Advertisement
mathematical statistics textbook: Essentials of Mathematical Statistics Brian Albright, 2014 This text combines the topics generally found in main-stream elementary statistics books with the essentials of the underlying theory. The book begins with an axiomatic treatment of probability followed by chapters on discrete and continuous random variables and their associated distributions. It then introduces basic statistical concepts including summarizing data and interval parameter estimation, stressing the connection between probability and statistics. Final chapters introduce hypothesis testing, regression, and non-parametric techniques. All chapters provide a balance between conceptual understanding and theoretical understanding of the topics at hand. |
mathematical statistics textbook: Modern Mathematical Statistics with Applications Jay L. Devore, Kenneth N. Berk, 2011-12-07 Modern Mathematical Statistics with Applications, Second Edition strikes a balance between mathematical foundations and statistical practice. In keeping with the recommendation that every math student should study statistics and probability with an emphasis on data analysis, accomplished authors Jay Devore and Kenneth Berk make statistical concepts and methods clear and relevant through careful explanations and a broad range of applications involving real data. The main focus of the book is on presenting and illustrating methods of inferential statistics that are useful in research. It begins with a chapter on descriptive statistics that immediately exposes the reader to real data. The next six chapters develop the probability material that bridges the gap between descriptive and inferential statistics. Point estimation, inferences based on statistical intervals, and hypothesis testing are then introduced in the next three chapters. The remainder of the book explores the use of this methodology in a variety of more complex settings. This edition includes a plethora of new exercises, a number of which are similar to what would be encountered on the actuarial exams that cover probability and statistics. Representative applications include investigating whether the average tip percentage in a particular restaurant exceeds the standard 15%, considering whether the flavor and aroma of Champagne are affected by bottle temperature or type of pour, modeling the relationship between college graduation rate and average SAT score, and assessing the likelihood of O-ring failure in space shuttle launches as related to launch temperature. |
mathematical statistics textbook: All of Statistics Larry Wasserman, 2004-09-17 This book is for people who want to learn probability and statistics quickly. It brings together many of the main ideas in modern statistics in one place. The book is suitable for students and researchers in statistics, computer science, data mining and machine learning. This book covers a much wider range of topics than a typical introductory text on mathematical statistics. It includes modern topics like nonparametric curve estimation, bootstrapping and classification, topics that are usually relegated to follow-up courses. The reader is assumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. The text can be used at the advanced undergraduate and graduate level. Larry Wasserman is Professor of Statistics at Carnegie Mellon University. He is also a member of the Center for Automated Learning and Discovery in the School of Computer Science. His research areas include nonparametric inference, asymptotic theory, causality, and applications to astrophysics, bioinformatics, and genetics. He is the 1999 winner of the Committee of Presidents of Statistical Societies Presidents' Award and the 2002 winner of the Centre de recherches mathematiques de Montreal–Statistical Society of Canada Prize in Statistics. He is Associate Editor of The Journal of the American Statistical Association and The Annals of Statistics. He is a fellow of the American Statistical Association and of the Institute of Mathematical Statistics. |
mathematical statistics textbook: Mathematical Statistics Jun Shao, 2008-02-03 This graduate textbook covers topics in statistical theory essential for graduate students preparing for work on a Ph.D. degree in statistics. The first chapter provides a quick overview of concepts and results in measure-theoretic probability theory that are useful in statistics. The second chapter introduces some fundamental concepts in statistical decision theory and inference. Chapters 3-7 contain detailed studies on some important topics: unbiased estimation, parametric estimation, nonparametric estimation, hypothesis testing, and confidence sets. A large number of exercises in each chapter provide not only practice problems for students, but also many additional results. In addition to improving the presentation, the new edition makes Chapter 1 a self-contained chapter for probability theory with emphasis in statistics. Added topics include useful moment inequalities, more discussions of moment generating and characteristic functions, conditional independence, Markov chains, martingales, Edgeworth and Cornish-Fisher expansions, and proofs to many key theorems such as the dominated convergence theorem, monotone convergence theorem, uniqueness theorem, continuity theorem, law of large numbers, and central limit theorem. A new section in Chapter 5 introduces semiparametric models, and a number of new exercises were added to each chapter. |
