Mathematica For Beginners

Advertisement



  mathematica for beginners: Hands-on Start to Wolfram Mathematica Cliff Hastings, Kelvin Mischo, Michael Morrison, 2015 For more than 25 years, Mathematica has been the principal computation environment for millions of innovators, educators, students, and others around the world. This book is an introduction to Mathematica. The goal is to provide a hands-on experience introducing the breadth of Mathematica, with a focus on ease of use. Readers get detailed instruction with examples for interactive learning and end-of-chapter exercises. Each chapter also contains authors tips from their combined 50+ years of Mathematica use.
  mathematica for beginners: Programming with Mathematica® Paul Wellin, 2013-01-10 This practical, example-driven introduction teaches the foundations of the Mathematica language so it can be applied to solving concrete problems.
  mathematica for beginners: Mathematica in Action Stan Wagon, S. Wagon, 1999 Mathematica in Action, 2nd Edition, is designed both as a guide to the extraordinary capabilities of Mathematica as well as a detailed tour of modern mathematics by one of its leading expositors, Stan Wagon. Ideal for teachers, researchers, mathematica enthusiasts. This second edition of the highly sucessful W.H. Freeman version includes an 8 page full color insert and 50% new material all organized around Elementary Topics, Intermediate Applications, and Advanced Projects. In addition, the book uses Mathematica 3.0 throughtout. Mathematica 3.0 notebooks with all the programs and examples discussed in the book are available on the TELOS web site (www.telospub.com). These notebooks contain materials suitable for DOS, Windows, Macintosh and Unix computers. Stan Wagon is well-known in the mathematics (and Mathematica) community as Associate Editor of the American Mathematical Monthly, a columnist for the Mathematical Intelligencer and Mathematica in Education and Research, author of The Banach-Tarski Paradox and Unsolved Problems in Elementary Geometry and Number Theory (with Victor Klee), as well as winner of the 1987 Lester R. Ford Award for Expository Writing.
  mathematica for beginners: A Crash Course in Mathematica Stephan Kaufmann, 2012-12-06 A Crash Course in Mathematica is a compact introduction to the program Mathematica, which is widely used in mathematics, as well as in the natural and engineering sciences.
  mathematica for beginners: An Engineer's Guide to Mathematica Edward B. Magrab, 2014-05-05 Free Mathematica 10 Update Included! Now available from www.wiley.com/go/magrab Updated material includes: - Creating regions and volumes of arbitrary shape and determining their properties: arc length, area, centroid, and area moment of inertia - Performing integrations, solving equations, and determining the maximum and minimum values over regions of arbitrary shape - Solving numerically a class of linear second order partial differential equations in regions of arbitrary shape using finite elements An Engineer's Guide to Mathematica enables the reader to attain the skills to create Mathematica 9 programs that solve a wide range of engineering problems and that display the results with annotated graphics. This book can be used to learn Mathematica, as a companion to engineering texts, and also as a reference for obtaining numerical and symbolic solutions to a wide range of engineering topics. The material is presented in an engineering context and the creation of interactive graphics is emphasized. The first part of the book introduces Mathematica's syntax and commands useful in solving engineering problems. Tables are used extensively to illustrate families of commands and the effects that different options have on their output. From these tables, one can easily determine which options will satisfy one's current needs. The order of the material is introduced so that the engineering applicability of the examples increases as one progresses through the chapters. The second part of the book obtains solutions to representative classes of problems in a wide range of engineering specialties. Here, the majority of the solutions are presented as interactive graphics so that the results can be explored parametrically. Key features: Material is based on Mathematica 9 Presents over 85 examples on a wide range of engineering topics, including vibrations, controls, fluids, heat transfer, structures, statistics, engineering mathematics, and optimization Each chapter contains a summary table of the Mathematica commands used for ease of reference Includes a table of applications summarizing all of the engineering examples presented. Accompanied by a website containing Mathematica notebooks of all the numbered examples An Engineer's Guide to Mathematica is a must-have reference for practitioners, and graduate and undergraduate students who want to learn how to solve engineering problems with Mathematica.
  mathematica for beginners: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
