Advertisement
linear and nonlinear functional analysis with applications: Linear and Nonlinear Functional Analysis with Applications Philippe G. Ciarlet, 2013-10-10 This single-volume textbook covers the fundamentals of linear and nonlinear functional analysis, illustrating most of the basic theorems with numerous applications to linear and nonlinear partial differential equations and to selected topics from numerical analysis and optimization theory. This book has pedagogical appeal because it features self-contained and complete proofs of most of the theorems, some of which are not always easy to locate in the literature or are difficult to reconstitute. It also offers 401 problems and 52 figures, plus historical notes and many original references that provide an idea of the genesis of the important results, and it covers most of the core topics from functional analysis. |
linear and nonlinear functional analysis with applications: Linear and Nonlinear Functional Analysis with Applications, Second Edition Philippe G. Ciarlet, 2025-04-23 This new, considerably expanded edition covers the fundamentals of linear and nonlinear functional analysis, including distribution theory, harmonic analysis, differential geometry, calculus of variations, and degree theory. Numerous applications are included, especially to linear and nonlinear partial differential equations and to numerical analysis. All the basic theorems are provided with complete and detailed proofs. The author has added more than 450 pages of new material; added more than 210 problems; the solutions to all of the problems will be made available on an accompanying website; added two entirely new chapters, one on locally convex spaces and distribution theory and the other on the Fourier transform and Calderón–Zygmund singular integral operators; and enlarged and split the chapter on the “great theorems” of nonlinear functional analysis into two chapters, one on the calculus of variations and the other on Brouwer’s theorem, Brouwer’s degree, and Leray–Schauder’s degree. Ideal for both teaching and self-study, Linear and Nonlinear Functional Analysis with Applications, Second Edition is intended for advanced undergraduate and graduate students in mathematics, university professors, and researchers. It is also an ideal basis for several courses on linear or nonlinear functional analysis. |
linear and nonlinear functional analysis with applications: Linear Functional Analysis Hans Wilhelm Alt, 2016-07-06 This book gives an introduction to Linear Functional Analysis, which is a synthesis of algebra, topology, and analysis. In addition to the basic theory it explains operator theory, distributions, Sobolev spaces, and many other things. The text is self-contained and includes all proofs, as well as many exercises, most of them with solutions. Moreover, there are a number of appendices, for example on Lebesgue integration theory. A complete introduction to the subject, Linear Functional Analysis will be particularly useful to readers who want to quickly get to the key statements and who are interested in applications to differential equations. |
linear and nonlinear functional analysis with applications: Nonlinear Functional Analysis Klaus Deimling, 2013-10-09 This text offers a survey of the main ideas, concepts, and methods that constitute nonlinear functional analysis. It features extensive commentary, many examples, and interesting, challenging exercises. 1985 edition. |
linear and nonlinear functional analysis with applications: Linear and Nonlinear Functional Analysis with Applications Philippe G. Ciarlet, 2025 Linear and nonlinear functional analysis, including distribution theory, harmonic analysis, differential geometry, calculus of variations, and degree theory with numerous applications, especially to linear and nonlinear partial differential equations and to numerical analysis-- |
linear and nonlinear functional analysis with applications: Applied Nonlinear Functional Analysis Nikolaos S. Papageorgiou, Patrick Winkert, 2024-07-01 The second edition covers the introduction to the main mathematical tools of nonlinear functional analysis, which are also used in the study of concrete problems in economics, engineering, and physics. The new edition includes some new topics on Banach spaces of functions and measures and nonlinear analysis. |
linear and nonlinear functional analysis with applications: Nonlinear Functional Analysis S. Kesavan, 2004-01-15 |
linear and nonlinear functional analysis with applications: Navier-Stokes Equations and Nonlinear Functional Analysis Roger Temam, 1995-01-01 This second edition attempts to arrive as simply as possible at some central problems in the Navier-Stokes equations. |
