Linear Optimization Textbook

Advertisement



  linear optimization textbook: Linear Optimization and Extensions Manfred Padberg, 2013-04-17 I was pleasantly surprised when I was asked by Springer-Verlag to prepare a second edition of this volume on Linear Optimization and Extensions, which - not exactly contrary to my personal expectations - has apparently been accepted reasonably weIl by the global optimization community. My objective in putting this book together was originally - and still is - to detail the major algorithmic ideas in linear optimization that have evolved in the past fifty years or so and that have changed the historical optimization landscape in substantial ways - both theoretically and computationally. While I may have overlooked the importance of some very recent developments - the work by Farid Alizadeh which generalizes linear programming to sem i-definite programming is perhaps a candidate for one of my omissions - I think that major new breakthraughs on those two fronts that interest me - theory and computation - have not occurred since this book was published originally. As a consequence I have restricted myself to a thorough re-working of the original manuscript with the goal of making it more readable. Of course, I have taken this opportunity to correct a few Schönheitsfehler of the first edition and to add some illustrations. The index to this volume has been extended substantially - to permit a hurried reader a quicker glance at the wealth of topics that were covered nevertheless already in the first edition. As was the case with the first edition, Dr.
  linear optimization textbook: Introduction to Linear Optimization Dimitris Bertsimas, John N. Tsitsiklis, 1997-01-01
  linear optimization textbook: Interior Point Methods for Linear Optimization Cornelis Roos, Tamas Terlaky, J.-Ph. Vial, 2005-09-07 The era of interior point methods (IPMs) was initiated by N. Karmarkar’s 1984 paper, which triggered turbulent research and reshaped almost all areas of optimization theory and computational practice. This book offers comprehensive coverage of IPMs. It details the main results of more than a decade of IPM research. Numerous exercises are provided to aid in understanding the material.
  linear optimization textbook: Linear Programming Robert J Vanderbei, 2013-07-16 This Fourth Edition introduces the latest theory and applications in optimization. It emphasizes constrained optimization, beginning with a substantial treatment of linear programming and then proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. Readers will discover a host of practical business applications as well as non-business applications. Topics are clearly developed with many numerical examples worked out in detail. Specific examples and concrete algorithms precede more abstract topics. With its focus on solving practical problems, the book features free C programs to implement the major algorithms covered, including the two-phase simplex method, primal-dual simplex method, path-following interior-point method, and homogeneous self-dual methods. In addition, the author provides online JAVA applets that illustrate various pivot rules and variants of the simplex method, both for linear programming and for network flows. These C programs and JAVA tools can be found on the book's website. The website also includes new online instructional tools and exercises.
  linear optimization textbook: Elementary Linear Programming with Applications Bernard Kolman, Robert E. Beck, 2014-05-10 Elementary Linear Programming with Applications presents a survey of the basic ideas in linear programming and related areas. It also provides students with some of the tools used in solving difficult problems which will prove useful in their professional career. The text is comprised of six chapters. The Prologue gives a brief survey of operations research and discusses the different steps in solving an operations research problem. Chapter 0 gives a quick review of the necessary linear algebra. Chapter 1 deals with the basic necessary geometric ideas in Rn. Chapter 2 introduces linear programming with examples of the problems to be considered, and presents the simplex method as an algorithm for solving linear programming problems. Chapter 3 covers further topics in linear programming, including duality theory and sensitivity analysis. Chapter 4 presents an introduction to integer programming. Chapter 5 covers a few of the more important topics in network flows. Students of business, engineering, computer science, and mathematics will find the book very useful.
  linear optimization textbook: Linear Algebra and Optimization for Machine Learning Charu C. Aggarwal, 2020-05-13 This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.
