Math Induction Exercises

Advertisement



  math induction exercises: Handbook of Mathematical Induction David S. Gunderson, 2010-09-14 Handbook of Mathematical Induction: Theory and Applications shows how to find and write proofs via mathematical induction. This comprehensive book covers the theory, the structure of the written proof, all standard exercises, and hundreds of application examples from nearly every area of mathematics. In the first part of the book, the author discusses different inductive techniques, including well-ordered sets, basic mathematical induction, strong induction, double induction, infinite descent, downward induction, and several variants. He then introduces ordinals and cardinals, transfinite induction, the axiom of choice, Zorn’s lemma, empirical induction, and fallacies and induction. He also explains how to write inductive proofs. The next part contains more than 750 exercises that highlight the levels of difficulty of an inductive proof, the variety of inductive techniques available, and the scope of results provable by mathematical induction. Each self-contained chapter in this section includes the necessary definitions, theory, and notation and covers a range of theorems and problems, from fundamental to very specialized. The final part presents either solutions or hints to the exercises. Slightly longer than what is found in most texts, these solutions provide complete details for every step of the problem-solving process.
  math induction exercises: A Spiral Workbook for Discrete Mathematics Harris Kwong, 2015-11-06 A Spiral Workbook for Discrete Mathematics covers the standard topics in a sophomore-level course in discrete mathematics: logic, sets, proof techniques, basic number theory, functions,relations, and elementary combinatorics, with an emphasis on motivation. The text explains and claries the unwritten conventions in mathematics, and guides the students through a detailed discussion on how a proof is revised from its draft to a nal polished form. Hands-on exercises help students understand a concept soon after learning it. The text adopts a spiral approach: many topics are revisited multiple times, sometimes from a dierent perspective or at a higher level of complexity, in order to slowly develop the student's problem-solving and writing skills.
  math induction exercises: Applied Discrete Structures Ken Levasseur, Al Doerr, 2012-02-25 ''In writing this book, care was taken to use language and examples that gradually wean students from a simpleminded mechanical approach and move them toward mathematical maturity. We also recognize that many students who hesitate to ask for help from an instructor need a readable text, and we have tried to anticipate the questions that go unasked. The wide range of examples in the text are meant to augment the favorite examples that most instructors have for teaching the topcs in discrete mathematics. To provide diagnostic help and encouragement, we have included solutions and/or hints to the odd-numbered exercises. These solutions include detailed answers whenever warranted and complete proofs, not just terse outlines of proofs. Our use of standard terminology and notation makes Applied Discrete Structures a valuable reference book for future courses. Although many advanced books have a short review of elementary topics, they cannot be complete. The text is divided into lecture-length sections, facilitating the organization of an instructor's presentation.Topics are presented in such a way that students' understanding can be monitored through thought-provoking exercises. The exercises require an understanding of the topics and how they are interrelated, not just a familiarity with the key words. An Instructor's Guide is available to any instructor who uses the text. It includes: Chapter-by-chapter comments on subtopics that emphasize the pitfalls to avoid; Suggested coverage times; Detailed solutions to most even-numbered exercises; Sample quizzes, exams, and final exams. This textbook has been used in classes at Casper College (WY), Grinnell College (IA), Luzurne Community College (PA), University of the Puget Sound (WA).''--
  math induction exercises: How to Prove It Daniel J. Velleman, 2006-01-16 Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
  math induction exercises: Discrete and Combinatorial Mathematics Ralph P. Grimaldi, 1993-10-01
  math induction exercises: Mathematical Reasoning Theodore A. Sundstrom, 2003 Focusing on the formal development of mathematics, this book demonstrates how to read and understand, write and construct mathematical proofs. It emphasizes active learning, and uses elementary number theory and congruence arithmetic throughout. Chapter content covers an introduction to writing in mathematics, logical reasoning, constructing proofs, set theory, mathematical induction, functions, equivalence relations, topics in number theory, and topics in set theory. For learners making the transition form calculus to more advanced mathematics.
  math induction exercises: Subsystems of Second Order Arithmetic Stephen G. Simpson, 2009-05-29 Almost all of the problems studied in this book are motivated by an overriding foundational question: What are the appropriate axioms for mathematics? Through a series of case studies, these axioms are examined to prove particular theorems in core mathematical areas such as algebra, analysis, and topology, focusing on the language of second-order arithmetic, the weakest language rich enough to express and develop the bulk of mathematics. In many cases, if a mathematical theorem is proved from appropriately weak set existence axioms, then the axioms will be logically equivalent to the theorem. Furthermore, only a few specific set existence axioms arise repeatedly in this context, which in turn correspond to classical foundational programs. This is the theme of reverse mathematics, which dominates the first half of the book. The second part focuses on models of these and other subsystems of second-order arithmetic.