mathematical statistics textbook: Probability and Mathematical Statistics Eugene Lukacs, 2014-05-10 Probability and Mathematical Statistics: An Introduction provides a well-balanced first introduction to probability theory and mathematical statistics. This book is organized into two sections encompassing nine chapters. The first part deals with the concept and elementary properties of probability space, and random variables and their probability distributions. This part also considers the principles of limit theorems, the distribution of random variables, and the so-called student's distribution. The second part explores pertinent topics in mathematical statistics, including the concept of sampling, estimation, and hypotheses testing. This book is intended primarily for undergraduate statistics students. |
mathematical statistics textbook: Mathematical Statistics Dieter Rasch, Dieter Schott, 2018-01-09 Explores mathematical statistics in its entirety—from the fundamentals to modern methods This book introduces readers to point estimation, confidence intervals, and statistical tests. Based on the general theory of linear models, it provides an in-depth overview of the following: analysis of variance (ANOVA) for models with fixed, random, and mixed effects; regression analysis is also first presented for linear models with fixed, random, and mixed effects before being expanded to nonlinear models; statistical multi-decision problems like statistical selection procedures (Bechhofer and Gupta) and sequential tests; and design of experiments from a mathematical-statistical point of view. Most analysis methods have been supplemented by formulae for minimal sample sizes. The chapters also contain exercises with hints for solutions. Translated from the successful German text, Mathematical Statistics requires knowledge of probability theory (combinatorics, probability distributions, functions and sequences of random variables), which is typically taught in the earlier semesters of scientific and mathematical study courses. It teaches readers all about statistical analysis and covers the design of experiments. The book also describes optimal allocation in the chapters on regression analysis. Additionally, it features a chapter devoted solely to experimental designs. Classroom-tested with exercises included Practice-oriented (taken from day-to-day statistical work of the authors) Includes further studies including design of experiments and sample sizing Presents and uses IBM SPSS Statistics 24 for practical calculations of data Mathematical Statistics is a recommended text for advanced students and practitioners of math, probability, and statistics. |
mathematical statistics textbook: A Course in Mathematical Statistics George G. Roussas, 1997-02-28 A Course in Mathematical Statistics, Second Edition, contains enough material for a year-long course in probability and statistics for advanced undergraduate or first-year graduate students, or it can be used independently for a one-semester (or even one-quarter) course in probability alone. It bridges the gap between high and intermediate level texts so students without a sophisticated mathematical background can assimilate a fairly broad spectrum of the theorems and results from mathematical statistics. The coverage is extensive, and consists of probability and distribution theory, and statistical inference. * Contains 25% new material * Includes the most complete coverage of sufficiency * Transformation of Random Vectors * Sufficiency / Completeness / Exponential Families * Order Statistics * Elements of Nonparametric Density Estimation * Analysis of Variance (ANOVA) * Regression Analysis * Linear Models |
mathematical statistics textbook: Mathematical Methods of Statistics Harald Cramér, 1999-04-12 In this classic of statistical mathematical theory, Harald Cram r joins the two major lines of development in the field: while British and American statisticians were developing the science of statistical inference, French and Russian probabilitists transformed the classical calculus of probability into a rigorous and pure mathematical theory. The result of Cram r's work is a masterly exposition of the mathematical methods of modern statistics that set the standard that others have since sought to follow. For anyone with a working knowledge of undergraduate mathematics the book is self contained. The first part is an introduction to the fundamental concept of a distribution and of integration with respect to a distribution. The second part contains the general theory of random variables and probability distributions while the third is devoted to the theory of sampling, statistical estimation, and tests of significance. |
mathematical statistics textbook: An Introduction to Mathematical Statistics Fetsje Bijma, Marianne Jonker, A. W. van der Vaart, 2017 This book gives an introduction into mathematical statistics. |
