Advertisement
mathematical programming book: Applied Mathematical Programming Stephen P. Bradley, Arnoldo C. Hax, Thomas L. Magnanti, 1977 Mathematical programming: an overview; solving linear programs; sensitivity analysis; duality in linear programming; mathematical programming in practice; integration of strategic and tactical planning in the aluminum industry; planning the mission and composition of the U.S. merchant Marine fleet; network models; integer programming; design of a naval tender job shop; dynamic programming; large-scale systems; nonlinear programming; a system for bank portfolio planning; vectors and matrices; linear programming in matrix form; a labeling algorithm for the maximun-flow network problem. |
mathematical programming book: Mathematical Programming Melvyn Jeter, 2018-05-03 This book serves as an introductory text in mathematical programming and optimization for students having a mathematical background that includes one semester of linear algebra and a complete calculus sequence. It includes computational examples to aid students develop computational skills. |
mathematical programming book: Methods and Models in Mathematical Programming S. A. MirHassani, F. Hooshmand, 2019-12-09 This book focuses on mathematical modeling, describes the process of constructing and evaluating models, discusses the challenges and delicacies of the modeling process, and explicitly outlines the required rules and regulations so that the reader will be able to generalize and reuse concepts in other problems by relying on mathematical logic.Undergraduate and postgraduate students of different academic disciplines would find this book a suitable option preparing them for jobs and research fields requiring modeling techniques. Furthermore, this book can be used as a reference book for experts and practitioners requiring advanced skills of model building in their jobs. |
mathematical programming book: Mathematical Programming S. M. Sinha, 2005-01-01 Mathematical Programming, a branch of Operations Research, is perhaps the most efficient technique in making optimal decisions. It has a very wide application in the analysis of management problems, in business and industry, in economic studies, in military problems and in many other fields of our present day activities. In this keen competetive world, the problems are getting more and more complicated ahnd efforts are being made to deal with these challenging problems. This book presents from the origin to the recent developments in mathematical programming. The book has wide coverage and is self-contained. It is suitable both as a text and as a reference.* A wide ranging all encompasing overview of mathematical programming from its origins to recent developments* A result of over thirty years of teaching experience in this feild* A self-contained guide suitable both as a text and as a reference |
mathematical programming book: User's Guide to XCELL+ Factory Modeling System , 1990 |
mathematical programming book: History of Mathematical Programming J. K. Lenstra, A. H. G. Rinnooy Kan, A. Schrijver, 1991 The historical span of mathematical programming, from its conception to its present flourishing state is remarkably short. The 1940's and 1950's were an exciting period when there was a great deal of research activity, but the growth of the field during the 1960's and 1970's worldwide already appears to be of historical interest too, because much of the progress during that time has had an important influence on present-day research. In this volume some pioneers of the field, as well as some prominent younger colleagues, have put their personal recollections in writing. The contributions bear witness to a time of impressive scientific progress, in which the rich new field of mathematical programming was detected and brought up. |
mathematical programming book: Math for Programmers Paul Orland, 2020-11-30 A gentle introduction to some of the most useful mathematical concepts that should be in your developer toolbox. - Christopher Haupt, New Relic Explore important mathematical concepts through hands-on coding. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. Summary To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest programming fields. About the technology Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code! What's inside Vector geometry for computer graphics Matrices and linear transformations Core concepts from calculus Simulation and optimization Image and audio processing Machine learning algorithms for regression and classification About the reader For programmers with basic skills in algebra. About the author Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land. Table of Contents 1 Learning math with code PART I - VECTORS AND GRAPHICS 2 Drawing with 2D vectors 3 Ascending to the 3D world 4 Transforming vectors and graphics 5 Computing transformations with matrices 6 Generalizing to higher dimensions 7 Solving systems of linear equations PART 2 - CALCULUS AND PHYSICAL SIMULATION 8 Understanding rates of change 9 Simulating moving objects 10 Working with symbolic expressions 11 Simulating force fields 12 Optimizing a physical system 13 Analyzing sound waves with a Fourier series PART 3 - MACHINE LEARNING APPLICATIONS 14 Fitting functions to data 15 Classifying data with logistic regression 16 Training neural networks |