  linear optimization textbook: Large Scale Linear and Integer Optimization: A Unified Approach Richard Kipp Martin, 2012-12-06 This is a textbook about linear and integer linear optimization. There is a growing need in industries such as airline, trucking, and financial engineering to solve very large linear and integer linear optimization problems. Building these models requires uniquely trained individuals. Not only must they have a thorough understanding of the theory behind mathematical programming, they must have substantial knowledge of how to solve very large models in today's computing environment. The major goal of the book is to develop the theory of linear and integer linear optimization in a unified manner and then demonstrate how to use this theory in a modern computing environment to solve very large real world problems. After presenting introductory material in Part I, Part II of this book is de voted to the theory of linear and integer linear optimization. This theory is developed using two simple, but unifying ideas: projection and inverse projec tion. Through projection we take a system of linear inequalities and replace some of the variables with additional linear inequalities. Inverse projection, the dual of this process, involves replacing linear inequalities with additional variables. Fundamental results such as weak and strong duality, theorems of the alternative, complementary slackness, sensitivity analysis, finite basis the orems, etc. are all explained using projection or inverse projection. Indeed, a unique feature of this book is that these fundamental results are developed and explained before the simplex and interior point algorithms are presented.
  linear optimization textbook: Understanding and Using Linear Programming Jiri Matousek, Bernd Gärtner, 2006-10-05 The book is an introductory textbook mainly for students of computer science and mathematics. Our guiding phrase is what every theoretical computer scientist should know about linear programming. A major focus is on applications of linear programming, both in practice and in theory. The book is concise, but at the same time, the main results are covered with complete proofs and in sufficient detail, ready for presentation in class. The book does not require more prerequisites than basic linear algebra, which is summarized in an appendix. One of its main goals is to help the reader to see linear programming behind the scenes.
  linear optimization textbook: Linear Optimization and Approximation Klaus Glashoff, Sven-Åke Gustafson, 1983
  linear optimization textbook: Theory and Algorithms for Linear Optimization Cornelis Roos, T. Terlaky, J.-Ph. Vial, 1997-03-04 The approach to LO in this book is new in many aspects. In particular the IPM based development of duality theory is surprisingly elegant. The algorithmic parts of the book contain a complete discussion of many algorithmic variants, including predictor-corrector methods, partial updating, higher order methods and sensitivity and parametric analysis.
  linear optimization textbook: Linear and Nonlinear Optimization Igor Griva, Stephen G. Nash, Ariela Sofer, 2009-01-01 Provides an introduction to the applications, theory, and algorithms of linear and nonlinear optimization. The emphasis is on practical aspects - discussing modern algorithms, as well as the influence of theory on the interpretation of solutions or on the design of software. The book includes several examples of realistic optimization models that address important applications. The succinct style of this second edition is punctuated with numerous real-life examples and exercises, and the authors include accessible explanations of topics that are not often mentioned in textbooks, such as duality in nonlinear optimization, primal-dual methods for nonlinear optimization, filter methods, and applications such as support-vector machines. The book is designed to be flexible. It has a modular structure, and uses consistent notation and terminology throughout. It can be used in many different ways, in many different courses, and at many different levels of sophistication.
  linear optimization textbook: Deterministic Operations Research David J. Rader, 2013-06-07 Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations research: modeling real-world problems as linear optimization problem; designing the necessary algorithms to solve these problems; and using mathematical theory to justify algorithmic development. Treating real-world examples as mathematical problems, the author begins with an introduction to operations research and optimization modeling that includes applications form sports scheduling an the airline industry. Subsequent chapters discuss algorithm design for continuous linear optimization problems, covering topics such as convexity. Farkas’ Lemma, and the study of polyhedral before culminating in a discussion of the Simplex Method. The book also addresses linear programming duality theory and its use in algorithm design as well as the Dual Simplex Method. Dantzig-Wolfe decomposition, and a primal-dual interior point algorithm. The final chapters present network optimization and integer programming problems, highlighting various specialized topics including label-correcting algorithms for the shortest path problem, preprocessing and probing in integer programming, lifting of valid inequalities, and branch and cut algorithms. Concepts and approaches are introduced by outlining examples that demonstrate and motivate theoretical concepts. The accessible presentation of advanced ideas makes core