Advertisement
mass and energy balance chemical engineering problems: Elementary Principles of Chemical Processes, 3rd Edition 2005 Edition Integrated Media and Study Tools, with Student Workbook Richard M. Felder, Ronald W. Rousseau, 2005-02-02 This best selling text prepares students to formulate and solve material and energy balances in chemical process systems and lays the foundation for subsequent courses in chemical engineering. The text provides a realistic, informative, and positive introduction to the practice of chemical engineering. The Integrated Media Edition update provides a stronger link between the text, media supplements, and new student workbook. |
mass and energy balance chemical engineering problems: Problems on Material and Energy Balance Calculation K. Balu, N. Satyamurthi, S. Ramalingam, B. Deebika, 2009-01-01 Mass and Energy Balance Calculations are the fundamental components in the Design and Development of Chemical Process Industries. Mass Balance Calculations are performed to determine the yields of main products, byproducts, consumption of raw material and production losses. Only when the Mass Balance is performed, the Process Engineer can make calculations required for design of production equipment in the process. Energy balance involves the computation of input and outputs of energy in equipments. Energy Balance is performed from Material Balance taking into account the thermal effects (Exothermic or Endothermic) of reactions and the physical transformations (Evaporation, Crystallization) occurring in the Process Equipment. The present book has problems and solutions in Material and Energy Balance in Process Equipment. This is followed by Energy Balance problems. All problems assume Steady State system. The text covers the syllabus of all Chemical Engineering Schools offering this course. The number and variety of problems proposed in this book are extensive. The problems are organized in each chapter according to subject matter. It is possible for answers to differ slightly due to different sources of data. The teaching experience of authors convinces that one of the glaring weakness of the students in Chemical and Petroleum Engineering is their inability to think clearly and accurately in terms of arithmetic. It is hoped this book will prove of real value in Process Calculations Instructions in classroom. This can also serve as a refresher book for practising engineers. |
mass and energy balance chemical engineering problems: Principles of Chemical Engineering Processes Nayef Ghasem, Redhouane Henda, 2014-11-14 Principles of Chemical Engineering Processes: Material and Energy Balances introduces the basic principles and calculation techniques used in the field of chemical engineering, providing a solid understanding of the fundamentals of the application of material and energy balances. Packed with illustrative examples and case studies, this book: Discusses problems in material and energy balances related to chemical reactors Explains the concepts of dimensions, units, psychrometry, steam properties, and conservation of mass and energy Demonstrates how MATLAB® and Simulink® can be used to solve complicated problems of material and energy balances Shows how to solve steady-state and transient mass and energy balance problems involving multiple-unit processes and recycle, bypass, and purge streams Develops quantitative problem-solving skills, specifically the ability to think quantitatively (including numbers and units), the ability to translate words into diagrams and mathematical expressions, the ability to use common sense to interpret vague and ambiguous language in problem statements, and the ability to make judicious use of approximations and reasonable assumptions to simplify problems This Second Edition has been updated based upon feedback from professors and students. It features a new chapter related to single- and multiphase systems and contains additional solved examples and homework problems. Educational software, downloadable exercises, and a solutions manual are available with qualifying course adoption. |
mass and energy balance chemical engineering problems: Mass and Energy Balances Seyed Ali Ashrafizadeh, Zhongchao Tan, 2019-06-06 This textbook introduces students to mass and energy balances and focuses on basic principles for calculation, design, and optimization as they are applied in industrial processes and equipment. While written primarily for undergraduate programs in chemical, energy, mechanical, and environmental engineering, the book can also be used as a reference by technical staff and design engineers interested who are in, and/or need to have basic knowledge of process engineering calculation. Concepts and techniques presented in this volume are highly relevant within many industrial sectors including manufacturing, oil/gas, green and sustainable energy, and power plant design. Drawing on 15 years of teaching experiences, and with a clear understanding of students' interests, the authors have adopted a very accessible writing style that includes many examples and additional citations to research resources from the literature, referenced at the ends of chapters. |
mass and energy balance chemical engineering problems: Introduction to Chemical Engineering Computing Bruce A. Finlayson, 2014-03-05 Step-by-step instructions enable chemical engineers to master key software programs and solve complex problems Today, both students and professionals in chemical engineering must solve increasingly complex problems dealing with refineries, fuel cells, microreactors, and pharmaceutical plants, to name a few. With this book as their guide, readers learn to solve these problems using their computers and Excel, MATLAB, Aspen Plus, and COMSOL Multiphysics. Moreover, they learn how to check their solutions and validate their results to make sure they have solved the problems correctly. Now in its Second Edition, Introduction to Chemical Engineering Computing is based on the author’s firsthand teaching experience. As a result, the emphasis is on problem solving. Simple introductions help readers become conversant with each program and then tackle a broad range of problems in chemical engineering, including: Equations of state Chemical reaction equilibria Mass balances with recycle streams Thermodynamics and simulation of mass transfer equipment Process simulation Fluid flow in two and three dimensions All the chapters contain clear instructions, figures, and examples to guide readers through all the programs and types of chemical engineering problems. Problems at the end of each chapter, ranging from simple to difficult, allow readers to gradually build their skills, whether they solve the problems themselves or in teams. In addition, the book’s accompanying website lists the core principles learned from each problem, both from a chemical engineering and a computational perspective. Covering a broad range of disciplines and problems within chemical engineering, Introduction to Chemical Engineering Computing is recommended for both undergraduate and graduate students as well as practicing engineers who want to know how to choose the right computer software program and tackle almost any chemical engineering problem. |