linear and nonlinear functional analysis with applications: Topics in Nonlinear Functional Analysis L. Nirenberg, 1974 Since its first appearance as a set of lecture notes published by the Courant Institute in 1974, this book served as an introduction to various subjects in nonlinear functional analysis. The current edition is a reprint of these notes, with added bibliographic references. Topological and analytic methods are developed for treating nonlinear ordinary and partial differential equations. The first two chapters of the book introduce the notion of topological degree and develop its basic properties. These properties are used in later chapters in the discussion of bifurcation theory (the possible branching of solutions as parameters vary), including the proof of Rabinowitz global bifurcation theorem. Stability of the branches is also studied. The book concludes with a presentation of some generalized implicit function theorems of Nash-Moser type with applications to Kolmogorov-Arnold-Moser theory and to conjugacy problems. For more than 20 years, this book continues to be an excellent graduate level textbook and a useful supplementary course text. Titles in this series are copublished with the Courant Institute of Mathematical Sciences at New York University. |
linear and nonlinear functional analysis with applications: Nonlinear Functional Analysis and Its Applications Eberhard Zeidler, 1985 |
linear and nonlinear functional analysis with applications: Introductory Functional Analysis with Applications Erwin Kreyszig, 1991-01-16 KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry |
linear and nonlinear functional analysis with applications: Applied Functional Analysis Eberhard Zeidler, 2012-12-06 A theory is the more impressive, the simpler are its premises, the more distinct are the things it connects, and the broader is its range of applicability. Albert Einstein There are two different ways of teaching mathematics, namely, (i) the systematic way, and (ii) the application-oriented way. More precisely, by (i), I mean a systematic presentation of the material governed by the desire for mathematical perfection and completeness of the results. In contrast to (i), approach (ii) starts out from the question What are the most important applications? and then tries to answer this question as quickly as possible. Here, one walks directly on the main road and does not wander into all the nice and interesting side roads. The present book is based on the second approach. It is addressed to undergraduate and beginning graduate students of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems that are related to our real world and that have played an important role in the history of mathematics. The reader should sense that the theory is being developed, not simply for its own sake, but for the effective solution of concrete problems. viii Preface This introduction to functional analysis is divided into the following two parts: Part I: Applications to mathematical physics (the present AMS Vol. 108); Part II: Main principles and their applications (AMS Vol. 109). |
linear and nonlinear functional analysis with applications: Nonlinear Functional Analysis Jacob T. Schwartz, 1969 |
linear and nonlinear functional analysis with applications: Spectral Theory and Nonlinear Functional Analysis Julian Lopez-Gomez, 2017-06-29 This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems. The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances. |
linear and nonlinear functional analysis with applications: Functional Analysis Peter D. Lax, 2014-08-28 Includes sections on the spectral resolution and spectral representation of self adjoint operators, invariant subspaces, strongly continuous one-parameter semigroups, the index of operators, the trace formula of Lidskii, the Fredholm determinant, and more. Assumes prior knowledge of Naive set theory, linear algebra, point set topology, basic complex variable, and real variables. Includes an appendix on the Riesz representation theorem. |
linear and nonlinear functional analysis with applications: Linear and Nonlinear Inverse Problems with Practical Applications Jennifer L. Mueller, Samuli Siltanen, 2012-11-30 Inverse problems arise in practical applications whenever there is a need to interpret indirect measurements. This book explains how to identify ill-posed inverse problems arising in practice and gives a hands-on guide to designing computational solution methods for them, with related codes on an accompanying website. The guiding linear inversion examples are the problem of image deblurring, x-ray tomography, and backward parabolic problems, including heat transfer. A thorough treatment of electrical impedance tomography is used as the guiding nonlinear inversion example which combines the analytic-geometric research tradition and the regularization-based school of thought in a fruitful manner. This book is complete with exercises and project topics, making it ideal as a classroom textbook or self-study guide for graduate and advanced undergraduate students in mathematics, engineering or physics who wish to learn about computational inversion. It also acts as a useful guide for researchers who develop inversion techniques in high-tech industry. |