aspects easy to understand and encourages readers to understand how to think about the problem, not just what to think. Relevant historical summaries can be found throughout the book, and each chapter is designed as the continuation of the “story” of how to both model and solve optimization problems by using the specific problems-linear and integer programs-as guides. The book’s various examples are accompanied by the appropriate models and calculations, and a related Web site features these models along with MapleTM and MATLAB® content for the discussed calculations. Thoroughly class-tested to ensure a straightforward, hands-on approach, Deterministic Operations Research is an excellent book for operations research of linear optimization courses at the upper-undergraduate and graduate levels. It also serves as an insightful reference for individuals working in the fields of mathematics, engineering, computer science, and operations research who use and design algorithms to solve problem in their everyday work.
  linear optimization textbook: Linear Programming and Its Applications James K. Strayer, 2012-12-06 Linear Programming and Its Applications is intended for a first course in linear programming, preferably in the sophomore or junior year of the typical undergraduate curriculum. The emphasis throughout the book is on linear programming skills via the algorithmic solution of small-scale problems, both in the general sense and in the specific applications where these problems naturally occur. The book arose from lecture notes prepared during the years 1985-1987 while I was a graduate assistant in the Department of Mathematics at The Pennsylvania State University. I used a preliminary draft in a Methods of Management Science class in the spring semester of 1988 at Lock Haven University. Having been extensively tried and tested in the classroom at various stages of its development, the book reflects many modifications either suggested directly by students or deemed appropriate from responses by students in the classroom setting. My primary aim in writing the book was to address common errors and difficulties as clearly and effectively as I could.
  linear optimization textbook: Linear Programming with MATLAB Michael C. Ferris, Olvi L. Mangasarian, Stephen J. Wright, 2007-01-01 A self-contained introduction to linear programming using MATLAB® software to elucidate the development of algorithms and theory. Exercises are included in each chapter, and additional information is provided in two appendices and an accompanying Web site. Only a basic knowledge of linear algebra and calculus is required.
  linear optimization textbook: An Introduction to Optimization Edwin K. P. Chong, Stanislaw H. Żak, 2013-02-05 Praise for the Third Edition . . . guides and leads the reader through the learning path . . . [e]xamples are stated very clearly and the results are presented with attention to detail. —MAA Reviews Fully updated to reflect new developments in the field, the Fourth Edition of Introduction to Optimization fills the need for accessible treatment of optimization theory and methods with an emphasis on engineering design. Basic definitions and notations are provided in addition to the related fundamental background for linear algebra, geometry, and calculus. This new edition explores the essential topics of unconstrained optimization problems, linear programming problems, and nonlinear constrained optimization. The authors also present an optimization perspective on global search methods and include discussions on genetic algorithms, particle swarm optimization, and the simulated annealing algorithm. Featuring an elementary introduction to artificial neural networks, convex optimization, and multi-objective optimization, the Fourth Edition also offers: A new chapter on integer programming Expanded coverage of one-dimensional methods Updated and expanded sections on linear matrix inequalities Numerous new exercises at the end of each chapter MATLAB exercises and drill problems to reinforce the discussed theory and algorithms Numerous diagrams and figures that complement the written presentation of key concepts MATLAB M-files for implementation of the discussed theory and algorithms (available via the book's website) Introduction to Optimization, Fourth Edition is an ideal textbook for courses on optimization theory and methods. In addition, the book is a useful reference for professionals in mathematics, operations research, electrical engineering, economics, statistics, and business.
  linear optimization textbook: Linear and Nonlinear Programming David G. Luenberger, Yinyu Ye, 2008-07-07 This third edition of the classic textbook in Optimization has been fully revised and updated. It comprehensively covers modern theoretical insights in this crucial computing area, and will be required reading for analysts and operations researchers in a variety of fields. The book connects the purely analytical character of an optimization problem, and the behavior of algorithms used to solve it. Now, the third edition has been completely updated with recent Optimization Methods. The book also has a new co-author, Yinyu Ye of California’s Stanford University, who has written lots of extra material including some on Interior Point Methods.