mass and energy balance chemical engineering problems: Chemical Engineering Design Gavin Towler, Ray Sinnott, 2012-01-25 Chemical Engineering Design, Second Edition, deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, this edition has been specifically developed for the U.S. market. It provides the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards. It contains new discussions of conceptual plant design, flowsheet development, and revamp design; extended coverage of capital cost estimation, process costing, and economics; and new chapters on equipment selection, reactor design, and solids handling processes. A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data, and Excel spreadsheet calculations, plus over 150 Patent References for downloading from the companion website. Extensive instructor resources, including 1170 lecture slides and a fully worked solutions manual are available to adopting instructors. This text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken, plus graduates) and lecturers/tutors, and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors). New to this edition: - Revised organization into Part I: Process Design, and Part II: Plant Design. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact and optimization. Part II contains chapters on equipment design and selection that can be used as supplements to a lecture course or as essential references for students or practicing engineers working on design projects. - New discussion of conceptual plant design, flowsheet development and revamp design - Significantly increased coverage of capital cost estimation, process costing and economics - New chapters on equipment selection, reactor design and solids handling processes - New sections on fermentation, adsorption, membrane separations, ion exchange and chromatography - Increased coverage of batch processing, food, pharmaceutical and biological processes - All equipment chapters in Part II revised and updated with current information - Updated throughout for latest US codes and standards, including API, ASME and ISA design codes and ANSI standards - Additional worked examples and homework problems - The most complete and up to date coverage of equipment selection - 108 realistic commercial design projects from diverse industries - A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data and Excel spreadsheet calculations plus over 150 Patent References, for downloading from the companion website - Extensive instructor resources: 1170 lecture slides plus fully worked solutions manual available to adopting instructors |
mass and energy balance chemical engineering problems: Basic Principles and Calculations in Chemical Engineering David Mautner Himmelblau, James B. Riggs, 2012 Best-selling introductory chemical engineering book - now updated with far more coverage of biotech, nanotech, and green engineering Thoroughly covers material balances, gases, liquids, and energy balances. Contains new biotech and bioengineering problems throughout. |
mass and energy balance chemical engineering problems: Material and Energy Balancing in the Process Industries V.V. Veverka, F. Madron, 1997-01-15 This book represents the systematic coverage of mass and energy balancing in the process industries. The classical treatment of balances in the available literature is complemented in the following areas:- systematic analysis of large systems by Graph theory- comprehensive thermodynamic analysis (entropy and availability)- balancing on the basis of measured plant data (data reconciliation)- measurement design and optimisation- dynamic balancing- plant-wide regular mass and energy balancing as a part of company's information system.The major areas addressed are:- single- and multi-component balancing- energy balance- entropy and exergy (availability) balances- solvability of balancing problems- balancing with data reconciliation- dynamic balancing- measurement design and optimisation- regular balancing of large industrial systems.The book is directed to chemical engineers, plant designers, technologists, information technology managers, control engineers and instrumentation engineers in process industries. Major areas of applications are process industries and energy production, such as oil refining, natural gas processing, petrochemistry, chemical industries, mineral processing and utility production and distribution systems. University students and teachers of chemical engineering and control will also find the book invaluable. |
mass and energy balance chemical engineering problems: Material and Energy Balance Computations Ernest J. Henley, Edward Marshall Rosen, 1969 |
mass and energy balance chemical engineering problems: Introduction to Process Safety for Undergraduates and Engineers CCPS (Center for Chemical Process Safety), 2016-06-30 Familiarizes the student or an engineer new to process safety with the concept of process safety management Serves as a comprehensive reference for Process Safety topics for student chemical engineers and newly graduate engineers Acts as a reference material for either a stand-alone process safety course or as supplemental materials for existing curricula Includes the evaluation of SACHE courses for application of process safety principles throughout the standard Ch.E. curricula in addition to, or as an alternative to, adding a new specific process safety course Gives examples of process safety in design |