  mathematica for beginners: An Introduction to Modern Mathematical Computing Jonathan M. Borwein, Matthew P. Skerritt, 2012-08-07 Thirty years ago mathematical, as opposed to applied numerical, computation was difficult to perform and so relatively little used. Three threads changed that: the emergence of the personal computer; the discovery of fiber-optics and the consequent development of the modern internet; and the building of the Three “M’s” Maple, Mathematica and Matlab. We intend to persuade that Mathematica and other similar tools are worth knowing, assuming only that one wishes to be a mathematician, a mathematics educator, a computer scientist, an engineer or scientist, or anyone else who wishes/needs to use mathematics better. We also hope to explain how to become an experimental mathematician while learning to be better at proving things. To accomplish this our material is divided into three main chapters followed by a postscript. These cover elementary number theory, calculus of one and several variables, introductory linear algebra, and visualization and interactive geometric computation.
  mathematica for beginners: Essentials of Mathematica Nino Boccara, 2007-10-17 Essential Mathematica: With Applications to Mathematics and Physics, based on the lecture notes of a course taught at the University of Illinois at Chicago to advanced undergrad and graduate students, teaches how to use Mathematica to solve a wide variety problems in mathematics and physics. It is illustrated with many detailed examples that require the student to construct meticulous, step-by-step, easy to read Mathematica programs. The first section, in which the reader learns how to use a variety of Mathematica commands, avoids long discussions and overly sophisticated techniques. Its aim is to provide the reader with Mathematica proficiency quickly and efficiently. The second section covers a broad range of applications in physics, engineering and applied mathematics, including Egyptian Fractions, Happy Numbers, Mersenne Numbers, Multibases, Quantum Harmonic Oscillator, Quantum Square Potential, Van der Pol Oscillator, Electrostatics, Motion of a Charged Particle inan Electromagnetic Field, Duffing Oscillator, Negative and Complex Bases, Tautochrone Curves, Kepler’s Laws, Foucault’s Pendulum, Iterated Function Systems, Public-Key Encryption, and Julia and Mandelbrot Sets. The first part - examples, not long explanations. The second part-attractive applications.
  mathematica for beginners: Mathematica Navigator Heikki Ruskeepaa, Heikki Ruskeepää, 2004-02-06 Mathematica Navigator gives you a general introduction to Mathematica. The book emphasizes graphics, methods of applied mathematics and statistics, and programming. Mathematica Navigator can be used both as a tutorial and as a handbook. While no previous experience with Mathematica is required, most chapters also include advanced material, so that the book will be a valuable resource for both beginners and experienced users.
  mathematica for beginners: Statistics with Mathematica Martha L. Abell, James P. Braselton, John A. Rafter, 1999 Covers the use of Mathematica for applications ranging from descriptive statistics, through multiple regression and nonparametric methods; uses virtually all of Mathematica's built-in statistical commands, as well as those contained in various Mathematica packages; Additionally, the authors have written numerous procedures to extend Mathematica's capabilities, which are also included on the CD-ROM
  mathematica for beginners: Mathematica DeMYSTiFied Jim Hoste, 2008-12-01 Need to learn MATHEMATICA? Problem SOLVED! Take full advantage of all the powerful capabilities of Mathematica with help from this hands-on guide. Filled with examples and step-by-step explanations, Mathematica Demystified takes you from your very first calculation all the way to plotting complex fractals. Using an intuitive format, this book explains the fundamentals of Mathematica up front. Learn how to define functions, create 2-D graphs of functions, write basic programs, and use modules. You'll move on to 3-D graphics, calculus, polynomial, linear, and differential equations, dynamical systems, and fractals. Hundreds of examples with concise explanations make it easy to understand the material, and end-of-chapter quizzes and a final exam help reinforce learning. This self-teaching guide offers: A quick way to get up and running on Mathematica Coverage of Mathematica 6 and 7 Tips for avoiding and correcting syntax errors Details on creating slideshow presentations of your work No unnecessary technical jargon A time-saving approach to performing better on an exam or at work! Simple enough for a beginner, but challenging enough for an advanced user, Mathematica Demystified is your shortcut to mastering this fully integrated technical computing software.
  mathematica for beginners: Graphics with Mathematica Chonat Getz, Janet Margaret Helmstedt, 2004-09-29 In this book we generate graphic images using the software Mathematica thus providing a gentle and enjoyable introduction to this rather technical software and its graphic capabilities. The programs we use for generating these graphics are easily adaptable to many variations.These graphic images are enhanced by introducing a variety of different coloring techniques.Detailed instructions are given for the construction of some interesting 2D and 3D fractals using iterated functions systems as well as the construction of many different types of Julia sets and parameter sets such as the Mandelbrot set.The mathematics underlying the theory of Iterated function systems and Julia sets is given an intuitive explanation, and references are provided for more detailed study.·Brilliant Graphic images·Interesting Introduction to Mathematica for Beginners·Easy constructions ·A variety of Coloring Techniques·Programs Easily Adaptable to Many Variations·Constructions useful for Dynamics and Fractals Courses