mathematical statistics textbook: Mathematical Statistics Richard J. Rossi, 2018-06-14 Presents a unified approach to parametric estimation, confidence intervals, hypothesis testing, and statistical modeling, which are uniquely based on the likelihood function This book addresses mathematical statistics for upper-undergraduates and first year graduate students, tying chapters on estimation, confidence intervals, hypothesis testing, and statistical models together to present a unifying focus on the likelihood function. It also emphasizes the important ideas in statistical modeling, such as sufficiency, exponential family distributions, and large sample properties. Mathematical Statistics: An Introduction to Likelihood Based Inference makes advanced topics accessible and understandable and covers many topics in more depth than typical mathematical statistics textbooks. It includes numerous examples, case studies, a large number of exercises ranging from drill and skill to extremely difficult problems, and many of the important theorems of mathematical statistics along with their proofs. In addition to the connected chapters mentioned above, Mathematical Statistics covers likelihood-based estimation, with emphasis on multidimensional parameter spaces and range dependent support. It also includes a chapter on confidence intervals, which contains examples of exact confidence intervals along with the standard large sample confidence intervals based on the MLE's and bootstrap confidence intervals. There’s also a chapter on parametric statistical models featuring sections on non-iid observations, linear regression, logistic regression, Poisson regression, and linear models. Prepares students with the tools needed to be successful in their future work in statistics data science Includes practical case studies including real-life data collected from Yellowstone National Park, the Donner party, and the Titanic voyage Emphasizes the important ideas to statistical modeling, such as sufficiency, exponential family distributions, and large sample properties Includes sections on Bayesian estimation and credible intervals Features examples, problems, and solutions Mathematical Statistics: An Introduction to Likelihood Based Inference is an ideal textbook for upper-undergraduate and graduate courses in probability, mathematical statistics, and/or statistical inference. |
mathematical statistics textbook: Mathematical Statistics with Resampling and R Laura M. Chihara, Tim C. Hesterberg, 2018-09-17 This thoroughly updated second edition combines the latest software applications with the benefits of modern resampling techniques Resampling helps students understand the meaning of sampling distributions, sampling variability, P-values, hypothesis tests, and confidence intervals. The second edition of Mathematical Statistics with Resampling and R combines modern resampling techniques and mathematical statistics. This book has been classroom-tested to ensure an accessible presentation, uses the powerful and flexible computer language R for data analysis and explores the benefits of modern resampling techniques. This book offers an introduction to permutation tests and bootstrap methods that can serve to motivate classical inference methods. The book strikes a balance between theory, computing, and applications, and the new edition explores additional topics including consulting, paired t test, ANOVA and Google Interview Questions. Throughout the book, new and updated case studies are included representing a diverse range of subjects such as flight delays, birth weights of babies, and telephone company repair times. These illustrate the relevance of the real-world applications of the material. This new edition: • Puts the focus on statistical consulting that emphasizes giving a client an understanding of data and goes beyond typical expectations • Presents new material on topics such as the paired t test, Fisher's Exact Test and the EM algorithm • Offers a new section on Google Interview Questions that illustrates statistical thinking • Provides a new chapter on ANOVA • Contains more exercises and updated case studies, data sets, and R code Written for undergraduate students in a mathematical statistics course as well as practitioners and researchers, the second edition of Mathematical Statistics with Resampling and R presents a revised and updated guide for applying the most current resampling techniques to mathematical statistics. |
mathematical statistics textbook: An Introduction to Mathematical Statistics and Its Applications Richard J. Larsen, Morris L. Marx, 2012 Offering comprehensive coverage of the theoretical aspects of mathematical statistics, this text demonstrates how and when to use statistical methods, while reinforcing the calculus that students will have mastered in previous courses. |
mathematical statistics textbook: Fundamentals of Mathematical Statistics S.C. Gupta, V.K. Kapoor, 2020-09-10 Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Some prominent additions are given below: 1. Variance of Degenerate Random Variable 2. Approximate Expression for Expectation and Variance 3. Lyapounov’s Inequality 4. Holder’s Inequality 5. Minkowski’s Inequality 6. Double Expectation Rule or Double-E Rule and many others |