mass and energy balance chemical engineering problems: Principles of Chemical Engineering Processes Nayef Ghasem, Redhouane Henda, 2025-03-31 Principles of Chemical Engineering Processes: Material and Energy Balances continues to serve an essential text, guiding students on the basic principles and calculation techniques used in the field of chemical engineering and providing a solid understanding of the fundamentals of the application of material and energy balances. This third edition has been updated to reflect advances in the field and feedback from professors and students. Packed with illustrative examples and case studies, this book: • Features learning objectives and homework problems in every chapter, new material on software modeling, and additional and enhanced solved examples and problems. • Discusses problems in material and energy balances related to chemical reactors and explains the concepts of dimensions, units, psychrometry, steam properties, and conservation of mass and energy. • Demonstrates how Python, MATLAB®, and Simulink® can be used to solve complicated problems of material and energy balances, and now features an introduction to the basics of building Simulink models. • Demonstrates how Python and its libraries, such as NumPy and SciPy, can be used to solve complex problems in material and energy balances, and introduces the basics of building models using Python frameworks similar to Simulink. • Shows how to solve steady-state and transient mass and energy balance problems involving multiple-unit processes and recycle, bypass, and purge streams. • Develops quantitative problem-solving skills, specifically the ability to think quantitatively (including numbers and units), the ability to translate words into diagrams and mathematical expressions, the ability to use common sense to interpret vague and ambiguous language in problem statements, and the ability to make judicious use of approximations and reasonable assumptions to simplify problems. • Offers educational software and sample tutorials and quizzes for download. Aimed at both chemical engineering students and professionals, this book helps readers understand how to calculate, manage, and apply the key ideas of material and energy use in chemical processes through real-world examples. Lecture slides and a solutions manual are available with qualifying course adoption. |
mass and energy balance chemical engineering problems: Computer Methods in Chemical Engineering Nayef Ghasem, 2011-08-25 While various software packages have become quite useful for performing unit operations and other kinds of processes in chemical engineering, the fundamental theory and methods of calculation must also be understood in order to effectively test the validity of these packages and verify the results. Computer Methods in Chemical Engineering presents |
mass and energy balance chemical engineering problems: A Step by Step Approach to the Modeling of Chemical Engineering Processes Liliane Maria Ferrareso Lona, 2017-12-15 This book treats modeling and simulation in a simple way, that builds on the existing knowledge and intuition of students. They will learn how to build a model and solve it using Excel. Most chemical engineering students feel a shiver down the spine when they see a set of complex mathematical equations generated from the modeling of a chemical engineering system. This is because they usually do not understand how to achieve this mathematical model, or they do not know how to solve the equations system without spending a lot of time and effort. Trying to understand how to generate a set of mathematical equations to represent a physical system (to model) and solve these equations (to simulate) is not a simple task. A model, most of the time, takes into account all phenomena studied during a Chemical Engineering course. In the same way, there is a multitude of numerical methods that can be used to solve the same set of equations generated from the modeling, and many different computational languages can be adopted to implement the numerical methods. As a consequence of this comprehensiveness and combinatorial explosion of possibilities, most books that deal with this subject are very extensive and embracing, making need for a lot of time and effort to go through this subject. It is expected that with this book the chemical engineering student and the future chemical engineer feel motivated to solve different practical problems involving chemical processes, knowing they can do that in an easy and fast way, with no need of expensive software. |
mass and energy balance chemical engineering problems: Elements of Chemical Reaction Engineering H. Scott Fogler, 1999 The fourth edition of Elements of Chemical Reaction Engineering is a completely revised version of the book. It combines authoritative coverage of the principles of chemical reaction engineering with an unsurpassed focus on critical thinking and creative problem solving, employing open-ended questions and stressing the Socratic method. Clear and organized, it integrates text, visuals, and computer simulations to help readers solve even the most challenging problems through reasoning, rather than by memorizing equations.--BOOK JACKET. |
mass and energy balance chemical engineering problems: Chemical Engineering Fluid Mechanics Ron Darby, Raj P. Chhabra, 2016-11-30 This book provides readers with the most current, accurate, and practical fluid mechanics related applications that the practicing BS level engineer needs today in the chemical and related industries, in addition to a fundamental understanding of these applications based upon sound fundamental basic scientific principles. The emphasis remains on problem solving, and the new edition includes many more examples. |
mass and energy balance chemical engineering problems: Chemical and Energy Process Engineering Sigurd Skogestad, 2008-08-27 Emphasizing basic mass and energy balance principles, Chemical and Energy Process Engineering prepares the next generation of process engineers through an exemplary survey of energy process engineering, basic thermodynamics, and the analysis of energy efficiency. By emphasizing the laws of thermodynamics and the law of mass/matter conservation, the |
mass and energy balance chemical engineering problems: Rules of Thumb for Chemical Engineers Carl Branan, 2002 Fractionators, separators and accumulators, cooling towers, gas treating, blending, troubleshooting field cases, gas solubility, and density of irregular solids * Hundreds of common sense techniques, shortcuts, and calculations. |