mathematical programming book: Model Solving in Mathematical Programming H. P. Williams, 1993-04-13 Uses numerical examples with commentary on the nature of applications. Definitions are introduced in context and examples are intended to motivate discussion as well as aid in understanding. Concentrates on methods for solving the general models of linear, separable nonlinear and integer programming along with their practical computer implementation. Numerical examples are sufficiently small to be solvable by hand. |
mathematical programming book: Algorithmic Principles of Mathematical Programming Ulrich Faigle, W. Kern, G. Still, 2013-04-17 Algorithmic Principles of Mathematical Programming investigates the mathematical structures and principles underlying the design of efficient algorithms for optimization problems. Recent advances in algorithmic theory have shown that the traditionally separate areas of discrete optimization, linear programming, and nonlinear optimization are closely linked. This book offers a comprehensive introduction to the whole subject and leads the reader to the frontiers of current research. The prerequisites to use the book are very elementary. All the tools from numerical linear algebra and calculus are fully reviewed and developed. Rather than attempting to be encyclopedic, the book illustrates the important basic techniques with typical problems. The focus is on efficient algorithms with respect to practical usefulness. Algorithmic complexity theory is presented with the goal of helping the reader understand the concepts without having to become a theoretical specialist. Further theory is outlined and supplemented with pointers to the relevant literature. |
mathematical programming book: Mathematical Programming Masao Iri, 1989 |
mathematical programming book: Mathematical Programming And Game Theory For Decision Making S K Neogy, Ravindra B Bapat, A K Das, T Parthasarathy, 2008-04-28 This edited book presents recent developments and state-of-the-art review in various areas of mathematical programming and game theory. It is a peer-reviewed research monograph under the ISI Platinum Jubilee Series on Statistical Science and Interdisciplinary Research. This volume provides a panoramic view of theory and the applications of the methods of mathematical programming to problems in statistics, finance, games and electrical networks. It also provides an important as well as timely overview of research trends and focuses on the exciting areas like support vector machines, bilevel programming, interior point method for convex quadratic programming, cooperative games, non-cooperative games and stochastic games. Researchers, professionals and advanced graduates will find the book an essential resource for current work in mathematical programming, game theory and their applications. |
mathematical programming book: Decomposition Techniques in Mathematical Programming Antonio J. Conejo, Enrique Castillo, Roberto Minguez, Raquel Garcia-Bertrand, 2006-01-10 Optimization plainly dominates the design, planning, operation, and c- trol of engineering systems. This is a book on optimization that considers particular cases of optimization problems, those with a decomposable str- ture that can be advantageously exploited. Those decomposable optimization problems are ubiquitous in engineering and science applications. The book considers problems with both complicating constraints and complicating va- ables, and analyzes linear and nonlinear problems, with and without in- ger variables. The decomposition techniques analyzed include Dantzig-Wolfe, Benders, Lagrangian relaxation, Augmented Lagrangian decomposition, and others. Heuristic techniques are also considered. Additionally, a comprehensive sensitivity analysis for characterizing the solution of optimization problems is carried out. This material is particularly novel and of high practical interest. This book is built based on many clarifying, illustrative, and compu- tional examples, which facilitate the learning procedure. For the sake of cl- ity, theoretical concepts and computational algorithms are assembled based on these examples. The results are simplicity, clarity, and easy-learning. We feel that this book is needed by the engineering community that has to tackle complex optimization problems, particularly by practitioners and researchersinEngineering,OperationsResearch,andAppliedEconomics.The descriptions of most decomposition techniques are available only in complex and specialized mathematical journals, di?cult to understand by engineers. A book describing a wide range of decomposition techniques, emphasizing problem-solving, and appropriately blending theory and application, was not previously available. |