  linear optimization textbook: Nonlinear Optimization Francisco J. Aragón, Miguel A. Goberna, Marco A. López, Margarita M.L. Rodríguez, 2019-02-27 This textbook on nonlinear optimization focuses on model building, real world problems, and applications of optimization models to natural and social sciences. Organized into two parts, this book may be used as a primary text for courses on convex optimization and non-convex optimization. Definitions, proofs, and numerical methods are well illustrated and all chapters contain compelling exercises. The exercises emphasize fundamental theoretical results on optimality and duality theorems, numerical methods with or without constraints, and derivative-free optimization. Selected solutions are given. Applications to theoretical results and numerical methods are highlighted to help students comprehend methods and techniques.
  linear optimization textbook: Algorithms for Optimization Mykel J. Kochenderfer, Tim A. Wheeler, 2019-03-12 A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.
  linear optimization textbook: Optimization Models Giuseppe C. Calafiore, Laurent El Ghaoui, 2014-10-31 This accessible textbook demonstrates how to recognize, simplify, model and solve optimization problems - and apply these principles to new projects.
  linear optimization textbook: Linear Programming Robert J Vanderbei, 2007-10-23 This Third Edition introduces the latest theory and applications in optimization. It emphasizes constrained optimization, beginning with linear programming and then proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. You’ll discover a host of practical business applications as well as non-business applications. With its focus on solving practical problems, the book features free C programs to implement the major algorithms covered. The book’s accompanying website includes the C programs, JAVA tools, and new online instructional tools and exercises.
  linear optimization textbook: Robust Optimization Aharon Ben-Tal, Laurent El Ghaoui, Arkadi Nemirovski, 2009-08-10 Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.
  linear optimization textbook: Linear Programming: Foundations and Extensions Robert J. Vanderbei, 1998-03-31 This book focuses largely on constrained optimization. It begins with a substantial treatment of linear programming and proceeds to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. Along the way, dynamic programming and the linear complementarity problem are touched on as well. This book aims to be the first introduction to the topic. Specific examples and concrete algorithms precede more abstract topics. Nevertheless, topics covered are developed in some depth, a large number of numerical examples worked out in detail, and many recent results are included, most notably interior-point methods. The exercises at the end of each chapter both illustrate the theory, and, in some cases, extend it. Optimization is not merely an intellectual exercise: its purpose is to solve practical problems on a computer. Accordingly, the book comes with software that implements the major algorithms studied. At this point, software for the following four algorithms is available: The two-phase simplex method The primal-dual simplex method The path-following interior-point method The homogeneous self-dual methods.£/LIST£.
  linear optimization textbook: Linear Programming and Network Flows Mokhtar S. Bazaraa, John J. Jarvis, Hanif D. Sherali, 1990 Table of contents
  linear optimization textbook: Linear and Mixed Integer Programming for Portfolio Optimization Renata Mansini, Włodzimierz Ogryczak, M. Grazia Speranza, 2015-06-10 This book presents solutions to the general problem of single period portfolio optimization. It introduces different linear models, arising from different performance measures, and the mixed integer linear models resulting from the introduction of real features. Other linear models, such as models for portfolio rebalancing and index tracking, are also covered. The book discusses computational issues and provides a theoretical framework, including the concepts of risk-averse preferences, stochastic dominance and coherent risk measures. The material is presented in a style that requires no background in finance or in portfolio optimization; some experience in linear and mixed integer models, however, is required. The book is thoroughly didactic, supplementing the concepts with comments and illustrative examples.