mass and energy balance chemical engineering problems: A TEXTBOOK OF CHEMICAL ENGINEERING THERMODYNAMICS K. V. NARAYANAN, 2013-01-11 Designed as an undergraduate-level textbook in Chemical Engineering, this student-friendly, thoroughly class-room tested book, now in its second edition, continues to provide an in-depth analysis of chemical engineering thermodynamics. The book has been so organized that it gives comprehensive coverage of basic concepts and applications of the laws of thermodynamics in the initial chapters, while the later chapters focus at length on important areas of study falling under the realm of chemical thermodynamics. The reader is thus introduced to a thorough analysis of the fundamental laws of thermodynamics as well as their applications to practical situations. This is followed by a detailed discussion on relationships among thermodynamic properties and an exhaustive treatment on the thermodynamic properties of solutions. The role of phase equilibrium thermodynamics in design, analysis, and operation of chemical separation methods is also deftly dealt with. Finally, the chemical reaction equilibria are skillfully explained. Besides numerous illustrations, the book contains over 200 worked examples, over 400 exercise problems (all with answers) and several objective-type questions, which enable students to gain an in-depth understanding of the concepts and theory discussed. The book will also be a useful text for students pursuing courses in chemical engineering-related branches such as polymer engineering, petroleum engineering, and safety and environmental engineering. New to This Edition • More Example Problems and Exercise Questions in each chapter • Updated section on Vapour–Liquid Equilibrium in Chapter 8 to highlight the significance of equations of state approach • GATE Questions up to 2012 with answers |
mass and energy balance chemical engineering problems: Analysis, Synthesis and Design of Chemical Processes Richard Turton, Richard C. Bailie, Wallace B. Whiting, Joseph A. Shaeiwitz, 2008-12-24 The Leading Integrated Chemical Process Design Guide: Now with New Problems, New Projects, and More More than ever, effective design is the focal point of sound chemical engineering. Analysis, Synthesis, and Design of Chemical Processes, Third Edition, presents design as a creative process that integrates both the big picture and the small details–and knows which to stress when, and why. Realistic from start to finish, this book moves readers beyond classroom exercises into open-ended, real-world process problem solving. The authors introduce integrated techniques for every facet of the discipline, from finance to operations, new plant design to existing process optimization. This fully updated Third Edition presents entirely new problems at the end of every chapter. It also adds extensive coverage of batch process design, including realistic examples of equipment sizing for batch sequencing; batch scheduling for multi-product plants; improving production via intermediate storage and parallel equipment; and new optimization techniques specifically for batch processes. Coverage includes Conceptualizing and analyzing chemical processes: flow diagrams, tracing, process conditions, and more Chemical process economics: analyzing capital and manufacturing costs, and predicting or assessing profitability Synthesizing and optimizing chemical processing: experience-based principles, BFD/PFD, simulations, and more Analyzing process performance via I/O models, performance curves, and other tools Process troubleshooting and “debottlenecking” Chemical engineering design and society: ethics, professionalism, health, safety, and new “green engineering” techniques Participating successfully in chemical engineering design teams Analysis, Synthesis, and Design of Chemical Processes, Third Edition, draws on nearly 35 years of innovative chemical engineering instruction at West Virginia University. It includes suggested curricula for both single-semester and year-long design courses; case studies and design projects with practical applications; and appendixes with current equipment cost data and preliminary design information for eleven chemical processes–including seven brand new to this edition. |
mass and energy balance chemical engineering problems: Handbook of Food Process Design, 2 Volume Set Jasim Ahmed, Mohammad Shafiur Rahman, 2012-05-21 In the 21st Century, processing food is no longer a simple or straightforward matter. Ongoing advances in manufacturing have placed new demands on the design and methodology of food processes. A highly interdisciplinary science, food process design draws upon the principles of chemical and mechanical engineering, microbiology, chemistry, nutrition and economics, and is of central importance to the food industry. Process design is the core of food engineering, and is concerned at its root with taking new concepts in food design and developing them through production and eventual consumption. Handbook of Food Process Design is a major new 2-volume work aimed at food engineers and the wider food industry. Comprising 46 original chapters written by a host of leading international food scientists, engineers, academics and systems specialists, the book has been developed to be the most comprehensive guide to food process design ever published. Starting from first principles, the book provides a complete account of food process designs, including heating and cooling, pasteurization, sterilization, refrigeration, drying, crystallization, extrusion, and separation. Mechanical operations including mixing, agitation, size reduction, extraction and leaching processes are fully documented. Novel process designs such as irradiation, high-pressure processing, ultrasound, ohmic heating and pulsed UV-light are also presented. Food packaging processes are considered, and chapters on food quality, safety and commercial imperatives portray the role process design in the broader context of food production and consumption. |