mathematical programming book: Progress in Mathematical Programming Nimrod Megiddo, 2012-12-06 The starting point of this volume was a conference entitled Progress in Mathematical Programming, held at the Asilomar Conference Center in Pacific Grove, California, March 1-4, 1987. The main topic of the conference was developments in the theory and practice of linear programming since Karmarkar's algorithm. There were thirty presentations and approximately fifty people attended. Presentations included new algorithms, new analyses of algorithms, reports on computational experience, and some other topics related to the practice of mathematical programming. Interestingly, most of the progress reported at the conference was on the theoretical side. Several new polynomial algorithms for linear program ming were presented (Barnes-Chopra-Jensen, Goldfarb-Mehrotra, Gonzaga, Kojima-Mizuno-Yoshise, Renegar, Todd, Vaidya, and Ye). Other algorithms presented were by Betke-Gritzmann, Blum, Gill-Murray-Saunders-Wright, Nazareth, Vial, and Zikan-Cottle. Efforts in the theoretical analysis of algo rithms were also reported (Anstreicher, Bayer-Lagarias, Imai, Lagarias, Megiddo-Shub, Lagarias, Smale, and Vanderbei). Computational experiences were reported by Lustig, Tomlin, Todd, Tone, Ye, and Zikan-Cottle. Of special interest, although not in the main direction discussed at the conference, was the report by Rinaldi on the practical solution of some large traveling salesman problems. At the time of the conference, it was still not clear whether the new algorithms developed since Karmarkar's algorithm would replace the simplex method in practice. Alan Hoffman presented results on conditions under which linear programming problems can be solved by greedy algorithms. |
mathematical programming book: Introduction to Mathematical Programming Wayne L. Winston, 1995 CD-ROM contains LINDO 6.1, LINGO 7.0, NeuralWorks Predict, Premium Solver for Education and examples files. |
mathematical programming book: Mathematical Programming with Data Perturbations Anthony V. Fiacco, 1997-09-19 Presents research contributions and tutorial expositions on current methodologies for sensitivity, stability and approximation analyses of mathematical programming and related problem structures involving parameters. The text features up-to-date findings on important topics, covering such areas as the effect of perturbations on the performance of algorithms, approximation techniques for optimal control problems, and global error bounds for convex inequalities. |
mathematical programming book: Building and Solving Mathematical Programming Models in Engineering and Science Enrique Castillo, Antonio J. Conejo, Pablo Pedregal, Ricardo García, Natalia Alguacil, 2011-10-24 Fundamental concepts of mathematical modeling Modeling is one of the most effective, commonly used tools in engineering and the applied sciences. In this book, the authors deal with mathematical programming models both linear and nonlinear and across a wide range of practical applications. Whereas other books concentrate on standard methods of analysis, the authors focus on the power of modeling methods for solving practical problems-clearly showing the connection between physical and mathematical realities-while also describing and exploring the main concepts and tools at work. This highly computational coverage includes: * Discussion and implementation of the GAMS programming system * Unique coverage of compatibility * Illustrative examples that showcase the connection between model and reality * Practical problems covering a wide range of scientific disciplines, as well as hundreds of examples and end-of-chapter exercises * Real-world applications to probability and statistics, electrical engineering, transportation systems, and more Building and Solving Mathematical Programming Models in Engineering and Science is practically suited for use as a professional reference for mathematicians, engineers, and applied or industrial scientists, while also tutorial and illustrative enough for advanced students in mathematics or engineering. |
mathematical programming book: Fuzzy Mathematical Programming Young-Jou Lai, Ching-Lai Hwang, 1992-12-14 In the last 25 years, the fuzzy set theory has been applied in many disciplines such as operations research, management science, control theory,artificial intelligence/expert system, etc. In this volume, methods and applications of fuzzy mathematical programming and possibilistic mathematical programming are first systematically and thoroughly reviewed and classified. This state-of-the-art survey provides readers with a capsule look into the existing methods, and their characteristics and applicability to analysis of fuzzy and possibilistic programming problems. To realize practical fuzzy modelling, we present solutions for real-world problems including production/manufacturing, transportation, assignment, game, environmental management, resource allocation, project investment, banking/finance, and agricultural economics. To improve flexibility and robustness of fuzzy mathematical programming techniques, we also present our expert decision-making support system IFLP which considers and solves all possibilities of a specific domain of (fuzzy) linear programming problems. Basic fuzzy set theories, membership functions, fuzzy decisions, operators and fuzzy arithmetic are introduced with simple numerical examples in aneasy-to-read and easy-to-follow manner. An updated bibliographical listing of 60 books, monographs or conference proceedings, and about 300 selected papers, reports or theses is presented in the end of this study. |