  linear optimization textbook: An Introduction to Optimization Edwin K. P. Chong, Stanislaw H. Zak, 2004-03-22 A modern, up-to-date introduction to optimization theory and methods This authoritative book serves as an introductory text to optimization at the senior undergraduate and beginning graduate levels. With consistently accessible and elementary treatment of all topics, An Introduction to Optimization, Second Edition helps students build a solid working knowledge of the field, including unconstrained optimization, linear programming, and constrained optimization. Supplemented with more than one hundred tables and illustrations, an extensive bibliography, and numerous worked examples to illustrate both theory and algorithms, this book also provides: * A review of the required mathematical background material * A mathematical discussion at a level accessible to MBA and business students * A treatment of both linear and nonlinear programming * An introduction to recent developments, including neural networks, genetic algorithms, and interior-point methods * A chapter on the use of descent algorithms for the training of feedforward neural networks * Exercise problems after every chapter, many new to this edition * MATLAB(r) exercises and examples * Accompanying Instructor's Solutions Manual available on request An Introduction to Optimization, Second Edition helps students prepare for the advanced topics and technological developments that lie ahead. It is also a useful book for researchers and professionals in mathematics, electrical engineering, economics, statistics, and business. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
  linear optimization textbook: A Gentle Introduction to Optimization B. Guenin, J. Könemann, L. Tunçel, 2014-07-31 Optimization is an essential technique for solving problems in areas as diverse as accounting, computer science and engineering. Assuming only basic linear algebra and with a clear focus on the fundamental concepts, this textbook is the perfect starting point for first- and second-year undergraduate students from a wide range of backgrounds and with varying levels of ability. Modern, real-world examples motivate the theory throughout. The authors keep the text as concise and focused as possible, with more advanced material treated separately or in starred exercises. Chapters are self-contained so that instructors and students can adapt the material to suit their own needs and a wide selection of over 140 exercises gives readers the opportunity to try out the skills they gain in each section. Solutions are available for instructors. The book also provides suggestions for further reading to help students take the next step to more advanced material.
  linear optimization textbook: Algorithms for Linear-Quadratic Optimization Vasile Sima, 1996-03-05 This textbook offers theoretical, algorithmic and computational guidelines for solving the most frequently encountered linear-quadratic optimization problems. It provides an overview of recent advances in control and systems theory, numerical line algebra, numerical optimization, scientific computations and software engineering.
  linear optimization textbook: Engineering Optimization Singiresu S. Rao, 1996-02-29 In Engineering Optimization, Professor Singiresu S. Rao provides an application-oriented presentation of the full array of classical and newly developed optimization techniques now being used by engineers in a wide range of industries.
  linear optimization textbook: Theory of Linear and Integer Programming Alexander Schrijver, 1998-06-11 Theory of Linear and Integer Programming Alexander Schrijver Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands This book describes the theory of linear and integer programming and surveys the algorithms for linear and integer programming problems, focusing on complexity analysis. It aims at complementing the more practically oriented books in this field. A special feature is the author's coverage of important recent developments in linear and integer programming. Applications to combinatorial optimization are given, and the author also includes extensive historical surveys and bibliographies. The book is intended for graduate students and researchers in operations research, mathematics and computer science. It will also be of interest to mathematical historians. Contents 1 Introduction and preliminaries; 2 Problems, algorithms, and complexity; 3 Linear algebra and complexity; 4 Theory of lattices and linear diophantine equations; 5 Algorithms for linear diophantine equations; 6 Diophantine approximation and basis reduction; 7 Fundamental concepts and results on polyhedra, linear inequalities, and linear programming; 8 The structure of polyhedra; 9 Polarity, and blocking and anti-blocking polyhedra; 10 Sizes and the theoretical complexity of linear inequalities and linear programming; 11 The simplex method; 12 Primal-dual, elimination, and relaxation methods; 13 Khachiyan's method for linear programming; 14 The ellipsoid method for polyhedra more generally; 15 Further polynomiality results in linear programming; 16 Introduction to integer linear programming; 17 Estimates in integer linear programming; 18 The complexity of integer linear programming; 19 Totally unimodular matrices: fundamental properties and examples; 20 Recognizing total unimodularity; 21 Further theory related to total unimodularity; 22 Integral polyhedra and total dual integrality; 23 Cutting planes; 24 Further methods in integer linear programming; Historical and further notes on integer linear programming; References; Notation index; Author index; Subject index
  linear optimization textbook: Lectures on Modern Convex Optimization Aharon Ben-Tal, Arkadi Nemirovski, 2001-01-01 Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.