mass and energy balance chemical engineering problems: Mass and Energy Balances Seyed Ali Ashrafizadeh, Zhongchao Tan, 2018-01-10 This textbook introduces students to mass and energy balances and focuses on basic principles for calculation, design, and optimization as they are applied in industrial processes and equipment. While written primarily for undergraduate programs in chemical, energy, mechanical, and environmental engineering, the book can also be used as a reference by technical staff and design engineers interested who are in, and/or need to have basic knowledge of process engineering calculation. Concepts and techniques presented in this volume are highly relevant within many industrial sectors including manufacturing, oil/gas, green and sustainable energy, and power plant design. Drawing on 15 years of teaching experiences, and with a clear understanding of students' interests, the authors have adopted a very accessible writing style that includes many examples and additional citations to research resources from the literature, referenced at the ends of chapters. |
mass and energy balance chemical engineering problems: Solving Problems in Food Engineering Stavros Yanniotis, 2007-12-03 This easy-to-follow guide is a step by step workbook intended to enhance students' understanding of complicated concepts in food engineering. It also gives them hands-on practice in solving food engineering problems. The book covers problems in fluid flow, heat transfer, and mass transfer. It also tackles the most common unit operations that have applications in food processing, such as thermal processing, cooling and freezing, evaporation, psychometrics and drying. Included are theoretical questions in the form of true or false, solved problems, semi-solved problems, and problems solved using a computer. The semi-solved problems guide students through the solution. |
mass and energy balance chemical engineering problems: Bioprocess Engineering Principles Pauline M. Doran, 1995-04-03 The emergence and refinement of techniques in molecular biology has changed our perceptions of medicine, agriculture and environmental management. Scientific breakthroughs in gene expression, protein engineering and cell fusion are being translated by a strengthening biotechnology industry into revolutionary new products and services. Many a student has been enticed by the promise of biotechnology and the excitement of being near the cutting edge of scientific advancement. However, graduates trained in molecular biology and cell manipulation soon realise that these techniques are only part of the picture. Reaping the full benefits of biotechnology requires manufacturing capability involving the large-scale processing of biological material. Increasingly, biotechnologists are being employed by companies to work in co-operation with chemical engineers to achieve pragmatic commercial goals. For many years aspects of biochemistry and molecular genetics have been included in chemical engineering curricula, yet there has been little attempt until recently to teach aspects of engineering applicable to process design to biotechnologists.This textbook is the first to present the principles of bioprocess engineering in a way that is accessible to biological scientists. Other texts on bioprocess engineering currently available assume that the reader already has engineering training. On the other hand, chemical engineering textbooks do not consider examples from bioprocessing, and are written almost exclusively with the petroleum and chemical industries in mind. This publication explains process analysis from an engineering point of view, but refers exclusively to the treatment of biological systems. Over 170 problems and worked examples encompass a wide range of applications, including recombinant cells, plant and animal cell cultures, immobilised catalysts as well as traditional fermentation systems.* * First book to present the principles of bioprocess engineering in a way that is accessible to biological scientists* Explains process analysis from an engineering point of view, but uses worked examples relating to biological systems* Comprehensive, single-authored* 170 problems and worked examples encompass a wide range of applications, involving recombinant plant and animal cell cultures, immobilized catalysts, and traditional fermentation systems* 13 chapters, organized according to engineering sub-disciplines, are groupled in four sections - Introduction, Material and Energy Balances, Physical Processes, and Reactions and Reactors* Each chapter includes a set of problems and exercises for the student, key references, and a list of suggestions for further reading* Includes useful appendices, detailing conversion factors, physical and chemical property data, steam tables, mathematical rules, and a list of symbols used* Suitable for course adoption - follows closely curricula used on most bioprocessing and process biotechnology courses at senior undergraduate and graduate levels. |
mass and energy balance chemical engineering problems: Principles of Chemical Reactor Analysis and Design Uzi Mann, 2009-03-30 An innovative approach that helps students move from the classroom to professional practice This text offers a comprehensive, unified methodology to analyze and design chemical reactors, using a reaction-based design formulation rather than the common species-based design formulation. The book's acclaimed approach addresses the weaknesses of current pedagogy by giving readers the knowledge and tools needed to address the technical challenges they will face in practice. Principles of Chemical Reactor Analysis and Design prepares readers to design and operate real chemical reactors and to troubleshoot any technical problems that may arise. The text's unified methodology is applicable to both single and multiple chemical reactions, to all reactor configurations, and to all forms of rate expression. This text also . . . Describes reactor operations in terms of dimensionless design equations, generating dimensionless operating curves that depict the progress of individual chemical reactions, the composition of species, and the temperature. Combines all parameters that affect heat transfer into a single dimensionless number that can be estimated a priori. Accounts for all variations in the heat capacity of the reacting fluid. Develops a complete framework for economic-based optimization of reactor operations. Problems at the end of each chapter are categorized by their level of difficulty from one to four, giving readers the opportunity to test and develop their skills. Graduate and advanced undergraduate chemical engineering students will find that this text's unified approach better prepares them for professional practice by teaching them the actual skills needed to design and analyze chemical reactors. |