  mathematica for beginners: The MATHEMATICA ® Book, Version 3 Stephen Wolfram, 1996-07-13 With over a million users around the world, the Mathematica ® software system created by Stephen Wolfram has defined the direction of technical computing for nearly a decade. With its major new document and computer language technology, the new version, Mathematica 3.0 takes the top-power capabilities of Mathematica and make them accessible to a vastly broader audience. This book presents this revolutionary new version of Mathematica. The Mathematica Book is a must-have purchase for anyone who wants to understand the revolutionary opportunities in science, technology, business and education made possible by Mathematica 3.0. This encompasses a broad audience of scientists and mathematicians; engineers; computer professionals; quantitative financial analysts; medical researchers; and students at high-school, college and graduate levels. Written by the creator of the system, The Mathematica Book includes both a tutorial introduction and complete reference information, and contains a comprehensive description of how to take advantage of Mathematica's ability to solve myriad technical computing problems and its powerful graphical and typesetting capabilities. Like previous editions, the book is sure to be found well-thumbed on the desks of many technical professionals and students around the world.
  mathematica for beginners: Principia Mathematica Alfred North Whitehead, Bertrand Russell, 1927 The Principia Mathematica has long been recognised as one of the intellectual landmarks of the century.
  mathematica for beginners: The Student's Introduction to Mathematica and the Wolfram Language Bruce F. Torrence, Eve A. Torrence, 2019-05-16 An introduction to Mathematica® and the Wolfram Language(TM) in the familiar context of the standard university mathematics curriculum.
  mathematica for beginners: Mathematica®: A Problem-Centered Approach Roozbeh Hazrat, 2016-01-04 This textbook introduces the vast array of features and powerful mathematical functions of Mathematica using a multitude of clearly presented examples and worked-out problems. Each section starts with a description of a new topic and some basic examples. The author then demonstrates the use of new commands through three categories of problems - the first category highlights those essential parts of the text that demonstrate the use of new commands in Mathematica whilst solving each problem presented; - the second comprises problems that further demonstrate the use of commands previously introduced to tackle different situations; and - the third presents more challenging problems for further study. The intention is to enable the reader to learn from the codes, thus avoiding long and exhausting explanations. While based on a computer algebra course taught to undergraduate students of mathematics, science, engineering and finance, the book also includes chapters on calculus and solving equations, and graphics, thus covering all the basic topics in Mathematica. With its strong focus upon programming and problem solving, and an emphasis on using numerical problems that do not need any particular background in mathematics, this book is also ideal for self-study and as an introduction to researchers who wish to use Mathematica as a computational tool. This new edition has been extensively revised and updated, and includes new chapters with problems and worked examples.
  mathematica for beginners: The Mathematica GuideBook for Numerics Michael Trott, 2006 Provides the reader with working knowledge of Mathematica and key aspects of Mathematica's numerical capabilities needed to deal with virtually any real life problem Clear organization, complete topic coverage, and an accessible writing style for both novices and experts Website for book with additional materials: http://www.MathematicaGuideBooks.org Accompanying DVD containing all materials as an electronic book with complete, executable Mathematica 5.1 compatible code and programs, rendered color graphics, and animations
  mathematica for beginners: Mathematica Graphics Tom Wickham-Jones, 1994-11-04 Since its first release in 1988, Mathematica has sold over a quarter of a million copies throughout the world, enabling the manipulation of fields of mathematics such as numerics, symbolic algebra, and graphics. This step-by-step guide deals solely with generating computer graphics using the Mathematica software. It is written by an expert in the field, himself an employee of Wolfram Research, Inc., the creators and distributors of the software. Dr. Wickham-Jones is directly involved in all the technical issues and programs relating to the graphics side of the Mathematica package, and is therefore an obvious choice as author of such a publication.
  mathematica for beginners: Introduction to Mathematica® for Physicists Andrey Grozin, 2015-08-21 The basics of computer algebra and the language of Mathematica are described. This title will lead toward an understanding of Mathematica that allows the reader to solve problems in physics, mathematics, and chemistry. Mathematica is the most widely used system for doing mathematical calculations by computer, including symbolic and numeric calculations and graphics. It is used in physics and other branches of science, in mathematics, education and many other areas. Many important results in physics would never be obtained without a wide use of computer algebra.