mathematical programming book: Business Optimization Using Mathematical Programming Josef Kallrath, 2021-08-31 This book presents a structured approach to formulate, model, and solve mathematical optimization problems for a wide range of real world situations. Among the problems covered are production, distribution and supply chain planning, scheduling, vehicle routing, as well as cutting stock, packing, and nesting. The optimization techniques used to solve the problems are primarily linear, mixed-integer linear, nonlinear, and mixed integer nonlinear programming. The book also covers important considerations for solving real-world optimization problems, such as dealing with valid inequalities and symmetry during the modeling phase, but also data interfacing and visualization of results in a more and more digitized world. The broad range of ideas and approaches presented helps the reader to learn how to model a variety of problems from process industry, paper and metals industry, the energy sector, and logistics using mathematical optimization techniques. |
mathematical programming book: Introduction to Mathematical Programming N. K. Kwak, Marc J. Schniederjans, 1987 This text presents current and classical mathematical programming techniques at an introductory level. It provides case problems to stimulate interest and is aimed for undergraduate courses in management science, operations and decision research, and applied mathematics. |
mathematical programming book: Linear and Integer Programming Abdul Bari, Mohammad Faisal Khan, Sanaullah Khan, 2019-10-25 This book is primarily intended for undergraduate and postgraduate students of statistics, mathematics, operations research, and engineering. It provides the basic concepts and methods of linear and integer linear programming. The text begins with an introduction containing the mathematical background to the subject matter, and goes on to discuss advancements the field. Formulations of various problems in diverse fields in linear and integer programming formats are also presented here. The book’s presentation of the solution of various numerical problems makes the subject matter and the methods detailed in the text more lucid and easier to comprehend. |
mathematical programming book: Matheuristics Vittorio Maniezzo, Thomas Stützle, Stefan Voß, 2009-09-18 Metaheuristics support managers in decision-making with robust tools that provide high-quality solutions to important applications in business, engineering, economics, and science in reasonable time frames, but finding exact solutions in these applications still poses a real challenge. However, because of advances in the fields of mathematical optimization and metaheuristics, major efforts have been made on their interface regarding efficient hybridization. This edited book will provide a survey of the state of the art in this field by providing some invited reviews by well-known specialists as well as refereed papers from the second Matheuristics workshop to be held in Bertinoro, Italy, June 2008. Papers will explore mathematical programming techniques in metaheuristics frameworks, and especially focus on the latest developments in Mixed Integer Programming in solving real-world problems. |
mathematical programming book: Algorithmic Principles of Mathematical Programming Ulrich Faigle, W. Kern, Georg Still, 2002-08-31 Algorithmic Principles of Mathematical Programming investigates the mathematical structures and principles underlying the design of efficient algorithms for optimization problems. Recent advances in algorithmic theory have shown that the traditionally separate areas of discrete optimization, linear programming, and nonlinear optimization are closely linked. This book offers a comprehensive introduction to the whole subject and leads the reader to the frontiers of current research. The prerequisites to use the book are very elementary. All the tools from numerical linear algebra and calculus are fully reviewed and developed. Rather than attempting to be encyclopedic, the book illustrates the important basic techniques with typical problems. The focus is on efficient algorithms with respect to practical usefulness. Algorithmic complexity theory is presented with the goal of helping the reader understand the concepts without having to become a theoretical specialist. Further theory is outlined and supplemented with pointers to the relevant literature. The book is equally suited for self-study for a motivated beginner and for a comprehensive course on the principles of mathematical programming within an applied mathematics or computer science curriculum at advanced undergraduate or graduate level. The presentation of the material is such that smaller modules on discrete optimization, linear programming, and nonlinear optimization can easily be extracted separately and used for shorter specialized courses on these subjects. |