mass and energy balance chemical engineering problems: Biochemical Engineering Shigeo Katoh, Jun-ichi Horiuchi, Fumitake Yoshida, 2015-02-02 Completely revised, updated, and enlarged, this second edition now contains a subchapter on biorecognition assays, plus a chapter on bioprocess control added by the new co-author Jun-ichi Horiuchi, who is one of the leading experts in the field. The central theme of the textbook remains the application of chemical engineering principles to biological processes in general, demonstrating how a chemical engineer would address and solve problems. To create a logical and clear structure, the book is divided into three parts. The first deals with the basic concepts and principles of chemical engineering and can be read by those students with no prior knowledge of chemical engineering. The second part focuses on process aspects, such as heat and mass transfer, bioreactors, and separation methods. Finally, the third section describes practical aspects, including medical device production, downstream operations, and fermenter engineering. More than 40 exemplary solved exercises facilitate understanding of the complex engineering background, while self-study is supported by the inclusion of over 80 exercises at the end of each chapter, which are supplemented by the corresponding solutions. An excellent, comprehensive introduction to the principles of biochemical engineering. |
mass and energy balance chemical engineering problems: Principles of Chemical Engineering Processes Nayef Ghasem, Redhouane Henda, 2014-11-10 This book introduces the basic principles and calculation techniques used in chemical engineering. It discusses problems in material and energy balances related to chemical reactors; explains the concepts of dimensions, units, psychrometry, steam properties, and conservation of mass and energy; and demonstrates how MATLAB and Simulink can be used to solve complicated problems. This Second Edition contains additional homework problems and a new chapter related to single- and multiphase systems. Educational software, downloadable exercises, and a solutions manual are available with qualifying course adoption. |
mass and energy balance chemical engineering problems: Transport Phenomena for Chemical Reactor Design Laurence A. Belfiore, 2003-04-11 Laurence Belfiore’s unique treatment meshes two mainstream subject areas in chemical engineering: transport phenomena and chemical reactor design. Expressly intended as an extension of Bird, Stewart, and Lightfoot’s classic Transport Phenomena, and Froment and Bischoff’s Chemical Reactor Analysis and Design, Second Edition, Belfiore’s unprecedented text explores the synthesis of these two disciplines in a manner the upper undergraduate or graduate reader can readily grasp. Transport Phenomena for Chemical Reactor Design approaches the design of chemical reactors from microscopic heat and mass transfer principles. It includes simultaneous consideration of kinetics and heat transfer, both critical to the performance of real chemical reactors. Complementary topics in transport phenomena and thermodynamics that provide support for chemical reactor analysis are covered, including: Fluid dynamics in the creeping and potential flow regimes around solid spheres and gas bubbles The corresponding mass transfer problems that employ velocity profiles, derived in the book’s fluid dynamics chapter, to calculate interphase heat and mass transfer coefficients Heat capacities of ideal gases via statistical thermodynamics to calculate Prandtl numbers Thermodynamic stability criteria for homogeneous mixtures that reveal that binary molecular diffusion coefficients must be positive In addition to its comprehensive treatment, the text also contains 484 problems and ninety-six detailed solutions to assist in the exploration of the subject. Graduate and advanced undergraduate chemical engineering students, professors, and researchers will appreciate the vision, innovation, and practical application of Laurence Belfiore’s Transport Phenomena for Chemical Reactor Design. |
mass and energy balance chemical engineering problems: Introductory Chemical Engineering Thermodynamics J. Richard Elliott, Carl T. Lira, 2012-02-06 A Practical, Up-to-Date Introduction to Applied Thermodynamics, Including Coverage of Process Simulation Models and an Introduction to Biological Systems Introductory Chemical Engineering Thermodynamics, Second Edition, helps readers master the fundamentals of applied thermodynamics as practiced today: with extensive development of molecular perspectives that enables adaptation to fields including biological systems, environmental applications, and nanotechnology. This text is distinctive in making molecular perspectives accessible at the introductory level and connecting properties with practical implications. Features of the second edition include Hierarchical instruction with increasing levels of detail: Content requiring deeper levels of theory is clearly delineated in separate sections and chapters Early introduction to the overall perspective of composite systems like distillation columns, reactive processes, and biological systems Learning objectives, problem-solving strategies for energy balances and phase equilibria, chapter summaries, and “important equations” for every chapter Extensive practical examples, especially coverage of non-ideal mixtures, which include water contamination via hydrocarbons, polymer blending/recycling, oxygenated fuels, hydrogen bonding, osmotic pressure, electrolyte solutions, zwitterions and biological molecules, and other contemporary issues Supporting software in formats for both MATLAB® and spreadsheets Online supplemental sections and resources including instructor slides, ConcepTests, coursecast videos, and other useful resources |
mass and energy balance chemical engineering problems: Mathematical Modeling in Chemical Engineering Anders Rasmuson, 2014-03-20 A solid introduction, enabling the reader to successfully formulate, construct, simplify, evaluate and use mathematical models in chemical engineering. |