linear and nonlinear functional analysis with applications: Nonlinear Functional Analysis and Its Applications E. Zeidler, 1989-12-11 This is the second of a five-volume exposition of the main principles of nonlinear functional analysis and its applications to the natural sciences, economics, and numerical analysis. The presentation is self -contained and accessible to the nonspecialist. Part II concerns the theory of monotone operators. It is divided into two subvolumes, II/A and II/B, which form a unit. The present Part II/A is devoted to linear monotone operators. It serves as an elementary introduction to the modern functional analytic treatment of variational problems, integral equations, and partial differential equations of elliptic, parabolic and hyperbolic type. This book also represents an introduction to numerical functional analysis with applications to the Ritz method along with the method of finite elements, the Galerkin methods, and the difference method. Many exercises complement the text. The theory of monotone operators is closely related to Hilbert's rigorous justification of the Dirichlet principle, and to the 19th and 20th problems of Hilbert which he formulated in his famous Paris lecture in 1900, and which strongly influenced the development of analysis in the twentieth century. |
linear and nonlinear functional analysis with applications: Applications of Nonlinear Analysis Themistocles M. Rassias, 2018-06-29 New applications, research, and fundamental theories in nonlinear analysis are presented in this book. Each chapter provides a unique insight into a large domain of research focusing on functional equations, stability theory, approximation theory, inequalities, nonlinear functional analysis, and calculus of variations with applications to optimization theory. Topics include: Fixed point theory Fixed-circle theory Coupled fixed points Nonlinear duality in Banach spaces Jensen's integral inequality and applications Nonlinear differential equations Nonlinear integro-differential equations Quasiconvexity, Stability of a Cauchy-Jensen additive mapping Generalizations of metric spaces Hilbert-type integral inequality, Solitons Quadratic functional equations in fuzzy Banach spaces Asymptotic orbits in Hill’sproblem Time-domain electromagnetics Inertial Mann algorithms Mathematical modelling Robotics Graduate students and researchers will find this book helpful in comprehending current applications and developments in mathematical analysis. Research scientists and engineers studying essential modern methods and techniques to solve a variety of problems will find this book a valuable source filled with examples that illustrate concepts. |
linear and nonlinear functional analysis with applications: Functional Analysis, Sobolev Spaces and Partial Differential Equations Haim Brezis, 2010-11-10 This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list. |
linear and nonlinear functional analysis with applications: Partial Differential Equations 2 Friedrich Sauvigny, 2006-10-11 This encyclopedic work covers the whole area of Partial Differential Equations - of the elliptic, parabolic, and hyperbolic type - in two and several variables. Emphasis is placed on the connection of PDEs and complex variable methods. This second volume addresses Solvability of operator equations in Banach spaces; Linear operators in Hilbert spaces and spectral theory; Schauder's theory of linear elliptic differential equations; Weak solutions of differential equations; Nonlinear partial differential equations and characteristics; Nonlinear elliptic systems with differential-geometric applications. While partial differential equations are solved via integral representations in the preceding volume, this volume uses functional analytic solution methods. |
linear and nonlinear functional analysis with applications: Nonlinear Functional Analysis and its Applications E. Zeidler, 2013-11-21 This is the second of a five-volume exposition of the main principles of nonlinear functional analysis and its applications to the natural sciences, economics, and numerical analysis. The presentation is self -contained and accessible to the nonspecialist. Part II concerns the theory of monotone operators. It is divided into two subvolumes, II/A and II/B, which form a unit. The present Part II/A is devoted to linear monotone operators. It serves as an elementary introduction to the modern functional analytic treatment of variational problems, integral equations, and partial differential equations of elliptic, parabolic and hyperbolic type. This book also represents an introduction to numerical functional analysis with applications to the Ritz method along with the method of finite elements, the Galerkin methods, and the difference method. Many exercises complement the text. The theory of monotone operators is closely related to Hilbert's rigorous justification of the Dirichlet principle, and to the 19th and 20th problems of Hilbert which he formulated in his famous Paris lecture in 1900, and which strongly influenced the development of analysis in the twentieth century. |