  linear optimization textbook: Integer Programming Michele Conforti, Gérard Cornuéjols, Giacomo Zambelli, 2014-11-15 This book is an elegant and rigorous presentation of integer programming, exposing the subject’s mathematical depth and broad applicability. Special attention is given to the theory behind the algorithms used in state-of-the-art solvers. An abundance of concrete examples and exercises of both theoretical and real-world interest explore the wide range of applications and ramifications of the theory. Each chapter is accompanied by an expertly informed guide to the literature and special topics, rounding out the reader’s understanding and serving as a gateway to deeper study. Key topics include: formulations polyhedral theory cutting planes decomposition enumeration semidefinite relaxations Written by renowned experts in integer programming and combinatorial optimization, Integer Programming is destined to become an essential text in the field.
  linear optimization textbook: Linear Programming 1 George B. Dantzig, Mukund N. Thapa, 1997-01-27 Encompassing all the major topics students will encounter in courses on the subject, the authors teach both the underlying mathematical foundations and how these ideas are implemented in practice. They illustrate all the concepts with both worked examples and plenty of exercises, and, in addition, provide software so that students can try out numerical methods and so hone their skills in interpreting the results. As a result, this will make an ideal textbook for all those coming to the subject for the first time. Authors' note: A problem recently found with the software is due to a bug in Formula One, the third party commercial software package that was used for the development of the interface. It occurs when the date, currency, etc. format is set to a non-United States version. Please try setting your computer date/currency option to the United States option . The new version of Formula One, when ready, will be posted on WWW.
  linear optimization textbook: Mathematics of Optimization: How to do Things Faster Steven J. Miller, 2017-12-20 Optimization Theory is an active area of research with numerous applications; many of the books are designed for engineering classes, and thus have an emphasis on problems from such fields. Covering much of the same material, there is less emphasis on coding and detailed applications as the intended audience is more mathematical. There are still several important problems discussed (especially scheduling problems), but there is more emphasis on theory and less on the nuts and bolts of coding. A constant theme of the text is the “why” and the “how” in the subject. Why are we able to do a calculation efficiently? How should we look at a problem? Extensive effort is made to motivate the mathematics and isolate how one can apply ideas/perspectives to a variety of problems. As many of the key algorithms in the subject require too much time or detail to analyze in a first course (such as the run-time of the Simplex Algorithm), there are numerous comparisons to simpler algorithms which students have either seen or can quickly learn (such as the Euclidean algorithm) to motivate the type of results on run-time savings.
  linear optimization textbook: Modeling and Solving Linear Programming with R Jose M. Sallan, Oriol Lordan, Vicenc Fernandez, 2015-09-09 Linear programming is one of the most extensively used techniques in the toolbox of quantitative methods of optimization. One of the reasons of the popularity of linear programming is that it allows to model a large variety of situations with a simple framework. Furthermore, a linear program is relatively easy to solve. The simplex method allows to solve most linear programs efficiently, and the Karmarkar interior-point method allows a more efficient solving of some kinds of linear programming. The power of linear programming is greatly enhanced when came the opportunity of solving integer and mixed integer linear programming. In these models all or some of the decision variables are integers, respectively. In this book we provide a brief introduction to linear programming, together with a set of exercises that introduce some applications of linear programming. We will also provide an introduction to solve linear programming in R. For each problem a possible solution through linear programming is introduced, together with the code to solve it in R and its numerical solution.
  linear optimization textbook: Linear and Integer Optimization Gerard Sierksma, Yori Zwols, 2015-05-01 Presenting a strong and clear relationship between theory and practice, Linear and Integer Optimization: Theory and Practice is divided into two main parts. The first covers the theory of linear and integer optimization, including both basic and advanced topics. Dantzig's simplex algorithm, duality, sensitivity analysis, integer optimization models