mass and energy balance chemical engineering problems: Nonequilibrium Thermodynamics Yasar Demirel, 2013-12-16 Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, Third Edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapter on stochastic approaches to include the statistical thermodynamics, mesoscopic nonequilibrium thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems in thermodynamic analysis. This new addition also comes with more examples and practice problems. - Informs and updates on all the latest developments in the field - Contributions from leading authorities and industry experts - A useful text for seniors and graduate students from diverse engineering and science programs to analyze some nonequilibrium, coupled, evolutionary, stochastic, and dissipative processes - Highlights fundamentals of equilibrium thermodynamics, transport processes and chemical reactions - Expands the theory of nonequilibrium thermodynamics and its use in coupled transport processes and chemical reactions in physical, chemical, and biological systems - Presents a unified analysis for transport and rate processes in various time and space scales - Discusses stochastic approaches in thermodynamic analysis including fluctuation and information theories - Has 198 fully solved examples and 287 practice problems - An Instructor Resource containing the Solution Manual can be obtained from the author: ydemirel2@unl.edu |
mass and energy balance chemical engineering problems: Equations of State and PVT Analysis Tarek Ahmed, 2013-11-25 This title covers a wide range of topics related to the Pressure Volume Temperature (PVT) behavior of complex hydrocarbon systems and documents the ability of Equations of State (EOS) in modeling their behavior. The main objective of this book is to provide the practicing engineer and engineering student with tools needed to solve problems that require a description of the PVT of hydrocarbon systems from their compositions. Because of the dramatic evolution in computational capabilities, petroleum engineers can now study such phenomena as the development of miscibility during gas injection, compositional gradient as a function of depth and the behavior near critical hydrocarbon systems with more sophisticated EOS models. |
mass and energy balance chemical engineering problems: Fundamentals of Chemical Engineering Thermodynamics Themis Matsoukas, 2013 Fundamentals of Chemical Engineering Thermodynamics is the clearest and most well-organized introduction to thermodynamics theory and calculations for all chemical engineering undergraduates. This brand-new text makes thermodynamics far easier to teach and learn. Drawing on his award-winning courses at Penn State, Dr. Themis Matsoukas organizes the text for more effective learning, focuses on why as well as how, offers imagery that helps students conceptualize the equations, and illuminates thermodynamics with relevant examples from within and beyond the chemical engineering discipline. Matsoukas presents solved problems in every chapter, ranging from basic calculations to realistic safety and environmental applications. |
mass and energy balance chemical engineering problems: Advanced Reactor Modeling with MATLAB Riccardo Tesser, Vincenzo Russo, 2020-12-07 Offers the reader a modern approach to reactor description and modelling. Using the widely applied numerical language MATLAB, it provides the reader with categorized groups of general code for a wide variety of chemical reactors. Being designed as a tool for researchers and professionals, the code can easily be extended and adapted by the reader to their own specific problems. |
mass and energy balance chemical engineering problems: Unit Operations in Food Processing R. L. Earle, 2004 |
mass and energy balance chemical engineering problems: Handbook on Material and Energy Balance Calculations in Metallurgical Processes H. Alan Fine, Gordon Geiger, 1993 This book approaches the subject of material and energy balances from two directions. First, it emphasizes the fundamental principles of the conservation of mass and energy, and the consequences of these two principles. Second it applies the techniques of computational chemistry to materials processing, and introduces new software developed by the author especially for material and heat balances. The third edition reflects the changes in the professional engineer's practice in the last 30 years, reflecting the dramatic shift away from metallurgical engineering and the extractive industry towards materials engineering. A large and growing number of recent graduates are employed in such fields as semiconductor processing, environmental engineering, and the production and processing of advanced and exotic materials for aerospace, electronic and structural applications. The advance in computing power and software for the desktop computer has significantly changed the way engineers make computations, and the biggest change comes from the computational approach used to solve problems. The spreadsheet program Excel is used extensively throughout the text as the main computational engine for solving material and energy balance equations, and for statistical analysis of data. The use of Excel and the introduction of the add-in programs enables the study of a range of variables on critical process parameters, and emphasis is placed on multi-device flowsheets with recycle, bypass, and purge streams whose material and heat balance equations were previously too complicated to solve by the normally-used hand calculator. The Excel-based program FlowBal helps the user set up material and heat balance equations for processes with multiple streams and units-- |