mathematical statistics textbook: Mathematical Statistics with Mathematica Colin Rose, Murray D. Smith, 2002 This text and software package presents a unified approach for doing mathematical statistics with Mathematica. The mathStatica software empowers the student with the ability to solve difficult problems. The professional statistician should be able to tackle tricky multivariate distributions, generating functions, inversion theorems, symbolic maximum likelihood estimation, unbiased estimation, and the checking and correcting of textbook formulae. This is the ideal companion for researchers and students in statistics, econometrics, engineering, physics, psychometrics, economics, finance, biometrics, and the social sciences. The mathStatica CD-ROM includes: mathStatica - the applications pack for mathematical statistics, custom Mathematica palettes, live interactive book that is identical to the printed text, online help, and a trial version of Mathematica 4.0. |
mathematical statistics textbook: Introduction to Mathematical Statistics Eduardo Jesus Arismendi-Pardi, 2017-10-29 |
mathematical statistics textbook: Probability and Mathematical Statistics Mary C. Meyer, 2019-06-24 This book develops the theory of probability and mathematical statistics with the goal of analyzing real-world data. Throughout the text, the R package is used to compute probabilities, check analytically computed answers, simulate probability distributions, illustrate answers with appropriate graphics, and help students develop intuition surrounding probability and statistics. Examples, demonstrations, and exercises in the R programming language serve to reinforce ideas and facilitate understanding and confidence. The books Chapter Highlights provide a summary of key concepts, while the examples utilizing R within the chapters are instructive and practical. Exercises that focus on real-world applications without sacrificing mathematical rigor are included, along with more than 200 figures that help clarify both concepts and applications. In addition, the book features two helpful appendices: annotated solutions to 700 exercises and a Review of Useful Math. Written for use in applied masters classes, Probability and Mathematical Statistics: Theory, Applications, and Practice in R is also suitable for advanced undergraduates and for self-study by applied mathematicians and statisticians and qualitatively inclined engineers and scientists. |
mathematical statistics textbook: Introductory Statistics 2e Barbara Illowsky, Susan Dean, 2023-12-13 Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License. |
mathematical statistics textbook: Probability Theory E. T. Jaynes, 2003-04-10 Index. |
mathematical statistics textbook: Basics of Modern Mathematical Statistics Vladimir Spokoiny, Thorsten Dickhaus, 2014-10-25 This textbook provides a unified and self-contained presentation of the main approaches to and ideas of mathematical statistics. It collects the basic mathematical ideas and tools needed as a basis for more serious study or even independent research in statistics. The majority of existing textbooks in mathematical statistics follow the classical asymptotic framework. Yet, as modern statistics has changed rapidly in recent years, new methods and approaches have appeared. The emphasis is on finite sample behavior, large parameter dimensions, and model misspecifications. The present book provides a fully self-contained introduction to the world of modern mathematical statistics, collecting the basic knowledge, concepts and findings needed for doing further research in the modern theoretical and applied statistics. This textbook is primarily intended for graduate and postdoc students and young researchers who are interested in modern statistical methods. |
mathematical statistics textbook: Examples and Problems in Mathematical Statistics Shelemyahu Zacks, 2014-02-18 Provides the necessary skills to solve problems in mathematical statistics through theory, concrete examples, and exercises With a clear and detailed approach to the fundamentals of statistical theory, Examples and Problems in Mathematical Statistics uniquely bridges the gap between theory andapplication and presents numerous problem-solving examples that illustrate the relatednotations and proven results. Written by an established authority in probability and mathematical statistics, each chapter begins with a theoretical presentation to introduce both the topic and the important results in an effort to aid in overall comprehension. Examples are then provided, followed by problems, and finally, solutions to some of the earlier problems. In addition, Examples and Problems in Mathematical Statistics features: Over 160 practical and interesting real-world examples from a variety of fields including engineering, mathematics, and statistics to help readers become proficient in theoretical problem solving More than 430 unique exercises with select solutions Key statistical inference topics, such as probability theory, statistical distributions, sufficient statistics, information in samples, testing statistical hypotheses, statistical estimation, confidence and tolerance intervals, large sample theory, and Bayesian analysis Recommended for graduate-level courses in probability and statistical inference, Examples and Problems in Mathematical Statistics is also an ideal reference for applied statisticians and researchers. |