  math induction exercises: The Method of Mathematical Induction Ilʹi︠a︡ Samuilovich Sominskiĭ, 1983
  math induction exercises: A Friendly Introduction to Mathematical Logic Christopher C. Leary, Lars Kristiansen, 2015 At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.
  math induction exercises: Reading, Writing, and Proving Ulrich Daepp, Pamela Gorkin, 2006-04-18 This book, based on Pólya's method of problem solving, aids students in their transition to higher-level mathematics. It begins by providing a great deal of guidance on how to approach definitions, examples, and theorems in mathematics and ends by providing projects for independent study. Students will follow Pólya's four step process: learn to understand the problem; devise a plan to solve the problem; carry out that plan; and look back and check what the results told them.
  math induction exercises: Book of Proof Richard H. Hammack, 2016-01-01 This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.
  math induction exercises: Proofs and Fundamentals Ethan D. Bloch, 2013-12-01 In an effort to make advanced mathematics accessible to a wide variety of students, and to give even the most mathematically inclined students a solid basis upon which to build their continuing study of mathematics, there has been a tendency in recent years to introduce students to the for mulation and writing of rigorous mathematical proofs, and to teach topics such as sets, functions, relations and countability, in a transition course, rather than in traditional courses such as linear algebra. A transition course functions as a bridge between computational courses such as Calculus, and more theoretical courses such as linear algebra and abstract algebra. This text contains core topics that I believe any transition course should cover, as well as some optional material intended to give the instructor some flexibility in designing a course. The presentation is straightforward and focuses on the essentials, without being too elementary, too exces sively pedagogical, and too full to distractions. Some of features of this text are the following: (1) Symbolic logic and the use of logical notation are kept to a minimum. We discuss only what is absolutely necessary - as is the case in most advanced mathematics courses that are not focused on logic per se.
  math induction exercises: Analysis I Terence Tao, 2016-08-29 This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.
  math induction exercises: A Logical Approach to Discrete Math David Gries, Fred B. Schneider, 2013-03-14 This text attempts to change the way we teach logic to beginning students. Instead of teaching logic as a subject in isolation, we regard it as a basic tool and show how to use it. We strive to give students a skill in the propo sitional and predicate calculi and then to exercise that skill thoroughly in applications that arise in computer science and discrete mathematics. We are not logicians, but programming methodologists, and this text reflects that perspective. We are among the first generation of scientists who are more interested in using logic than in studying it. With this text, we hope to empower further generations of computer scientists and math ematicians to become serious users of logic. Logic is the glue Logic is the glue that binds together methods of reasoning, in all domains. The traditional proof methods -for example, proof by assumption, con tradiction, mutual implication, and induction- have their basis in formal logic. Thus, whether proofs are to be presented formally or informally, a study of logic can provide understanding.
  math induction exercises: Proofs from THE BOOK Martin Aigner, Günter M. Ziegler, 2013-04-17 The (mathematical) heroes of this book are perfect proofs: brilliant ideas, clever connections and wonderful observations that bring new insight and surprising perspectives on basic and challenging problems from Number Theory, Geometry, Analysis, Combinatorics, and Graph Theory. Thirty beautiful examples are presented here. They are candidates for The Book in which God records the perfect proofs - according to the late Paul Erdös, who himself suggested many of the topics in this collection. The result is a book which will be fun for everybody with an interest in mathematics, requiring only a very modest (undergraduate) mathematical background. For this revised and expanded second edition several chapters have been revised and expanded, and three new chapters have been added.
  math induction exercises: Sets, Groups, and Mappings: An Introduction to Abstract Mathematics Andrew D. Hwang, 2019-09-26 This book introduces students to the world of advanced mathematics using algebraic structures as a unifying theme. Having no prerequisites beyond precalculus and an interest in abstract reasoning, the book is suitable for students of math education, computer science or physics who are looking for an easy-going entry into discrete mathematics, induction and recursion, groups and symmetry, and plane geometry. In its presentation, the book takes special care to forge linguistic and conceptual links between formal precision and underlying intuition, tending toward the concrete, but continually aiming to extend students' comfort with abstraction, experimentation, and non-trivial computation. The main part of the book can be used as the basis for a transition-to-proofs course that balances theory with examples, logical care with intuitive plausibility, and has sufficient informality to be accessible to students with disparate backgrounds. For students and instructors who wish to go further, the book also explores the Sylow theorems, classification of finitely-generated Abelian groups, and discrete groups of Euclidean plane transformations.