mathematical programming book: Modelling in Mathematical Programming José Manuel García Sánchez, 2021 This book provides basic tools for learning how to model in mathematical programming, from models without much complexity to complex system models. It presents a unique methodology for the building of an integral mathematical model, as well as new techniques that help build under own criteria. It allows readers to structure models from the elements and variables to the constraints, a basic modelling guide for any system with a new scheme of variables, a classification of constraints and also a set of rules to model specifications stated as logical propositions, helping to better understand models already existing in the literature. It also presents the modelling of all possible objectives that may arise in optimization problems regarding the variables values. The book is structured to guide the reader in an orderly manner, learning of the components that the methodology establishes in an optimization problem. The system includes the elements, which are all the actors that participate in the system, decision activities that occur in the system, calculations based on the decision activities, specifications such as regulations, impositions or actions of defined value and objective criterion, which guides the resolution of the system. |
mathematical programming book: Entropy Optimization and Mathematical Programming Shu-Cherng Fang, J.R. Rajasekera, H.S.J. Tsao, 2012-12-06 Entropy optimization is a useful combination of classical engineering theory (entropy) with mathematical optimization. The resulting entropy optimization models have proved their usefulness with successful applications in areas such as image reconstruction, pattern recognition, statistical inference, queuing theory, spectral analysis, statistical mechanics, transportation planning, urban and regional planning, input-output analysis, portfolio investment, information analysis, and linear and nonlinear programming. While entropy optimization has been used in different fields, a good number of applicable solution methods have been loosely constructed without sufficient mathematical treatment. A systematic presentation with proper mathematical treatment of this material is needed by practitioners and researchers alike in all application areas. The purpose of this book is to meet this need. Entropy Optimization and Mathematical Programming offers perspectives that meet the needs of diverse user communities so that the users can apply entropy optimization techniques with complete comfort and ease. With this consideration, the authors focus on the entropy optimization problems in finite dimensional Euclidean space such that only some basic familiarity with optimization is required of the reader. |
mathematical programming book: Computational Mathematical Programming Klaus Schittkowski, 2013-06-29 This book contains the written versions of main lectures presented at the Advanced Study Institute (ASI) on Computational Mathematical Programming, which was held in Bad Windsheim, Germany F. R., from July 23 to August 2, 1984, under the sponsorship of NATO. The ASI was organized by the Committee on Algorithms (COAL) of the Mathematical Programming Society. Co-directors were Karla Hoffmann (National Bureau of Standards, Washington, U.S.A.) and Jan Teigen (Rabobank Nederland, Zeist, The Netherlands). Ninety participants coming from about 20 different countries attended the ASI and contributed their efforts to achieve a highly interesting and stimulating meeting. Since 1947 when the first linear programming technique was developed, the importance of optimization models and their mathematical solution methods has steadily increased, and now plays a leading role in applied research areas. The basic idea of optimization theory is to minimize (or maximize) a function of several variables subject to certain restrictions. This general mathematical concept covers a broad class of possible practical applications arising in mechanical, electrical, or chemical engineering, physics, economics, medicine, biology, etc. There are both industrial applications (e.g. design of mechanical structures, production plans) and applications in the natural, engineering, and social sciences (e.g. chemical equilibrium problems, christollography problems). |
mathematical programming book: Introduction to Mathematical Programming Russell C. Walker, 2010-11-08 This text is written for the business major with enough mathematical background to appreciate an occasional departure from a main emphasis on applications. The first five chapters discuss linear problems with linear programming the central topic. The necessary matrix algebra background is developed in Chapter 2. Chapters 6 and 7 require differential calculus at a level comparable to that of first year engineering and science students. The key elements of calculus needed for optimization are recalled at the beginning of Chapter 6. The eighth chapter is devoted to integer programming including branch and bound algorithms for the knapsack and traveling salesman problems and an emphasis on problem formulation. Chapter 9 is a short introduction to dynamic programming and the last chapter contains case studies at a level a little higher than the problems in the text. |