mathematical statistics textbook: Theoretical Statistics Robert W. Keener, 2010-09-08 Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the notation and basic results needed are presented in an initial chapter on probability, so prior knowledge of these topics is not essential. The presentation is designed to expose students to as many of the central ideas and topics in the discipline as possible, balancing various approaches to inference as well as exact, numerical, and large sample methods. Moving beyond more standard material, the book includes chapters introducing bootstrap methods, nonparametric regression, equivariant estimation, empirical Bayes, and sequential design and analysis. The book has a rich collection of exercises. Several of them illustrate how the theory developed in the book may be used in various applications. Solutions to many of the exercises are included in an appendix. |
mathematical statistics textbook: Mathematical Statistics Thomas S. Ferguson, 2014-07-10 Mathematical Statistics: A Decision Theoretic Approach presents an investigation of the extent to which problems of mathematical statistics may be treated by decision theory approach. This book deals with statistical theory that could be justified from a decision-theoretic viewpoint. Organized into seven chapters, this book begins with an overview of the elements of decision theory that are similar to those of the theory of games. This text then examines the main theorems of decision theory that involve two more notions, namely the admissibility of a decision rule and the completeness of a class of decision rules. Other chapters consider the development of theorems in decision theory that are valid in general situations. This book discusses as well the invariance principle that involves groups of transformations over the three spaces around which decision theory is built. The final chapter deals with sequential decision problems. This book is a valuable resource for first-year graduate students in mathematics. |
mathematical statistics textbook: A Course in Mathematical Statistics and Large Sample Theory Rabi Bhattacharya, Lizhen Lin, Victor Patrangenaru, 2016-08-13 This graduate-level textbook is primarily aimed at graduate students of statistics, mathematics, science, and engineering who have had an undergraduate course in statistics, an upper division course in analysis, and some acquaintance with measure theoretic probability. It provides a rigorous presentation of the core of mathematical statistics. Part I of this book constitutes a one-semester course on basic parametric mathematical statistics. Part II deals with the large sample theory of statistics - parametric and nonparametric, and its contents may be covered in one semester as well. Part III provides brief accounts of a number of topics of current interest for practitioners and other disciplines whose work involves statistical methods. |
mathematical statistics textbook: Probability and Statistics Michael J. Evans, Jeffrey S. Rosenthal, 2004 Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students. |
mathematical statistics textbook: A Modern Introduction to Probability and Statistics F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, L.E. Meester, 2006-03-30 Many current texts in the area are just cookbooks and, as a result, students do not know why they perform the methods they are taught, or why the methods work. The strength of this book is that it readdresses these shortcomings; by using examples, often from real life and using real data, the authors show how the fundamentals of probabilistic and statistical theories arise intuitively. A Modern Introduction to Probability and Statistics has numerous quick exercises to give direct feedback to students. In addition there are over 350 exercises, half of which have answers, of which half have full solutions. A website gives access to the data files used in the text, and, for instructors, the remaining solutions. The only pre-requisite is a first course in calculus; the text covers standard statistics and probability material, and develops beyond traditional parametric models to the Poisson process, and on to modern methods such as the bootstrap. |
mathematical statistics textbook: Mathematical Statistics and Data Analysis John A. Rice, 2007 This is the first text in a generation to re-examine the purpose of the mathematical statistics course. The book's approach interweaves traditional topics with data analysis and reflects the use of the computer with close ties to the practice of statistics. The author stresses analysis of data, examines real problems with real data, and motivates the theory. The book's descriptive statistics, graphical displays, and realistic applications stand in strong contrast to traditional texts that are set in abstract settings. |
mathematical statistics textbook: Stat Labs Deborah Nolan, Terry P. Speed, 2006-05-02 Integrating the theory and practice of statistics through a series of case studies, each lab introduces a problem, provides some scientific background, suggests investigations for the data, and provides a summary of the theory used in each case. Aimed at upper-division students. |
mathematical statistics textbook: Mathematical Statistics Peter J. Bickel, Kjell A. Doksum, 2015-11-04 Mathematical Statistics: Basic Ideas and Selected Topics, Volume II presents important statistical concepts, methods, and tools not covered in the authors' previous volume. This second volume focuses on inference in non- and semiparametric models. It not only reexamines the procedures introduced in the first volume from a more sophisticated point o |