  linear optimization textbook: Optimization—Theory and Practice Wilhelm Forst, Dieter Hoffmann, 2010-07-16 Optimization is a field important in its own right but is also integral to numerous applied sciences, including operations research, management science, economics, finance and all branches of mathematics-oriented engineering. Constrained optimization models are one of the most widely used mathematical models in operations research and management science. This book gives a modern and well-balanced presentation of the subject, focusing on theory but also including algorithims and examples from various real-world applications. Detailed examples and counter-examples are provided--as are exercises, solutions and helpful hints, and Matlab/Maple supplements.
  linear optimization textbook: Linear Programming and Extensions George B. Dantzig, 2016-08-10 The influential book that established the mathematical discipline of linear programming In the worlds of finance, business, and management, mathematicians and economists frequently encounter problems of optimization. In this classic book, George Dantzig shows how the methods of linear programming can provide solutions. Drawing on a wealth of examples, he introduces the basic theory of linear inequalities and describes the powerful simplex method used to solve them. He discusses the price concept, the transportation problem, and matrix methods, and covers key mathematical concepts such as the properties of convex sets and linear vector spaces. Dantzig demonstrates how linear programming can be applied to a host of optimization problems, from minimizing traffic congestion to maximizing the scheduling of airline flights. An invaluable resource for students and practitioners alike, Linear Programming and Extensions is an extraordinary account of the development and uses of this versatile mathematical technique, blending foundational research in mathematical theory with computation, economic analysis, and applications to industrial problems.
  linear optimization textbook: Multiobjective Linear Programming Dinh The Luc, 2015-07-31 This book introduces the reader to the field of multiobjective optimization through problems with simple structures, namely those in which the objective function and constraints are linear. Fundamental notions as well as state-of-the-art advances are presented in a comprehensive way and illustrated with the help of numerous examples. Three of the most popular methods for solving multiobjective linear problems are explained, and exercises are provided at the end of each chapter, helping students to grasp and apply key concepts and methods to more complex problems. The book was motivated by the fact that the majority of the practical problems we encounter in management science, engineering or operations research involve conflicting criteria and therefore it is more convenient to formulate them as multicriteria optimization models, the solution concepts and methods of which cannot be treated using traditional mathematical programming approaches.
  linear optimization textbook: Network Flows and Monotropic Optimization R. Tyrell Rockafellar, 1999-06-01 A rigorous and comprehensive treatment of network flow theory and monotropic optimization by one of the world's most renowned applied mathematicians. This classic textbook covers extensively the duality theory and the algorithms of linear and nonlinear network optimization optimization, and their significant extensions to monotropic programming (separable convex constrained optimization problems, including linear programs). It complements our other book on the subject of network optimization Network Optimization: Continuous and Discrete Models (Athena Scientific, 1998). Monotropic programming problems are characterized by a rich interplay between combinatorial structure and convexity properties. Rockafellar develops, for the first time, algorithms and a remarkably complete duality theory for these problems. Among its special features the book: (a) Treats in-depth the duality theory for linear and nonlinear network optimization (b) Uses a rigorous step-by-step approach to develop the principal network optimization algorithms (c) Covers the main algorithms for specialized network problems, such as max-flow, feasibility, assignment, and shortest path (d) Develops in detail the theory of monotropic programming, based on the author's highly acclaimed research (e) Contains many examples, illustrations, and exercises (f) Contains much new material not found in any other textbook
  linear optimization textbook: Applied Mathematical Programming Stephen P. Bradley, Arnoldo C. Hax, Thomas L. Magnanti, 1977 Mathematical programming: an overview; solving linear programs; sensitivity analysis; duality in linear programming; mathematical programming in practice; integration of strategic and tactical planning in the aluminum industry; planning the mission and composition of the U.S. merchant Marine fleet; network models; integer programming; design of a naval tender job shop; dynamic programming; large-scale systems; nonlinear programming; a system for bank portfolio planning; vectors and matrices; linear programming in matrix form; a labeling algorithm for the maximun-flow network problem.
Linear – Plan and build products
Linear is a purpose-built tool for modern product development. Streamline issues, projects, and product roadmaps.