  math induction exercises: Number Theory George E. Andrews, 2012-04-30 Undergraduate text uses combinatorial approach to accommodate both math majors and liberal arts students. Covers the basics of number theory, offers an outstanding introduction to partitions, plus chapters on multiplicativity-divisibility, quadratic congruences, additivity, and more.
  math induction exercises: Selected Exercises in Algebra Rocco Chirivì, Ilaria Del Corso, Roberto Dvornicich, 2020-01-29 This book, the first of two volumes, contains over 250 selected exercises in Algebra which have featured as exam questions for the Arithmetic course taught by the authors at the University of Pisa. Each exercise is presented together with one or more solutions, carefully written with consistent language and notation. A distinguishing feature of this book is the fact that each exercise is unique and requires some creative thinking in order to be solved. The themes covered in this volume are: mathematical induction, combinatorics, modular arithmetic, Abelian groups, commutative rings, polynomials, field extensions, finite fields. The book includes a detailed section recalling relevant theory which can be used as a reference for study and revision. A list of preliminary exercises introduces the main techniques to be applied in solving the proposed exam questions. This volume is aimed at first year students in Mathematics and Computer Science.
  math induction exercises: Introductory Discrete Mathematics V. K. Balakrishnan, 1996-01-01 This concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms. Geared toward mathematics and computer science majors, it emphasizes applications, offering more than 200 exercises to help students test their grasp of the material and providing answers to selected exercises. 1991 edition.
  math induction exercises: Proofs and Ideas B. Sethuraman, 2021-12-02 Proofs and Ideas serves as a gentle introduction to advanced mathematics for students who previously have not had extensive exposure to proofs. It is intended to ease the student's transition from algorithmic mathematics to the world of mathematics that is built around proofs and concepts. The spirit of the book is that the basic tools of abstract mathematics are best developed in context and that creativity and imagination are at the core of mathematics. So, while the book has chapters on statements and sets and functions and induction, the bulk of the book focuses on core mathematical ideas and on developing intuition. Along with chapters on elementary combinatorics and beginning number theory, this book contains introductory chapters on real analysis, group theory, and graph theory that serve as gentle first exposures to their respective areas. The book contains hundreds of exercises, both routine and non-routine. This book has been used for a transition to advanced mathematics courses at California State University, Northridge, as well as for a general education course on mathematical reasoning at Krea University, India.
  math induction exercises: Geometric Etudes in Combinatorial Mathematics Alexander Soifer, 2010-06-15 Geometric Etudes in Combinatorial Mathematics is not only educational, it is inspirational. This distinguished mathematician captivates the young readers, propelling them to search for solutions of life’s problems—problems that previously seemed hopeless. Review from the first edition: The etudes presented here are not simply those of Czerny, but are better compared to the etudes of Chopin, not only technically demanding and addressed to a variety of specific skills, but at the same time possessing an exceptional beauty that characterizes the best of art...Keep this book at hand as you plan your next problem solving seminar. —The American Mathematical Monthly
  math induction exercises: Advanced Problems in Mathematics: Preparing for University Stephen Siklos, 2016-01-25 This book is intended to help candidates prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Paper). STEP is an examination used by Cambridge colleges as the basis for conditional offers. They are also used by Warwick University, and many other mathematics departments recommend that their applicants practice on the past papers even if they do not take the examination. Advanced Problems in Mathematics is recommended as preparation for any undergraduate mathematics course, even for students who do not plan to take the Sixth Term Examination Paper. The questions analysed in this book are all based on recent STEP questions selected to address the syllabus for Papers I and II, which is the A-level core (i.e. C1 to C4) with a few additions. Each question is followed by a comment and a full solution. The comments direct the reader's attention to key points and put the question in its true mathematical context. The solutions point students to the methodology required to address advanced mathematical problems critically and independently. This book is a must read for any student wishing to apply to scientific subjects at university level and for anybody interested in advanced mathematics.