mathematical statistics textbook: Theory of Statistics Mark J. Schervish, 2012-12-06 The aim of this graduate textbook is to provide a comprehensive advanced course in the theory of statistics covering those topics in estimation, testing, and large sample theory which a graduate student might typically need to learn as preparation for work on a Ph.D. An important strength of this book is that it provides a mathematically rigorous and even-handed account of both Classical and Bayesian inference in order to give readers a broad perspective. For example, the uniformly most powerful approach to testing is contrasted with available decision-theoretic approaches. |
mathematical statistics textbook: Mathematical Statistics for Economics and Business Ron C. Mittelhammer, 2015-04-02 Mathematical Statistics for Economics and Business, Second Edition, provides a comprehensive introduction to the principles of mathematical statistics which underpin statistical analyses in the fields of economics, business, and econometrics. The selection of topics in this textbook is designed to provide students with a conceptual foundation that will facilitate a substantial understanding of statistical applications in these subjects. This new edition has been updated throughout and now also includes a downloadable Student Answer Manual containing detailed solutions to half of the over 300 end-of-chapter problems. After introducing the concepts of probability, random variables, and probability density functions, the author develops the key concepts of mathematical statistics, most notably: expectation, sampling, asymptotics, and the main families of distributions. The latter half of the book is then devoted to the theories of estimation and hypothesis testing with associated examples and problems that indicate their wide applicability in economics and business. Features of the new edition include: a reorganization of topic flow and presentation to facilitate reading and understanding; inclusion of additional topics of relevance to statistics and econometric applications; a more streamlined and simple-to-understand notation for multiple integration and multiple summation over general sets or vector arguments; updated examples; new end-of-chapter problems; a solution manual for students; a comprehensive answer manual for instructors; and a theorem and definition map. This book has evolved from numerous graduate courses in mathematical statistics and econometrics taught by the author, and will be ideal for students beginning graduate study as well as for advanced undergraduates. |
mathematical statistics textbook: Introduction to Probability and Mathematical Statistics Lee J. Bain, Max Engelhardt, 2000-03-01 The Second Edition of INTRODUCTION TO PROBABILITY AND MATHEMATICAL STATISTICS focuses on developing the skills to build probability (stochastic) models. Lee J. Bain and Max Engelhardt focus on the mathematical development of the subject, with examples and exercises oriented toward applications. |
mathematical statistics textbook: Mathematical Statistics with Applications Dennis D. Wackerly, William Mendenhall, Richard L. Scheaffer, 2008 The authors present the theory of statistics in the context of practical problem solving and real world applications. This practical approach helps you discover the nature of statistics and comprehend its essential role in scientific research.-- |
mathematical statistics textbook: Stochastic Modeling and Mathematical Statistics Francisco J. Samaniego, 2014-01-14 Provides a Solid Foundation for Statistical Modeling and Inference and Demonstrates Its Breadth of Applicability Stochastic Modeling and Mathematical Statistics: A Text for Statisticians and Quantitative Scientists addresses core issues in post-calculus probability and statistics in a way that is useful for statistics and mathematics majors as well |
mathematical statistics textbook: Introduction to Mathematical Physics Michael T. Vaughn, 2007-06-18 A comprehensive survey of all the mathematical methods that should be available to graduate students in physics. In addition to the usual topics of analysis, such as infinite series, functions of a complex variable and some differential equations as well as linear vector spaces, this book includes a more extensive discussion of group theory than can be found in other current textbooks. The main feature of this textbook is its extensive treatment of geometrical methods as applied to physics. With its introduction of differentiable manifolds and a discussion of vectors and forms on such manifolds as part of a first-year graduate course in mathematical methods, the text allows students to grasp at an early stage the contemporary literature on dynamical systems, solitons and related topological solutions to field equations, gauge theories, gravitational theory, and even string theory. Free solutions manual available for lecturers at www.wiley-vch.de/supplements/. |
mathematical statistics textbook: 40 Puzzles and Problems in Probability and Mathematical Statistics Wolf Schwarz, 2007-11-25 This book is based on the view that cognitive skills are best acquired by solving challenging, non-standard probability problems. Many puzzles and problems presented here are either new within a problem solving context (although as topics in fundamental research they are long known) or are variations of classical problems which follow directly from elementary concepts. A small number of particularly instructive problems is taken from previous sources which in this case are generally given. This book will be a handy resource for professors looking for problems to assign, for undergraduate math students, and for a more general audience of amateur scientists. |