mass and energy balance chemical engineering problems: Chemical Engineering Dynamics John Ingham, Irving J. Dunn, Elmar Heinzle, Jiri E. Prenosil, Jonathan B. Snape, 2008-02-08 In this book, the modelling of dynamic chemical engineering processes is presented in a highly understandable way using the unique combination of simplified fundamental theory and direct hands-on computer simulation. The mathematics is kept to a minimum, and yet the nearly 100 examples supplied on www.wiley-vch.de illustrate almost every aspect of chemical engineering science. Each example is described in detail, including the model equations. They are written in the modern user-friendly simulation language Berkeley Madonna, which can be run on both Windows PC and Power-Macintosh computers. Madonna solves models comprising many ordinary differential equations using very simple programming, including arrays. It is so powerful that the model parameters may be defined as sliders, which allow the effect of their change on the model behavior to be seen almost immediately. Data may be included for curve fitting, and sensitivity or multiple runs may be performed. The results can be seen simultaneously on multiple-graph windows or by using overlays. The resultant learning effect of this is tremendous. The examples can be varied to fit any real situation, and the suggested exercises provide practical guidance. The extensive experience of the authors, both in university teaching and international courses, is reflected in this well-balanced presentation, which is suitable for the teacher, the student, the chemist or the engineer. This book provides a greater understanding of the formulation and use of mass and energy balances for chemical engineering, in a most stimulating manner. This book is a third edition, which also includes biological, environmental and food process examples. |
mass and energy balance chemical engineering problems: Basic Principles and Calculations in Chemical Engineering David Mautner Himmelblau, 1967 |
mass and energy balance chemical engineering problems: Safety, Health, and Loss Prevention in Chemical Processes , 1990 |
mass and energy balance chemical engineering problems: Linear Mathematical Models In Chemical Engineering Martin Aksel Hjortso, Peter R Wolenski, 2010-01-15 Latest Edition: Linear Mathematical Models in Chemical Engineering (2nd Edition)Understanding the mathematical modeling of chemical processes is fundamental to the successful career of a researcher in chemical engineering. This book reviews, introduces, and develops the mathematics that is most frequently encountered in sophisticated chemical engineering models.The result of a collaboration between a chemical engineer and a mathematician, both of whom have taught classes on modeling and applied mathematics, the book provides a rigorous and in-depth coverage of chemical engineering model formulation and analysis as well as a text which can serve as an excellent introduction to linear mathematics for engineering students. There is a clear focus in the choice of material, worked examples, and exercises that make it unusually accessible to the target audience. The book places a heavy emphasis on applications to motivate the theory, but simultaneously maintains a high standard of rigor to add mathematical depth and understanding. |
Mass.gov
Official websites use .mass.gov. A .mass.gov website belongs to an official government organization in Massachusetts.
REAL ID - Mass.gov
Jun 3, 2025 · For information on other card types and requirements, including a Standard Driver’s license, visit Mass.Gov/ID.
Free Community College | Mass.gov
To attend a state community college for free: Complete and file your FAFSA.Many community colleges have resources to help you with this form. Eligible, non-U.S. citizens can apply for …
MyMassGov for personal or business use | Mass.gov
Official websites use .mass.gov. A .mass.gov website belongs to an official government organization in Massachusetts.
Board of Registration in Medicine | Mass.gov
The Board of Registration in Medicine’s mission is to ensure that only qualified and competent physicians of good moral character are licensed to practice in the Commonwealth of …
State Employee Resources - Mass.gov
Official websites use .mass.gov. A .mass.gov website belongs to an official government organization in Massachusetts. Secure websites use HTTPS certificate. A lock icon ( ) or …
Taxes - Mass.gov
Find tax refund information, tax forms, and advice to guide you through Massachusetts' tax system for individuals and businesses. Click on the titles of the boxes below, or the links within …
Finding a Job - Mass.gov
Official websites use .mass.gov. A .mass.gov website belongs to an official government organization in Massachusetts.
Mass.Gov Search
The official search application of the Commonwealth of Massachusetts. Search the Commonwealth's web properties to more easily find the services and information you are …
Secretary of the Commonwealth | Mass.gov
The Secretary of the Commonwealth is the chief record-keeping, public information, securities regulator, and elections officer of the Commonwealth. Our office is responsible for the …
Mass.gov
Official websites use .mass.gov. A .mass.gov website belongs to an official government organization in Massachusetts.
REAL ID - Mass.gov
Jun 3, 2025 · For information on other card types and requirements, including a Standard Driver’s license, visit Mass.Gov/ID.
Free Community College | Mass.gov
To attend a state community college for free: Complete and file your FAFSA.Many community colleges have resources to help you with this form. Eligible, non-U.S. citizens can apply for …
MyMassGov for personal or business use | Mass.gov
Official websites use .mass.gov. A .mass.gov website belongs to an official government organization in Massachusetts.
Board of Registration in Medicine | Mass.gov
The Board of Registration in Medicine’s mission is to ensure that only qualified and competent physicians of good moral character are licensed to practice in the Commonwealth of …
State Employee Resources - Mass.gov
Official websites use .mass.gov. A .mass.gov website belongs to an official government organization in Massachusetts. Secure websites use HTTPS certificate. A lock icon ( ) or …
Taxes - Mass.gov
Find tax refund information, tax forms, and advice to guide you through Massachusetts' tax system for individuals and businesses. Click on the titles of the boxes below, or the links within …
Finding a Job - Mass.gov
Official websites use .mass.gov. A .mass.gov website belongs to an official government organization in Massachusetts.
Mass.Gov Search
The official search application of the Commonwealth of Massachusetts. Search the Commonwealth's web properties to more easily find the services and information you are …
Secretary of the Commonwealth | Mass.gov
The Secretary of the Commonwealth is the chief record-keeping, public information, securities regulator, and elections officer of the Commonwealth. Our office is responsible for the …