linear and nonlinear functional analysis with applications: Delay Equations Odo Diekmann, Stephan A.van Gils, Sjoerd M.V. Lunel, Hans-Otto Walther, 2012-12-06 The aim of this book is to provide an introduction to the mathematical theory of infinite dimensional dynamical systems by focusing on a relatively simple, yet rich, class of examples, that is, those described by delay differential equations. It is a textbook giving detailed proofs and providing many exercises, which is intended both for self-study and for courses at a graduate level. The book would also be suitable as a reference for basic results. As the subtitle indicates, the book is about concepts, ideas, results and methods from linear functional analysis, complex function theory, the qualitative theory of dynamical systems and nonlinear analysis. After studying this book, the reader should have a working knowledge of applied functional analysis and dynamical systems. |
linear and nonlinear functional analysis with applications: Linear Functional Analysis , 2005 |
linear and nonlinear functional analysis with applications: Real Analysis with Economic Applications Efe A. Ok, 2011-09-05 There are many mathematics textbooks on real analysis, but they focus on topics not readily helpful for studying economic theory or they are inaccessible to most graduate students of economics. Real Analysis with Economic Applications aims to fill this gap by providing an ideal textbook and reference on real analysis tailored specifically to the concerns of such students. The emphasis throughout is on topics directly relevant to economic theory. In addition to addressing the usual topics of real analysis, this book discusses the elements of order theory, convex analysis, optimization, correspondences, linear and nonlinear functional analysis, fixed-point theory, dynamic programming, and calculus of variations. Efe Ok complements the mathematical development with applications that provide concise introductions to various topics from economic theory, including individual decision theory and games, welfare economics, information theory, general equilibrium and finance, and intertemporal economics. Moreover, apart from direct applications to economic theory, his book includes numerous fixed point theorems and applications to functional equations and optimization theory. The book is rigorous, but accessible to those who are relatively new to the ways of real analysis. The formal exposition is accompanied by discussions that describe the basic ideas in relatively heuristic terms, and by more than 1,000 exercises of varying difficulty. This book will be an indispensable resource in courses on mathematics for economists and as a reference for graduate students working on economic theory. |
linear and nonlinear functional analysis with applications: Real and Functional Analysis Arunava Mukherjea, K. Pothoven, 2013-09-13 |
linear and nonlinear functional analysis with applications: A Primer of Nonlinear Analysis Antonio Ambrosetti, Giovanni Prodi, 1995-03-09 This is an elementary and self-contained introduction to nonlinear functional analysis and its applications, especially in bifurcation theory. |
linear and nonlinear functional analysis with applications: Applied Nonlinear Analysis Jean-Pierre Aubin, Ivar Ekeland, 2006-01-01 Nonlinear analysis, formerly a subsidiary of linear analysis, has advanced as an individual discipline, with its own methods and applications. Moreover, students can now approach this highly active field without the preliminaries of linear analysis. As this text demonstrates, the concepts of nonlinear analysis are simple, their proofs direct, and their applications clear. No prerequisites are necessary beyond the elementary theory of Hilbert spaces; indeed, many of the most interesting results lie in Euclidean spaces. In order to remain at an introductory level, this volume refrains from delving into technical difficulties and sophisticated results not in current use. Applications are explained as soon as possible, and theoretical aspects are geared toward practical use. Topics range from very smooth functions to nonsmooth ones, from convex variational problems to nonconvex ones, and from economics to mechanics. Background notes, comments, bibliography, and indexes supplement the text. |
linear and nonlinear functional analysis with applications: Semigroups of Linear Operators and Applications to Partial Differential Equations Amnon Pazy, 2012-12-06 From the reviews: Since E. Hille and K. Yoshida established the characterization of generators of C0 semigroups in the 1940s, semigroups of linear operators and its neighboring areas have developed into a beautiful abstract theory. Moreover, the fact that mathematically this abstract theory has many direct and important applications in partial differential equations enhances its importance as a necessary discipline in both functional analysis and differential equations. In my opinion Pazy has done an outstanding job in presenting both the abstract theory and basic applications in a clear and interesting manner. The choice and order of the material, the clarity of the proofs, and the overall presentation make this an