  mathematica for beginners: What is Mathematics? Richard Courant, Herbert Robbins, 1996 The teaching and learning of mathematics has degenerated into the realm of rote memorization, the outcome of which leads to satisfactory formal ability but not real understanding or greater intellectual independence. The new edition of this classic work seeks to address this problem. Its goal is to put the meaning back into mathematics. Lucid . . . easily understandable.--Albert Einstein. 301 linecuts.
  mathematica for beginners: Harmonic Function Theory Sheldon Axler, Paul Bourdon, Ramey Wade, 2013-11-11 This is a book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the material presented here. The authors have taken unusual care to motivate concepts and simplify proofs. Topics include: basic properties of harmonic functions, Poisson integrals, the Kelvin transform, spherical harmonics, harmonic Hardy spaces, harmonic Bergman spaces, the decomposition theorem, Laurent expansions, isolated singularities, and the Dirichlet problem. The new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bocher's Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package-designed by the authors and available by e-mail - supplements the text for readers who wish to explore harmonic function theory on a computer.
  mathematica for beginners: Differential Equations with Mathematica Martha L Abell, James P. Braselton, 2014-05-09 Differential Equations with Mathematica presents an introduction and discussion of topics typically covered in an undergraduate course in ordinary differential equations as well as some supplementary topics such as Laplace transforms, Fourier series, and partial differential equations. It also illustrates how Mathematica is used to enhance the study of differential equations not only by eliminating the computational difficulties, but also by overcoming the visual limitations associated with the solutions of differential equations. The book contains chapters that present differential equations and illustrate how Mathematica can be used to solve some typical problems. The text covers topics on differential equations such as first-order ordinary differential equations, higher order differential equations, power series solutions of ordinary differential equations, the Laplace Transform, systems of ordinary differential equations, and Fourier Series and applications to partial differential equations. Applications of these topics are provided as well. Engineers, computer scientists, physical scientists, mathematicians, business professionals, and students will find the book useful.
  mathematica for beginners: Mathematica for Physics Robert L. Zimmerman, Fredrick Iver Olness, 1995-01 Mathematica is a mathematical software system for researchers, students and anyone seeking an effective tool for mathematical analysis. This text aims to help readers learn the software in the context of solving physics problems. The graphical capabilities of Mathematica are emphasized and the readers are encouraged to use their intuition for the physics behind the problem.
  mathematica for beginners: Math for Programmers Paul Orland, 2020-11-30 A gentle introduction to some of the most useful mathematical concepts that should be in your developer toolbox. - Christopher Haupt, New Relic Explore important mathematical concepts through hands-on coding. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. Summary To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest programming fields. About the technology Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code! What's inside Vector geometry for computer graphics Matrices and linear transformations Core concepts from calculus Simulation and optimization Image and audio processing Machine learning algorithms for regression and classification About the reader For programmers with basic skills in algebra. About the author Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land. Table of Contents 1 Learning math with code PART I - VECTORS AND GRAPHICS 2 Drawing with 2D vectors 3 Ascending to the 3D world 4 Transforming vectors and graphics 5 Computing transformations with matrices 6 Generalizing to higher dimensions 7 Solving systems of linear equations PART 2 - CALCULUS AND PHYSICAL SIMULATION 8 Understanding rates of change 9 Simulating moving objects 10 Working with symbolic expressions 11 Simulating force fields 12 Optimizing a physical system 13 Analyzing sound waves with a Fourier series PART 3 - MACHINE LEARNING APPLICATIONS 14 Fitting functions to data 15 Classifying data with logistic regression 16 Training neural networks
  mathematica for beginners: Introduction to GNU Octave Jason Lachniet, 2018-11-21 A brief introduction to scientific computing with GNU Octave. Designed as a textbook supplement for freshman and sophomore level linear algebra and calculus students.
  mathematica for beginners: An Introduction to Mathematics Alfred North Whitehead, 1958 This distinguished little 'book' is a brisk introduction to a series of mathematical concepts, a history of their development, and a concise summary of how the contemporary reader may use them.- Publisher
