronome measurement. Here is the answer for the: Metronome measurement USA Today Crossword. This crossword clue was last seen on June 16 …
Introduction to Measurement - Math is Fun
Measurement is finding a number that shows the size or amount of something. We can measure: Length is how far from end to end. Also called Distance. The length of this guitar is about 1 meter …
Measurement Definition - BYJU'S
In this article, you will learn the meaning and definitions of measurement, along with types of measurement and examples. Measurement Definition. Measurement is a technique in which the …
Measurement | Journal | ScienceDirect.com by Elsevier
Read the latest articles of Measurement at ScienceDirect.com, Elsevier’s leading platform of peer-reviewed scholarly literature
Measurement - Wikipedia
Measurement is the quantification of attributes of an object or event, which can be used to compare with other objects or events. [1] [2] In other words, measurement is a process of …
Measurement - Units, Chart | What is Measurement?
Measurement refers to the comparison of an unknown quantity with a known quantity. The result of a measurement is a numeric value with certain units. We can measure the length, mass, …
Measurement | Definition, Types, Instruments, & Facts | Britannica
6 days ago · Measurement, the process of associating numbers with physical quantities and phenomena. Measurement is fundamental to the sciences; to engineering, construction, and …
What is Measurement? Definition, Types, Scale, Units, Examples
Measurement is a process of measuring, which is done by assigning values to properties of objects. Learn the definition, different measuring units with examples.
MEASUREMENT Definition & Meaning - Merriam-Webster
The meaning of MEASUREMENT is the act or process of measuring. How to use measurement in a sentence.
Measurement – Definition, Types, Instruments, Facts - Examples
Aug 6, 2024 · Measurement is the process of quantifying or determining the size, length, quantity, or extent of something. It involves using standardized units to express the magnitude of a …
Metronome measurement USA Today Crossword - Answers.org
1 day ago · Metronome measurement; Metronome measurement. Here is the answer for the: Metronome measurement USA Today Crossword. This crossword clue was last seen on June …
Introduction to Measurement - Math is Fun
Measurement is finding a number that shows the size or amount of something. We can measure: Length is how far from end to end. Also called Distance. The length of this guitar is about 1 …
Measurement Definition - BYJU'S
In this article, you will learn the meaning and definitions of measurement, along with types of measurement and examples. Measurement Definition. Measurement is a technique in which …