excellent place for both researchers and students to learn about C0 semigroups. #Bulletin Applied Mathematical Sciences 4/85#1 In spite of the other monographs on the subject, the reviewer can recommend that of Pazy as being particularly written, with a bias noticeably different from that of the other volumes. Pazy's decision to give a connected account of the applications to partial differential equations in the last two chapters was a particularly happy one, since it enables one to see what the theory can achieve much better than would the insertion of occasional examples. The chapters achieve a very nice balance between being so easy as to appear disappointing, and so sophisticated that they are incomprehensible except to the expert. #Bulletin of the London Mathematical Society#2 |
linear and nonlinear functional analysis with applications: Nonlinear Systems Analysis M. Vidyasagar, 2002-01-01 When M. Vidyasagar wrote the first edition of Nonlinear Systems Analysis, most control theorists considered the subject of nonlinear systems a mystery. Since then, advances in the application of differential geometric methods to nonlinear analysis have matured to a stage where every control theorist needs to possess knowledge of the basic techniques because virtually all physical systems are nonlinear in nature. The second edition, now republished in SIAM's Classics in Applied Mathematics series, provides a rigorous mathematical analysis of the behavior of nonlinear control systems under a variety of situations. It develops nonlinear generalizations of a large number of techniques and methods widely used in linear control theory. The book contains three extensive chapters devoted to the key topics of Lyapunov stability, input-output stability, and the treatment of differential geometric control theory. Audience: this text is designed for use at the graduate level in the area of nonlinear systems and as a resource for professional researchers and practitioners working in areas such as robotics, spacecraft control, motor control, and power systems. |
linear and nonlinear functional analysis with applications: Decomposition Analysis Method in Linear and Nonlinear Differential Equations Kansari Haldar, 2015-10-22 A Powerful Methodology for Solving All Types of Differential EquationsDecomposition Analysis Method in Linear and Non-Linear Differential Equations explains how the Adomian decomposition method can solve differential equations for the series solutions of fundamental problems in physics, astrophysics, chemistry, biology, medicine, and other scientif |
linear and nonlinear functional analysis with applications: Analysis and Topology in Nonlinear Differential Equations Djairo G de Figueiredo, João Marcos do Ó, Carlos Tomei, 2014-06-16 This volume is a collection of articles presented at the Workshop for Nonlinear Analysis held in João Pessoa, Brazil, in September 2012. The influence of Bernhard Ruf, to whom this volume is dedicated on the occasion of his 60th birthday, is perceptible throughout the collection by the choice of themes and techniques. The many contributors consider modern topics in the calculus of variations, topological methods and regularity analysis, together with novel applications of partial differential equations. In keeping with the tradition of the workshop, emphasis is given to elliptic operators inserted in different contexts, both theoretical and applied. Topics include semi-linear and fully nonlinear equations and systems with different nonlinearities, at sub- and supercritical exponents, with spectral interactions of Ambrosetti-Prodi type. Also treated are analytic aspects as well as applications such as diffusion problems in mathematical genetics and finance and evolution equations related to electromechanical devices. |
linear and nonlinear functional analysis with applications: Convex Analysis and Nonlinear Optimization Jonathan M. Borwein, Adrian S. Lewis, 2013-06-29 Optimization is a rich and thriving mathematical discipline. The theory underlying current computational optimization techniques grows ever more sophisticated. The powerful and elegant language of convex analysis unifies much of this theory. The aim of this book is to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. It can serve as a teaching text, at roughly the level of first year graduate students. While the main body of the text is self-contained, each section concludes with an often extensive set of optional exercises. The new edition adds material on semismooth optimization, as well as several new proofs that will make this book even more self-contained. |
linear and nonlinear functional analysis with applications: Fundamentals of Applied Functional Analysis Dragisa Mitrovic, Darko Zubrinic, 1997-11-12 This volume provides an introduction to modern concepts of linear and nonlinear functional analysis. Its purpose is also to provide an insight into the variety of deeply interlaced mathematical tools applied in the study of nonlinear problems. |