  mathematica for beginners: Mathematics Timothy Gowers, 2002-08-22 The aim of this book is to explain, carefully but not technically, the differences between advanced, research-level mathematics, and the sort of mathematics we learn at school. The most fundamental differences are philosophical, and readers of this book will emerge with a clearer understanding of paradoxical-sounding concepts such as infinity, curved space, and imaginary numbers. The first few chapters are about general aspects of mathematical thought. These are followed by discussions of more specific topics, and the book closes with a chapter answering common sociological questions about the mathematical community (such as Is it true that mathematicians burn out at the age of 25?) ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
  mathematica for beginners: GNU Octave Jesper Schmidt Hansen, 2011-06-21 Today, scientific computing and data analysis play an integral part in most scientific disciplines ranging from mathematics and biology to imaging processing and finance. With GNU Octave you have a highly flexible tool that can solve a vast number of such different problems as complex statistical analysis and dynamical system studies. The GNU Octave Beginner's Guide gives you an introduction that enables you to solve and analyze complicated numerical problems. The book is based on numerous concrete examples and at the end of each chapter you will find exercises to test your knowledge. It's easy to learn GNU Octave, with the GNU Octave Beginner's Guide to hand. Using real-world examples the GNU Octave Beginner's Guide will take you through the most important aspects of GNU Octave. This practical guide takes you from the basics where you are introduced to the interpreter to a more advanced level where you will learn how to build your own specialized and highly optimized GNU Octave toolbox package. The book starts by introducing you to work variables like vectors and matrices, demonstrating how to perform simple arithmetic operations on these objects before explaining how to use some of the simple functionality that comes with GNU Octave, including plotting. It then goes on to show you how to write new functionality into GNU Octave and how to make a toolbox package to solve your specific problem. Finally, it demonstrates how to optimize your code and link GNU Octave with C and C++ code enabling you to solve even the most computationally demanding tasks. After reading GNU Octave Beginner's Guide you will be able to use and tailor GNU Octave to solve most numerical problems and perform complicated data analysis with ease.
  mathematica for beginners: A Programmer's Introduction to Mathematics Jeremy Kun, 2018-11-27 A Programmer's Introduction to Mathematics uses your familiarity with ideas from programming and software to teach mathematics. You'll learn about the central objects and theorems of mathematics, including graphs, calculus, linear algebra, eigenvalues, optimization, and more. You'll also be immersed in the often unspoken cultural attitudes of mathematics, learning both how to read and write proofs while understanding why mathematics is the way it is. Between each technical chapter is an essay describing a different aspect of mathematical culture, and discussions of the insights and meta-insights that constitute mathematical intuition. As you learn, we'll use new mathematical ideas to create wondrous programs, from cryptographic schemes to neural networks to hyperbolic tessellations. Each chapter also contains a set of exercises that have you actively explore mathematical topics on your own. In short, this book will teach you to engage with mathematics. A Programmer's Introduction to Mathematics is written by Jeremy Kun, who has been writing about math and programming for 8 years on his blog Math Intersect Programming. As of 2018, he works in datacenter optimization at Google.
  mathematica for beginners: An Introduction to Measure Theory Terence Tao, 2021-09-03 This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.
  mathematica for beginners: Introduction to Mathematical Philosophy Bertrand Russell, 2007-04-01 Not to be confused with the philosophy of mathematics, mathematical philosophy is the structured set of rules that govern all existence. Or, in a word: logic. While this branch of philosophy threatens to be an intimidating and abstract subject, it is one that is surprisingly simple and necessarily sensible, particularly at the pen of writer Bertrand Russell, who infuses this work, first published in 1919, with a palpable and genuine desire to assist the reader in understanding the principles he illustrates. Anyone interested in logic and its development and application here will find a comprehensive and accessible account of mathematical philosophy, from the idea of what numbers actually are, through the principles of order, limits, and deduction, and on to infinity. British philosopher and mathematician BERTRAND ARTHUR WILLIAM RUSSELL (1872-1970) won the Nobel Prize for Literature in 1950. Among his many works are Why I Am Not a Christian (1927), Power: A New Social Analysis (1938), and My Philosophical Development (1959).