mathematical statistics textbook: Fundamentals of Mathematical Statistics Hung T. Nguyen, Gerald S. Rogers, 2012-12-06 This is the first half of a text for a two semester course in mathematical statistics at the senior/graduate level for those who need a strong background in statistics as an essential tool in their career. To study this text, the reader needs a thorough familiarity with calculus including such things as Jacobians and series but somewhat less intense familiarity with matrices including quadratic forms and eigenvalues. For convenience, these lecture notes were divided into two parts: Volume I, Probability for Statistics, for the first semester, and Volume II, Statistical Inference, for the second. We suggest that the following distinguish this text from other introductions to mathematical statistics. 1. The most obvious thing is the layout. We have designed each lesson for the (U.S.) 50 minute class; those who study independently probably need the traditional three hours for each lesson. Since we have more than (the U.S. again) 90 lessons, some choices have to be made. In the table of contents, we have used a * to designate those lessons which are interesting but not essential (INE) and may be omitted from a general course; some exercises and proofs in other lessons are also INE. We have made lessons of some material which other writers might stuff into appendices. Incorporating this freedom of choice has led to some redundancy, mostly in definitions, which may be beneficial. |
mathematical statistics textbook: Probability and Statistical Inference Nitis Mukhopadhyay, 2020-08-30 Priced very competitively compared with other textbooks at this level! This gracefully organized textbook reveals the rigorous theory of probability and statistical inference in the style of a tutorial, using worked examples, exercises, numerous figures and tables, and computer simulations to develop and illustrate concepts. Beginning wi |
mathematical statistics textbook: Lectures on Probability Theory and Mathematical Statistics - 3rd Edition Marco Taboga, 2017-12-08 The book is a collection of 80 short and self-contained lectures covering most of the topics that are usually taught in intermediate courses in probability theory and mathematical statistics. There are hundreds of examples, solved exercises and detailed derivations of important results. The step-by-step approach makes the book easy to understand and ideal for self-study. One of the main aims of the book is to be a time saver: it contains several results and proofs, especially on probability distributions, that are hard to find in standard references and are scattered here and there in more specialistic books. The topics covered by the book are as follows. PART 1 - MATHEMATICAL TOOLS: set theory, permutations, combinations, partitions, sequences and limits, review of differentiation and integration rules, the Gamma and Beta functions. PART 2 - FUNDAMENTALS OF PROBABILITY: events, probability, independence, conditional probability, Bayes' rule, random variables and random vectors, expected value, variance, covariance, correlation, covariance matrix, conditional distributions and conditional expectation, independent variables, indicator functions. PART 3 - ADDITIONAL TOPICS IN PROBABILITY THEORY: probabilistic inequalities, construction of probability distributions, transformations of probability distributions, moments and cross-moments, moment generating functions, characteristic functions. PART 4 - PROBABILITY DISTRIBUTIONS: Bernoulli, binomial, Poisson, uniform, exponential, normal, Chi-square, Gamma, Student's t, F, multinomial, multivariate normal, multivariate Student's t, Wishart. PART 5 - MORE DETAILS ABOUT THE NORMAL DISTRIBUTION: linear combinations, quadratic forms, partitions. PART 6 - ASYMPTOTIC THEORY: sequences of random vectors and random variables, pointwise convergence, almost sure convergence, convergence in probability, mean-square convergence, convergence in distribution, relations between modes of convergence, Laws of Large Numbers, Central Limit Theorems, Continuous Mapping Theorem, Slutsky's Theorem. PART 7 - FUNDAMENTALS OF STATISTICS: statistical inference, point estimation, set estimation, hypothesis testing, statistical inferences about the mean, statistical inferences about the variance. |
mathematical statistics textbook: Mathematical Statistics Aleksandr Petrovich Korostelev, Olga Korosteleva, This book is designed to bridge the gap between traditional textbooks in statistics and more advanced books that include the sophisticated nonparametric techniques. It covers topics in parametric and nonparametric large-sample estimation theory. The exposition is based on a collection of relatively simple statistical models. It gives a thorough mathematical analysis for each of them with all the rigorous proofs and explanations. The book also includes a number of helpful exercises.--Publisher's description. |
Mathematics - Wikipedia
Mathematics is a field of study that discovers and organizes methods, theories and theorems that are developed and proved for the needs of empirical sciences and mathematics itself.