linear and nonlinear functional analysis with applications: Locally Convex Spaces and Harmonic Analysis Philippe G. Ciarlet, 2021-08-10 This self-contained textbook covers the fundamentals of two basic topics of linear functional analysis: locally convex spaces and harmonic analysis. Readers will find detailed introductions to topological vector spaces, distribution theory, weak topologies, the Fourier transform, the Hilbert transform, and Calderón–Zygmund singular integrals. An ideal introduction to more advanced texts, the book complements Ciarlet’s Linear and Nonlinear Functional Analysis with Applications (SIAM), in which these two topics were not treated. Pedagogical features such as detailed proofs and 93 problems make the book ideal for a one-semester first-year graduate course or for self-study. The book is intended for advanced undergraduates and first-year graduate students and researchers. It is appropriate for courses on functional analysis, distribution theory, Fourier transform, and harmonic analysis. |
linear and nonlinear functional analysis with applications: Basic Analysis V JAMES K. PETERSON, 2023-09-25 This book introduces graduate students in mathematics with concepts from topology and functional analysis, both linear and nonlinear. It is the fifth book in a series designed to train interested readers how to think properly using mathematical abstractions, and how to use the tools of mathematical analysis in applications. |
linear and nonlinear functional analysis with applications: Topics in Functional Analysis and Applications S. Kesavan, 2015-10 Present day research in partial differential equations uses a lot of functional analytic techniques. This book treats these methods concisely, in one volume, at the graduate level. It introduces distribution theory (which is fundamental to the study of partial differential equations) and Sobolev spaces (the natural setting in which to find generalized solutions of PDE). Examples, counter-examples, and exercises are included. |
linear and nonlinear functional analysis with applications: Introduction to Linear, Parametric and Non-Linear Vibrations M.C. Cartmell, 1990-06-30 |
linear and nonlinear functional analysis with applications: Functional Analysis and Numerical Mathematics Lothar Collatz, 1966 |
linear and nonlinear functional analysis with applications: Nonlinear Functional Analysis and Its Applications S.P. Singh, 2012-12-06 A NATO Advanced Study Institute on Nonlinear Functional Analysis and Its Applications was held in Hotel Villa del Mare, Maratea, It.a1y during April 22 - May 3, 1985. This volume consists of the Proceedings of the Institute. These Proceedings include the invited lectures and contributed papers given during the Institute. The papers have been refereed. The aim of these lectures was to bring together recent and up-to-date development of the subject, and to give directions for future research. The main topics covered include: degree and generalized degree theory, results related to Hamiltonian Systems, Fixed Point theory, linear and nonlinear Differential and Partial Differential Equations, Theory of Nielsen Numbers, and applications to Dynamical Systems, Bifurcation Theory, Hamiltonian Systems, Minimax Theory, Heat Equations, Pendulum Equation, Nonlinear Boundary Value Problems, and Dirichlet and Neumann problems for elliptic equations and the periodic Dirichlet problem for semilinear beam equations. I express my sincere thanks to Professors F. E. Browder, R. Conti, A. Do1d, D. E. Edmunds and J. Mawhin members of the Advisory Committee. |
Linear – Plan and build products
Linear is a purpose-built tool for modern product development. Streamline issues, projects, and product roadmaps.
Download Linear
Download the Linear app for desktop and mobile. Available for Mac, Windows, iOS, and Android.
Pricing – Linear
Use Linear for free with your whole team. Upgrade to enable unlimited issues, enhanced security controls, and additional features.
Customer Requests – Linear
Capture feedback across any customer interaction – from sales calls to support chats – and turn it into a customer request linked to a Linear project or issue.
Linear MCP server – Changelog
May 1, 2025 · Your AI models and agents can use our official MCP server to access your Linear data in a simple and secure way. Connect to our MCP server natively as a …
Linear – Plan and build products
Linear is a purpose-built tool for modern product development. Streamline issues, projects, and product roadmaps.
Download Linear
Download the Linear app for desktop and mobile. Available for Mac, Windows, iOS, and Android.
Pricing – Linear
Use Linear for free with your whole team. Upgrade to enable unlimited issues, enhanced security controls, and additional features.
Customer Requests – Linear
Capture feedback across any customer interaction – from sales calls to support chats – and turn it into a customer request linked to a Linear project or issue.
Linear MCP server – Changelog
May 1, 2025 · Your AI models and agents can use our official MCP server to access your Linear data in a simple and secure way. Connect to our MCP server natively as a …