mathematical programming book: Mathematical Programming Michel Minoux, 1986 This comprehensive work covers the whole field of mathematical programming, including linear programming, unconstrained and constrained nonlinear programming, nondifferentiable (or nonsmooth) optimization, integer programming, large scale systems optimization, dynamic programming, and optimization in infinite dimensions. Special emphasis is placed on unifying concepts such as point-to-set maps, saddle points and perturbations functions, duality theory and its extensions. |
mathematical programming book: Logic and Integer Programming H. Paul Williams, 2009-04-09 Paul Williams, a leading authority on modeling in integer programming, has written a concise, readable introduction to the science and art of using modeling in logic for integer programming. Written for graduate and postgraduate students, as well as academics and practitioners, the book is divided into four chapters that all avoid the typical format of definitions, theorems and proofs and instead introduce concepts and results within the text through examples. References are given at the end of each chapter to the more mathematical papers and texts on the subject, and exercises are included to reinforce and expand on the material in the chapter. Methods of solving with both logic and IP are given and their connections are described. Applications in diverse fields are discussed, and Williams shows how IP models can be expressed as satisfiability problems and solved as such. |
mathematical programming book: Mathematical Programming for Agricultural, Environmental, and Resource Economics Harry M. Kaiser, Kent D. Messer, 2012-01-18 Mathematical Programming Models for Agriculture, Environmental, and Resource Economics provides a comprehensive overview of mathematical programming models and their applications to real world and important problems confronting agricultural, environmental, and resource economists. Unlike most mathematical programming books, the principal focus of this text is on applications of these techniques and models to the fields of agricultural, environmental, and resource economics. The three fundamental goals of the book are to provide the reader with: (1) a level of background sufficient to apply mathematical programming techniques to real world policy and business to conduct solid research and analysis, (2) a variety of applications of mathematical programming to important problems in the areas of agricultural, environmental, and resource economics, and (3) a firm foundation for preparation to more advanced, Ph.D. level books on linear and/or nonlinear programming. Despite its introductory nature, the text places significant emphasis on real world applications of mathematical programming to decision problems. A wide array of examples and case studies are used to convey the various programming techniques available to decision analysts. |
mathematical programming book: Linear Programming with MATLAB Michael C. Ferris, Olvi L. Mangasarian, Stephen J. Wright, 2007-01-01 A self-contained introduction to linear programming using MATLAB® software to elucidate the development of algorithms and theory. Exercises are included in each chapter, and additional information is provided in two appendices and an accompanying Web site. Only a basic knowledge of linear algebra and calculus is required. |
mathematical programming book: 3D Math Primer for Graphics and Game Development Fletcher Dunn, 2011-11-02 This engaging book presents the essential mathematics needed to describe, simulate, and render a 3D world. Reflecting both academic and in-the-trenches practical experience, the authors teach you how to describe objects and their positions, orientations, and trajectories in 3D using mathematics. The text provides an introduction to mathematics for |
mathematical programming book: Mathematical Computing David Betounes, Mylan Redfern, 2001-12-07 This book teaches introductory computer programming using Maple, offering more mathematically oriented exercises and problems than those found in traditional programming courses, while reinforcing and applying concepts and techniques of calculus. Includes case studies. |
mathematical programming book: Julia Programming for Operations Research Changhyun Kwon, 2019-03-03 Last Updated: December 2020 Based on Julia v1.3+ and JuMP v0.21+ The main motivation of writing this book was to help the author himself. He is a professor in the field of operations research, and his daily activities involve building models of mathematical optimization, developing algorithms for solving the problems, implementing those algorithms using computer programming languages, experimenting with data, etc. Three languages are involved: human language, mathematical language, and computer language. His team of students need to go over three different languages, which requires translation among the three languages. As this book was written to teach his research group how to translate, this book will also be useful for anyone who needs to learn how to translate in a similar situation. The Julia Language is as fast as C, as convenient as MATLAB, and as general as Python with a flexible algebraic modeling language for mathematical optimization problems. With the great support from Julia developers, especially the developers of the JuMP—Julia for Mathematical Programming—package, Julia makes a perfect tool for students and professionals in operations research and related areas such as industrial engineering, management science, transportation engineering, economics, and regional science. For more information, visit: http://www.chkwon.net/julia |