  math induction exercises: A Readable Introduction to Real Mathematics Daniel Rosenthal, David Rosenthal, Peter Rosenthal, 2014-07-03 Designed for an undergraduate course or for independent study, this text presents sophisticated mathematical ideas in an elementary and friendly fashion. The fundamental purpose of this book is to engage the reader and to teach a real understanding of mathematical thinking while conveying the beauty and elegance of mathematics. The text focuses on teaching the understanding of mathematical proofs. The material covered has applications both to mathematics and to other subjects. The book contains a large number of exercises of varying difficulty, designed to help reinforce basic concepts and to motivate and challenge the reader. The sole prerequisite for understanding the text is basic high school algebra; some trigonometry is needed for Chapters 9 and 12. Topics covered include: mathematical induction - modular arithmetic - the fundamental theorem of arithmetic - Fermat's little theorem - RSA encryption - the Euclidean algorithm -rational and irrational numbers - complex numbers - cardinality - Euclidean plane geometry - constructability (including a proof that an angle of 60 degrees cannot be trisected with a straightedge and compass). This textbook is suitable for a wide variety of courses and for a broad range of students in the fields of education, liberal arts, physical sciences and mathematics. Students at the senior high school level who like mathematics will also be able to further their understanding of mathematical thinking by reading this book.
  math induction exercises: Mathematical Problems and Proofs Branislav Kisacanin, 2007-05-08 A gentle introduction to the highly sophisticated world of discrete mathematics, Mathematical Problems and Proofs presents topics ranging from elementary definitions and theorems to advanced topics -- such as cardinal numbers, generating functions, properties of Fibonacci numbers, and Euclidean algorithm. This excellent primer illustrates more than 150 solutions and proofs, thoroughly explained in clear language. The generous historical references and anecdotes interspersed throughout the text create interesting intermissions that will fuel readers' eagerness to inquire further about the topics and some of our greatest mathematicians. The author guides readers through the process of solving enigmatic proofs and problems, and assists them in making the transition from problem solving to theorem proving. At once a requisite text and an enjoyable read, Mathematical Problems and Proofs is an excellent entrée to discrete mathematics for advanced students interested in mathematics, engineering, and science.
  math induction exercises: Transition to Higher Mathematics Bob A. Dumas, John Edward McCarthy, 2007 This book is written for students who have taken calculus and want to learn what real mathematics is.
  math induction exercises: Introduction to Discrete Mathematics via Logic and Proof Calvin Jongsma, 2019-11-08 This textbook introduces discrete mathematics by emphasizing the importance of reading and writing proofs. Because it begins by carefully establishing a familiarity with mathematical logic and proof, this approach suits not only a discrete mathematics course, but can also function as a transition to proof. Its unique, deductive perspective on mathematical logic provides students with the tools to more deeply understand mathematical methodology—an approach that the author has successfully classroom tested for decades. Chapters are helpfully organized so that, as they escalate in complexity, their underlying connections are easily identifiable. Mathematical logic and proofs are first introduced before moving onto more complex topics in discrete mathematics. Some of these topics include: Mathematical and structural induction Set theory Combinatorics Functions, relations, and ordered sets Boolean algebra and Boolean functions Graph theory Introduction to Discrete Mathematics via Logic and Proof will suit intermediate undergraduates majoring in mathematics, computer science, engineering, and related subjects with no formal prerequisites beyond a background in secondary mathematics.
  math induction exercises: Mathematics and Plausible Reasoning [Two Volumes in One] George Polya, 2014-01 2014 Reprint of 1954 American Edition. Full facsimile of the original edition, not reproduced with Optical Recognition Software. This two volume classic comprises two titles: Patterns of Plausible Inference and Induction and Analogy in Mathematics. This is a guide to the practical art of plausible reasoning, particularly in mathematics, but also in every field of human activity. Using mathematics as the example par excellence, Polya shows how even the most rigorous deductive discipline is heavily dependent on techniques of guessing, inductive reasoning, and reasoning by analogy. In solving a problem, the answer must be guessed at before a proof can be given, and guesses are usually made from a knowledge of facts, experience, and hunches. The truly creative mathematician must be a good guesser first and a good prover afterward; many important theorems have been guessed but no proved until much later. In the same way, solutions to problems can be guessed, and a god guesser is much more likely to find a correct solution. This work might have been called How to Become a Good Guesser.-From the Dust Jacket.