  mathematica for beginners: Control Theory Tutorial Steven A. Frank, 2018-05-29 This open access Brief introduces the basic principles of control theory in a concise self-study guide. It complements the classic texts by emphasizing the simple conceptual unity of the subject. A novice can quickly see how and why the different parts fit together. The concepts build slowly and naturally one after another, until the reader soon has a view of the whole. Each concept is illustrated by detailed examples and graphics. The full software code for each example is available, providing the basis for experimenting with various assumptions, learning how to write programs for control analysis, and setting the stage for future research projects. The topics focus on robustness, design trade-offs, and optimality. Most of the book develops classical linear theory. The last part of the book considers robustness with respect to nonlinearity and explicitly nonlinear extensions, as well as advanced topics such as adaptive control and model predictive control. New students, as well as scientists from other backgrounds who want a concise and easy-to-grasp coverage of control theory, will benefit from the emphasis on concepts and broad understanding of the various approaches. Electronic codes for this title can be downloaded from https://extras.springer.com/?query=978-3-319-91707-8
  mathematica for beginners: Mathematica Beyond Mathematics José Guillermo Sánchez León, 2017 Covers a wide array of topics to showcase Mathematica's capabilities for not only doing mathematics but performing any task requiring calculations and visualizations; Includes coverage of the new functionality added to the program since version 8, including its natural language capabilities, curated datasets and entities, and machine learning; Features examples that strike a balance between relevance and difficulty in terms of Mathematica syntax, allowing readers to incrementally build up their Mathematica skills as they go through the chapters; Includes several files for readers to replicate the examples described in the chapters--Provided by publisher.
  mathematica for beginners: The Principles of Mathematics Bertrand Russell, 1996 Russell's classic The Principles of Mathematics sets forth his landmark thesis that mathematics and logic are identical--that what is commonly called mathematics is simply later deductions from logical premises.
  mathematica for beginners: Deep Learning and the Game of Go Kevin Ferguson, Max Pumperla, 2019-01-06 Summary Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After exposing you to the foundations of machine and deep learning, you'll use Python to build a bot and then teach it the rules of the game. Foreword by Thore Graepel, DeepMind Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The ancient strategy game of Go is an incredible case study for AI. In 2016, a deep learning-based system shocked the Go world by defeating a world champion. Shortly after that, the upgraded AlphaGo Zero crushed the original bot by using deep reinforcement learning to master the game. Now, you can learn those same deep learning techniques by building your own Go bot! About the Book Deep Learning and the Game of Go introduces deep learning by teaching you to build a Go-winning bot. As you progress, you'll apply increasingly complex training techniques and strategies using the Python deep learning library Keras. You'll enjoy watching your bot master the game of Go, and along the way, you'll discover how to apply your new deep learning skills to a wide range of other scenarios! What's inside Build and teach a self-improving game AI Enhance classical game AI systems with deep learning Implement neural networks for deep learning About the Reader All you need are basic Python skills and high school-level math. No deep learning experience required. About the Author Max Pumperla and Kevin Ferguson are experienced deep learning specialists skilled in distributed systems and data science. Together, Max and Kevin built the open source bot BetaGo. Table of Contents PART 1 - FOUNDATIONS Toward deep learning: a machine-learning introduction Go as a machine-learning problem Implementing your first Go bot PART 2 - MACHINE LEARNING AND GAME AI Playing games with tree search Getting started with neural networks Designing a neural network for Go data Learning from data: a deep-learning bot Deploying bots in the wild Learning by practice: reinforcement learning Reinforcement learning with policy gradients Reinforcement learning with value methods Reinforcement learning with actor-critic methods PART 3 - GREATER THAN THE SUM OF ITS PARTS AlphaGo: Bringing it all together AlphaGo Zero: Integrating tree search with reinforcement learning
  mathematica for beginners: Mathematics and Computation Avi Wigderson, 2019-10-29 From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
  mathematica for beginners: Understanding Basic Calculus S. K. Chung, 2014-11-26 Understanding Basic CalculusBy S.K. Chung
  mathematica for beginners: A New Kind of Science Stephen Wolfram, 2018-11-30 NOW IN PAPERBACK€Starting from a collection of simple computer experiments€illustrated in the book by striking computer graphics€Stephen Wolfram shows how their unexpected results force a whole new way of looking at the operation of our universe.
  mathematica for beginners: Mathematics for Computer Science Eric Lehman, F. Thomson Leighton, Albert R. Meyer, 2017-06-05 This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions. The color images and text in this book have been converted to grayscale.
  mathematica for beginners: Advanced Calculus Lynn H. Loomis, Shlomo Sternberg, 2014 An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades. This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis. The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives. In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Wolfram Mathematica: Modern Technical Computing
Mathematica: high-powered computation with thousands of Wolfram Language functions, natural language input, real-world data, mobile support.