mathematical programming book: C Mathematical Function Handbook Louis Baker, 1992 C source code, algorithms and applications for a wide range of valuable scientific and engineering mathematical functions. Each function is discussed in detail with algorithms, applications, and key referneces. Includes a separate 3 1/2 disk. |
mathematical programming book: Mathematical Programming and Game Theory S.K. Neogy, Ravindra B. Bapat, Dipti Dubey, 2018-11-28 This book discusses recent developments in mathematical programming and game theory, and the application of several mathematical models to problems in finance, games, economics and graph theory. All contributing authors are eminent researchers in their respective fields, from across the world. This book contains a collection of selected papers presented at the 2017 Symposium on Mathematical Programming and Game Theory at New Delhi during 9–11 January 2017. Researchers, professionals and graduate students will find the book an essential resource for current work in mathematical programming, game theory and their applications in finance, economics and graph theory. The symposium provides a forum for new developments and applications of mathematical programming and game theory as well as an excellent opportunity to disseminate the latest major achievements and to explore new directions and perspectives. |
mathematical programming book: Introduction to Mathematical Programming Russell C. Walker, 1999 Intended for Mathematical Programming courses at the undergraduate level. Course can be found in business schools-especially MBA programs-as Management Science and Operations Research. Providing the background in mathematics departments, the course may also be called Linear Programming or Optimization. Necessary to begin using mathematical programming as a tool for managerial applications and beyond, this empowering guide helps students learn to recognize when a mathematical model can be useful and helps them develop an appreciation and understanding of the mathematics associated with the applied techniques. Formatted in a flexible framework to suit individual course needs, it presents self-contained chapters later in the book which are designed to work in the order an instructor deems most suitable. For more information, please visit: http://www.math.cmu.edu/~rw1k/ |
mathematical programming book: Nondifferentiable and Two-Level Mathematical Programming Kiyotaka Shimizu, Yo Ishizuka, Jonathan F. Bard, 1996-11-30 The analysis and design of engineering and industrial systems has come to rely heavily on the use of optimization techniques. The theory developed over the last 40 years, coupled with an increasing number of powerful computational procedures, has made it possible to routinely solve problems arising in such diverse fields as aircraft design, material flow, curve fitting, capital expansion, and oil refining just to name a few. Mathematical programming plays a central role in each of these areas and can be considered the primary tool for systems optimization. Limits have been placed on the types of problems that can be solved, though, by the difficulty of handling functions that are not everywhere differentiable. To deal with real applications, it is often necessary to be able to optimize functions that while continuous are not differentiable in the classical sense. As the title of the book indicates, our chief concern is with (i) nondifferentiable mathematical programs, and (ii) two-level optimization problems. In the first half of the book, we study basic theory for general smooth and nonsmooth functions of many variables. After providing some background, we extend traditional (differentiable) nonlinear programming to the nondifferentiable case. The term used for the resultant problem is nondifferentiable mathematical programming. The major focus is on the derivation of optimality conditions for general nondifferentiable nonlinear programs. We introduce the concept of the generalized gradient and derive Kuhn-Tucker-type optimality conditions for the corresponding formulations. |
mathematical programming book: Introduction to Mathematical Programming Frederick S. Hillier, Gerald J. Lieberman, 1990 |
mathematical programming book: Mathematical Programming Steven Vajda, 2009-01-01 This classic by a well-known expert explores both theory and applications. It focuses on linear programming, in addition to other programming topics, and features numerous worked-out examples and problems. 1961 edition. |
Mathematics - Wikipedia
Mathematics is a field of study that discovers and organizes methods, theories and theorems that are developed and proved for the needs of empirical sciences and mathematics itself.