  math induction exercises: Discrete Mathematics and Its Applications Kenneth H. Rosen, 1999 This text is designed for the sophomore/junior level introduction to discrete mathematics taken by students preparing for future coursework in areas such as math, computer science and engineering. Rosen has become a bestseller largely due to how effectively it addresses the main portion of the discrete market, which is typically characterized as the mid to upper level in rigor. The strength of Rosen's approach has been the effective balance of theory with relevant applications, as well as the overall comprehensive nature of the topic coverage.
  math induction exercises: A Book of Abstract Algebra Charles C Pinter, 2010-01-14 Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
  math induction exercises: An Introduction to Statistical Learning Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Jonathan Taylor, 2023-06-30 An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
  math induction exercises: Introduction to Mathematical Proofs, Second Edition Charles Roberts, 2014-12-17 Introduction to Mathematical Proofs helps students develop the necessary skills to write clear, correct, and concise proofs. Unlike similar textbooks, this one begins with logic since it is the underlying language of mathematics and the basis of reasoned arguments. The text then discusses deductive mathematical systems and the systems of natural numbers, integers, rational numbers, and real numbers. It also covers elementary topics in set theory, explores various properties of relations and functions, and proves several theorems using induction. The final chapters introduce the concept of cardinalities of sets and the concepts and proofs of real analysis and group theory. In the appendix, the author includes some basic guidelines to follow when writing proofs. This new edition includes more than 125 new exercises in sections titled More Challenging Exercises. Also, numerous examples illustrate in detail how to write proofs and show how to solve problems. These examples can serve as models for students to emulate when solving exercises. Several biographical sketches and historical comments have been included to enrich and enliven the text. Written in a conversational style, yet maintaining the proper level of mathematical rigor, this accessible book teaches students to reason logically, read proofs critically, and write valid mathematical proofs. It prepares them to succeed in more advanced mathematics courses, such as abstract algebra and analysis.
  math induction exercises: A Short Course in Discrete Mathematics Edward A. Bender, S. Gill Williamson, 2012-08-28 What sort of mathematics do I need for computer science? In response to this frequently asked question, a pair of professors at the University of California at San Diego created this text. Its sources are two of the university's most basic courses: Discrete Mathematics, and Mathematics for Algorithm and System Analysis. Intended for use by sophomores in the first of a two-quarter sequence, the text assumes some familiarity with calculus. Topics include Boolean functions and computer arithmetic; logic; number theory and cryptography; sets and functions; equivalence and order; and induction, sequences, and series. Multiple choice questions for review appear throughout the text. Original 2005 edition. Notation Index. Subject Index.
  math induction exercises: A Walk Through Combinatorics Mikl¢s B¢na, 2002 This is a textbook for an introductory combinatorics course that can take up one or two semesters. An extensive list of exercises, ranging in difficulty from routine to worthy of independent publication, is included. In each section, there are also exercises that contain material not explicitly discussed in the text before, so as to provide instructors with extra choices if they want to shift the emphasis of their course. It goes without saying that the text covers the classic areas, i.e. combinatorial choice problems and graph theory. What is unusual, for an undergraduate textbook, is that the author has included a number of more elaborate concepts, such as Ramsey theory, the probabilistic method and -- probably the first of its kind -- pattern avoidance. While the reader can only skim the surface of these areas, the author believes that they are interesting enough to catch the attention of some students. As the goal of the book is to encourage students to learn more combinatorics, every effort has been made to provide them with a not only useful, but also enjoyable and engaging reading.
  math induction exercises: Mathematics for Computer Science Eric Lehman, F. Thomson Leighton, Albert R. Meyer, 2017-06-05 This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions. The color images and text in this book have been converted to grayscale.
  math induction exercises: An Introduction to Abstract Mathematics Robert J. Bond, William J. Keane, 1999 The goal of this book is to show students how mathematicians think and to glimpse some of the fascinating things they think about. Bond and Keane develop students' ability to do abstract mathematics by teaching the form of mathematics in the context of real and elementary mathematics. Students learn the fundamentals of mathematical logic; how to read and understand definitions, theorems, and proofs; and how to assimilate abstract ideas and communicate them in written form. Students will learn to write mathematical proofs coherently and correctly.
  math induction exercises: Math Leads for Mathletes Titu Andreescu, Brabislav Kisačanin, 2014 The topics contained in this book are best suited for advanced fourth and fifth graders as well as for extremely talented third graders or for anyone preparing for AMC 8 or similar mathematics contests. The concepts and problems presented could be used as an enrichment material by teachers, parents, math coaches, or in math clubs and circles.