Download Linear
Download the Linear app for desktop and mobile. Available for Mac, Windows, iOS, and Android.

Pricing – Linear
Use Linear for free with your whole team. Upgrade to enable unlimited issues, enhanced security controls, and additional features.

Customer Requests – Linear
Capture feedback across any customer interaction – from sales calls to support chats – and turn it into a customer request linked to a Linear project or issue.

Linear MCP server – Changelog
May 1, 2025 · Your AI models and agents can use our official MCP server to access your Linear data in a simple and secure way. Connect to our MCP server natively as a new Claude …

About – Linear
Today, thousands of teams around the globe — from early-stage startups to public companies — use Linear to build their products. Linear helps them to focus on what they do best: Crafting …

Linear Method – Practices for building
The quality of a product is driven by both the talent of its creators and how they feel while they’re crafting it. To bring back the right focus, these are the foundational and evolving ideas Linear is …

Features – Linear
With its meticulous design, breathtaking speed and purpose-built workflows, Linear unlocks your team’s full potential. It is the tool of choice for high-performance teams to build products better.

Linear Customers
Linear Projects give Mercury a source-of-truth across all their work. Read story. Watershed switched to Linear to accelerate their team. Read story. Linear keeps Retool's teams customer …

Building our way - Linear Blog
Jun 10, 2025 · Linear is unique because it actually manages all these workflows in a structured way and in a single product, bringing teams together. We see this end-to-end workflow as the …

Linear – Plan and build products
Linear is a purpose-built tool for modern product development. Streamline issues, projects, and product roadmaps.

Download Linear
Download the Linear app for desktop and mobile. Available for Mac, Windows, iOS, and Android.

Pricing – Linear
Use Linear for free with your whole team. Upgrade to enable unlimited issues, enhanced security controls, and additional features.

Customer Requests – Linear
Capture feedback across any customer interaction – from sales calls to support chats – and turn it into a customer request linked to a Linear project or issue.

Linear MCP server – Changelog
May 1, 2025 · Your AI models and agents can use our official MCP server to access your Linear data in a simple and secure way. Connect to our MCP server natively as a new Claude …

About – Linear
Today, thousands of teams around the globe — from early-stage startups to public companies — use Linear to build their products. Linear helps them to focus on what they do best: Crafting …

Linear Method – Practices for building
The quality of a product is driven by both the talent of its creators and how they feel while they’re crafting it. To bring back the right focus, these are the foundational and evolving ideas Linear is …

Features – Linear
With its meticulous design, breathtaking speed and purpose-built workflows, Linear unlocks your team’s full potential. It is the tool of choice for high-performance teams to build products better.

Linear Customers
Linear Projects give Mercury a source-of-truth across all their work. Read story. Watershed switched to Linear to accelerate their team. Read story. Linear keeps Retool's teams customer …

Building our way - Linear Blog
Jun 10, 2025 · Linear is unique because it actually manages all these workflows in a structured way and in a single product, bringing teams together. We see this end-to-end workflow as the …