Wolfram Mathematica: Modern Technical Computing
Mathematica is built to provide industrial-strength capabilities—with robust, efficient algorithms across all areas, capable of handling large-scale problems, with parallelism, GPU computing …
Mathematics | Definition, History, & Importance | Britannica
Apr 30, 2025 · mathematics, the science of structure, order, and relation that has evolved from elemental practices of counting, measuring, and describing the shapes of objects. It deals with …
Wolfram MathWorld: The Web's Most Extensive Mathematics …
May 22, 2025 · Comprehensive encyclopedia of mathematics with 13,000 detailed entries. Continually updated, extensively illustrated, and with interactive examples.
Wolfram|Alpha: Computational Intelligence
Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history, geography, …
MATHEMATICAL Definition & Meaning - Merriam-Webster
The meaning of MATHEMATICAL is of, relating to, or according with mathematics. How to use mathematical in a sentence.
Mathematics - Encyclopedia of Mathematics
Mar 30, 2012 · In the 17th century new questions in natural science and technology compelled mathematicians to concentrate their attention on the creation of methods to allow the …
MATHEMATICAL | English meaning - Cambridge Dictionary
mathematical formula The researchers used a mathematical formula to calculate the total population number. mathematical problem It was a mathematical problem that he could not …
Mathematical - definition of mathematical by The Free Dictionary
mathematical - of or pertaining to or of the nature of mathematics; "a mathematical textbook"; "slide rules and other mathematical instruments"; "a mathematical solution to a problem"; …
What is Mathematics? – Mathematical Association of America
Math is about getting the right answers, and we want kids to learn to think so they get the right answer. My reaction was visceral and immediate. “This is wrong. The emphasis needs to be …
Mathematics - Wikipedia
Mathematics is a field of study that discovers and organizes methods, theories and theorems that are developed and proved for the needs of empirical sciences and mathematics itself.
Wolfram Mathematica: Modern Technical Computing
Mathematica is built to provide industrial-strength capabilities—with robust, efficient algorithms across all areas, capable of handling large-scale problems, with parallelism, GPU computing …
Mathematics | Definition, History, & Importance | Britannica
Apr 30, 2025 · mathematics, the science of structure, order, and relation that has evolved from elemental practices of counting, measuring, and describing the shapes of objects. It deals with …
Wolfram MathWorld: The Web's Most Extensive Mathematics …
May 22, 2025 · Comprehensive encyclopedia of mathematics with 13,000 detailed entries. Continually updated, extensively illustrated, and with interactive examples.
Wolfram|Alpha: Computational Intelligence
Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history, geography, …
MATHEMATICAL Definition & Meaning - Merriam-Webster
The meaning of MATHEMATICAL is of, relating to, or according with mathematics. How to use mathematical in a sentence.
Mathematics - Encyclopedia of Mathematics
Mar 30, 2012 · In the 17th century new questions in natural science and technology compelled mathematicians to concentrate their attention on the creation of methods to allow the …
MATHEMATICAL | English meaning - Cambridge Dictionary
mathematical formula The researchers used a mathematical formula to calculate the total population number. mathematical problem It was a mathematical problem that he could not …
Mathematical - definition of mathematical by The Free Dictionary
mathematical - of or pertaining to or of the nature of mathematics; "a mathematical textbook"; "slide rules and other mathematical instruments"; "a mathematical solution to a problem"; …
What is Mathematics? – Mathematical Association of America
Math is about getting the right answers, and we want kids to learn to think so they get the right answer. My reaction was visceral and immediate. “This is wrong. The emphasis needs to be on …