Wolfram Mathematica: Modern Technical Computing
Mathematica is built to provide industrial-strength capabilities—with robust, efficient algorithms across all areas, capable of handling large-scale problems, with parallelism, GPU computing and …
Mathematics | Definition, History, & Importance | Britannica
Apr 30, 2025 · mathematics, the science of structure, order, and relation that has evolved from elemental practices of counting, measuring, and describing the shapes of objects. It deals with …
Wolfram MathWorld: The Web's Most Extensive Mathematics …
May 22, 2025 · Comprehensive encyclopedia of mathematics with 13,000 detailed entries. Continually updated, extensively illustrated, and with interactive examples.
Wolfram|Alpha: Computational Intelligence
Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history, geography, engineering, …
MATHEMATICAL Definition & Meaning - Merriam-Webster
The meaning of MATHEMATICAL is of, relating to, or according with mathematics. How to use mathematical in a sentence.
Mathematics - Encyclopedia of Mathematics
Mar 30, 2012 · In the 17th century new questions in natural science and technology compelled mathematicians to concentrate their attention on the creation of methods to allow the …
MATHEMATICAL | English meaning - Cambridge Dictionary
mathematical formula The researchers used a mathematical formula to calculate the total population number. mathematical problem It was a mathematical problem that he could not …
Mathematical - definition of mathematical by The Free Dictionary
mathematical - of or pertaining to or of the nature of mathematics; "a mathematical textbook"; "slide rules and other mathematical instruments"; "a mathematical solution to a problem"; …
What is Mathematics? – Mathematical Association of America
Math is about getting the right answers, and we want kids to learn to think so they get the right answer. My reaction was visceral and immediate. “This is wrong. The emphasis needs to be on …
Mathematics - Wikipedia
Mathematics is a field of study that discovers and organizes methods, theories and theorems that are developed and proved for the needs of empirical sciences and mathematics itself.
Wolfram Mathematica: Modern Technical Computing
Mathematica is built to provide industrial-strength capabilities—with robust, efficient algorithms across all areas, capable of handling large-scale problems, with parallelism, GPU computing …
Mathematics | Definition, History, & Importance | Britannica
Apr 30, 2025 · mathematics, the science of structure, order, and relation that has evolved from elemental practices of counting, measuring, and describing the shapes of objects. It deals with …
Wolfram MathWorld: The Web's Most Extensive Mathematics …
May 22, 2025 · Comprehensive encyclopedia of mathematics with 13,000 detailed entries. Continually updated, extensively illustrated, and with interactive examples.
Wolfram|Alpha: Computational Intelligence
Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history, geography, …
MATHEMATICAL Definition & Meaning - Merriam-Webster
The meaning of MATHEMATICAL is of, relating to, or according with mathematics. How to use mathematical in a sentence.
Mathematics - Encyclopedia of Mathematics
Mar 30, 2012 · In the 17th century new questions in natural science and technology compelled mathematicians to concentrate their attention on the creation of methods to allow the …
MATHEMATICAL | English meaning - Cambridge Dictionary
mathematical formula The researchers used a mathematical formula to calculate the total population number. mathematical problem It was a mathematical problem that he could not …
Mathematical - definition of mathematical by The Free Dictionary
mathematical - of or pertaining to or of the nature of mathematics; "a mathematical textbook"; "slide rules and other mathematical instruments"; "a mathematical solution to a problem"; …
What is Mathematics? – Mathematical Association of America
Math is about getting the right answers, and we want kids to learn to think so they get the right answer. My reaction was visceral and immediate. “This is wrong. The emphasis needs to be …