  math induction exercises: Mathematical Induction Titu Andreescu, Vlad Crisan, 2017-03-15 This book serves as a very good resource and teaching material for anyone who wants to discover the beauty of Induction and its applications, from novice mathematicians to Olympiad-driven students and professors teaching undergraduate courses. The authors explore 10 different areas of mathematics, including topics that are not usually discussed in an Olympiad-oriented book on the subject. Induction is one of the most important techniques used in competitions and its applications permeate almost every area of mathematics.
  math induction exercises: Proof Patterns Mark Joshi, 2015-03-30 This innovative textbook introduces a new pattern-based approach to learning proof methods in the mathematical sciences. Readers will discover techniques that will enable them to learn new proofs across different areas of pure mathematics with ease. The patterns in proofs from diverse fields such as algebra, analysis, topology and number theory are explored. Specific topics examined include game theory, combinatorics and Euclidean geometry, enabling a broad familiarity. The author, an experienced lecturer and researcher renowned for his innovative view and intuitive style, illuminates a wide range of techniques and examples from duplicating the cube to triangulating polygons to the infinitude of primes to the fundamental theorem of algebra. Intended as a companion for undergraduate students, this text is an essential addition to every aspiring mathematician’s toolkit.
  math induction exercises: Discrete Mathematics for Computer Science John Schlipf, Sue Whitesides, Gary Haggard, 2020-09-22 Discrete Mathematics for Computer Science by Gary Haggard , John Schlipf , Sue Whitesides A major aim of this book is to help you develop mathematical maturity-elusive as thisobjective may be. We interpret this as preparing you to understand how to do proofs ofresults about discrete structures that represent concepts you deal with in computer science.A correct proof can be viewed as a set of reasoned steps that persuade another student,the course grader, or the instructor about the truth of the assertion. Writing proofs is hardwork even for the most experienced person, but it is a skill that needs to be developedthrough practice. We can only encourage you to be patient with the process. Keep tryingout your proofs on other students, graders, and instructors to gain the confidence that willhelp you in using proofs as a natural part of your ability to solve problems and understandnew material. The six chapters referred to contain the fundamental topics. Thesechapters are used to guide students in learning how to express mathematically precise ideasin the language of mathematics.The two chapters dealing with graph theory and combinatorics are also core materialfor a discrete structures course, but this material always seems more intuitive to studentsthan the formalism of the first four chapters. Topics from the first four chapters are freelyused in these later chapters. The chapter on discrete probability builds on the chapter oncombinatorics. The chapter on the analysis of algorithms uses notions from the core chap-ters but can be presented at an informal level to motivate the topic without spending a lot oftime with the details of the chapter. Finally, the chapter on recurrence relations primarilyuses the early material on induction and an intuitive understanding of the chapter on theanalysis of algorithms. The material in Chapters 1 through 4 deals with sets, logic, relations, and functions.This material should be mastered by all students. A course can cover this material at differ-ent levels and paces depending on the program and the background of the students whenthey take the course. Chapter 6 introduces graph theory, with an emphasis on examplesthat are encountered in computer science. Undirected graphs, trees, and directed graphsare studied. Chapter 7 deals with counting and combinatorics, with topics ranging from theaddition and multiplication principles to permutations and combinations of distinguishableor indistinguishable sets of elements to combinatorial identities.Enrichment topics such as relational databases, languages and regular sets, uncom-putability, finite probability, and recurrence relations all provide insights regarding howdiscrete structures describe the important notions studied and used in computer science.Obviously, these additional topics cannot be dealt with along with the all the core materialin a one-semester course, but the topics provide attractive alternatives for a variety of pro-grams. This text can also be used as a reference in courses. The many problems provideample opportunity for students to deal with the material presented.
  math induction exercises: Introduction to Mathematical Thinking Keith J. Devlin, 2012 Mathematical thinking is not the same as 'doing math'--unless you are a professional mathematician. For most people, 'doing math' means the application of procedures and symbolic manipulations. Mathematical thinking, in contrast, is what the name reflects, a way of thinking about things in the world that humans have developed over three thousand years. It does not have to be about mathematics at all, which means that many people can benefit from learning this powerful way of thinking, not just mathematicians and scientists.--Back cover.
Math Games | Math Playground | Fun for Kids
Free, online math games and more at MathPlayground.com! Problem solving, logic games and number puzzles kids love to play.