Wolfram Mathematica Online: Bring Mathematica to Life in the …
Mathematica Online brings the world's ultimate computation system to the modern cloud environment. Use the power of Mathematica interactive notebooks to work directly in your web …

Mathematica Student Edition: Computation Help for Math, Science ...
Any Subject, Any Level You can use Mathematica Student Edition to explore any topic—regardless of differences in textbooks, knowledge levels or teaching styles. You'll save …

Wolfram Mathematica Personal Edition
Data and computation tool for your hobbies and interests. Compute, track, model, program, document. Full power of Mathematica at personal-use price.

Download a Free Trial of Mathematica - Wolfram
Try Mathematica for free. Trial includes a download of Mathematica, along with access to Mathematica Online. Check if you have access through your organization.

Latest Features in Mathematica 14 - Wolfram
New and updated functionality in Mathematica 14: LLM & AI, notebook & user interfaces, symbolic & numeric computations, visualization & graphics, geometry & graphs, astronomy, chemistry, …

Mathematica License Pricing Options - Wolfram
Prices for commercial, non-profit, government, education, home & student Mathematica use. Also, service plans, upgrades, networks, sites, private cloud.

Mathematica Resources: Learning Tools, Examples, Training
Check out our collection of anything Mathematica users need: videos, tutorials, books, documentation, demos, training, forums, free seminars, educational materials, and more.

Wolfram: Computation Meets Knowledge
Launching Version 14.2 of Wolfram Language & Mathematica: Big Data Meets Computation & AI

Latest Features in Mathematica 13 - Wolfram
Details about featured Mathematica 13 functionality: symbolic & numeric computations, visualization & graphics, geometry & geography, data science & computation, image & audio, …

Wolfram Mathematica: Modern Technical Computing
Mathematica: high-powered computation with thousands of Wolfram Language functions, natural language input, real-world data, mobile support.

Wolfram Mathematica Online: Bring Mathematica to Life in the …
Mathematica Online brings the world's ultimate computation system to the modern cloud environment. Use the power of Mathematica interactive notebooks to work directly in your web …

Mathematica Student Edition: Computation Help for Math, Science ...
Any Subject, Any Level You can use Mathematica Student Edition to explore any topic—regardless of differences in textbooks, knowledge levels or teaching styles. You'll save …

Wolfram Mathematica Personal Edition
Data and computation tool for your hobbies and interests. Compute, track, model, program, document. Full power of Mathematica at personal-use price.

Download a Free Trial of Mathematica - Wolfram
Try Mathematica for free. Trial includes a download of Mathematica, along with access to Mathematica Online. Check if you have access through your organization.

Latest Features in Mathematica 14 - Wolfram
New and updated functionality in Mathematica 14: LLM & AI, notebook & user interfaces, symbolic & numeric computations, visualization & graphics, geometry & graphs, astronomy, chemistry, …

Mathematica License Pricing Options - Wolfram
Prices for commercial, non-profit, government, education, home & student Mathematica use. Also, service plans, upgrades, networks, sites, private cloud.

Mathematica Resources: Learning Tools, Examples, Training
Check out our collection of anything Mathematica users need: videos, tutorials, books, documentation, demos, training, forums, free seminars, educational materials, and more.

Wolfram: Computation Meets Knowledge
Launching Version 14.2 of Wolfram Language & Mathematica: Big Data Meets Computation & AI

Latest Features in Mathematica 13 - Wolfram
Details about featured Mathematica 13 functionality: symbolic & numeric computations, visualization & graphics, geometry & geography, data science & computation, image & audio, …