Mathway | Algebra Problem Solver
Free math problem solver answers your algebra homework questions with step-by-step explanations.

Math is Fun
Apr 19, 2010 · Math explained in easy language, plus puzzles, games, worksheets and an illustrated dictionary. For K-12 kids, teachers and parents.

Math - Khan Academy
Khan Academy offers free, world-class math education for anyone, anywhere.

Symbolab - AI Math Calculator & Problem Solver
Symbolab AI Math Solver does more than compute, it explains. It breaks problems into steps, like a kind tutor who doesn’t rush, doesn’t judge, and always shows their work. Whether it’s an …

Microsoft Math Solver - Math Problem Solver & Calculator
Online math solver with free step by step solutions to algebra, calculus, and other math problems. Get help on the web or with our math app.

Math Games | Math Playground | Fun for Kids
Free, online math games and more at MathPlayground.com! Problem solving, logic games and number puzzles kids love to play.

Mathway | Algebra Problem Solver
Free math problem solver answers your algebra homework questions with step-by-step explanations.

Math is Fun
Apr 19, 2010 · Math explained in easy language, plus puzzles, games, worksheets and an illustrated dictionary. For K-12 kids, teachers and parents.

Math - Khan Academy
Khan Academy offers free, world-class math education for anyone, anywhere.

Symbolab - AI Math Calculator & Problem Solver
Symbolab AI Math Solver does more than compute, it explains. It breaks problems into steps, like a kind tutor who doesn’t rush, doesn’t judge, and always shows their work. Whether it’s an …

Microsoft Math Solver - Math Problem Solver & Calculator
Online math solver with free step by step solutions to algebra, calculus, and other math problems. Get help on the web or with our math app.