Advertisement
liquid crystal displays fundamental physics and technology: Liquid Crystal Displays Robert H. Chen, 2011-08-04 An unprecedented look into the basic physics, chemistry, and technology behind the LCD Most notably used for computer screens, televisions, and mobile phones, LCDs (liquid crystal displays) are a pervasive and increasingly indispensable part of our lives. Providing both an historical and a business-minded context, this extensive resource describes the unique scientific and engineering techniques used to create these beautiful, clever, and eminently useful devices. In this book, the history of the science and technology behind the LCD is described in a prelude to the development of the device, presenting a rational development theme and pinpointing innovations. The book begins with Maxwell's theory of electromagnetism, and the ultimately profound realization that light is an electromagnetic wave and an electromagnetic wave is light. The power of mathematical physics thus was brought to bear upon the study of light, and particularly the polarization of light by material bodies, including liquid crystals. After a brief historical description of polarization, a physical interpretation provides substance to the mathematical concepts. Subsequent chapters cover: Thermodynamics for liquid crystals The Maier-Saupe mean field, phenomenological, static continuum, and dynamic continuum theories The transistor and integrated circuit Glass, panels, and modules The calculus of variations The active matrix Semiconductor fabrication The global LCD business Additionally, the book illustrates how mathematics, physics, and chemistry are put to practical use in the LCDs we use every day. By describing the science from an historical perspective and in practical terms in the context of a device very familiar to readers, the book presents an engaging and unique view of the technology for everyone from science students to engineers, product designers, and indeed anyone curious about LCDs. Series Editor: Anthony C. Lowe, The Lambent Consultancy, Braishfield, UK The Society for Information Display (SID) is an international society, which has the aim of encouraging the development of all aspects of the field of information display. Complementary to the aims of the society, the Wiley-SID series is intended to explain the latest developments in information display technology at a professional level. The broad scope of the series addresses all facets of information displays from technical aspects through systems and prototypes to standards and ergonomics. |
liquid crystal displays fundamental physics and technology: Fundamentals of Liquid Crystal Devices Deng-Ke Yang, Shin-Tson Wu, 2014-12-03 Liquid Crystal Devices are crucial and ubiquitous components of an ever-increasing number of technologies. They are used in everything from cellular phones, eBook readers, GPS devices, computer monitors and automotive displays to projectors and TVs, to name but a few. This second edition continues to serve as an introductory guide to the fundamental properties of liquid crystals and their technical application, while explicating the recent advancements within LCD technology. This edition includes important new chapters on blue-phase display technology, advancements in LCD research significantly contributed to by the authors themselves. This title is of particular interest to engineers and researchers involved in display technology and graduate students involved in display technology research. Key features: Updated throughout to reflect the latest technical state-of-the-art in LCD research and development, including new chapters and material on topics such as the properties of blue-phase liquid crystal displays and 3D liquid crystal displays; Explains the link between the fundamental scientific principles behind liquid crystal technology and their application to photonic devices and displays, providing a thorough understanding of the physics, optics, electro-optics and material aspects of Liquid Crystal Devices; Revised material reflecting developments in LCD technology, including updates on optical modelling methods, transmissive LCDs and tunable liquid crystal photonic devices; Chapters conclude with detailed homework problems to further cement an understanding of the topic. |
liquid crystal displays fundamental physics and technology: Active Matrix Liquid Crystal Displays Willem den Boer, 2011-03-15 Active matrix liquid crystal displays (AMLCDs) are the preferred choice when thin, low power, high quality, and lightweight flat panel displays are required. Here is the definitive guide to the theory and applications of AMLCDs.Contemporary portable communication and computing devices need high image quality, light weight, thin, and low power flat panel displays. The answer to this need is the color active matrix liquid crystal display (AMLCD). The rides of AMLCD technology over less than two decades to undisputed dominance as a flat panel display has been breathtaking, and designers of portable devices need a thorough understanding of the theory and applications of AMLCDs. Willem den Boer, a holder of over 30 patents in imaging technologies, has created this guide to AMLCD theory, operating principles, addressing methods, driver circuits, application circuits, and alternate flat display technologies (including active matrix flat panel image sensors). Numerous design and applications examples illustrate key points and make them relevant to real-world engineering tasks. Need more information on Mobile Displays, go to: http://www.insightmedia.info/newsletters.php#mdr·Systematically discusses the principles of liquid crystal displays and active matrix addressing.·Describes methods of enhancing AMLCD image quality.·Extensive coverage of AMLCD manufacturing techniques.·Thorough examination of performance characteristics and specifications of AMLCDs. |
liquid crystal displays fundamental physics and technology: Optics of Liquid Crystal Displays Pochi Yeh, Claire Gu, 2009-11-02 NOW UPDATED—THE HIGHLY PRACTICAL GUIDE TO ANALYZING LIQUID CRYSTAL DISPLAYS The subject of liquid crystal displays has vigorously evolved into an exciting interdisciplinary field of research and development, involving optics, materials, and electronics. Updated to reflect recent advances, the Second Edition of Optics of Liquid Crystal Displays now offers a broader, more comprehensive discussion on the fundamentals of display systems and teaches readers how to analyze and design new components and subsystems for LCDs. New features of this edition include: Discussion of the dynamics of molecular reorientation Expanded information of the method of Poincaré sphere in various optical components, including achromatic wave plates and compensators Neutral and negative Biaxial thin films for compensators Circular polarizers and anti-reflection coatings The introduction of wide field-of-view wave plates and filters Comprehensive coverage of VA-LCD and IPS-LCD Additional numerical examples This updated edition is intended as a textbook for students in electrical engineering and applied physics, as well as a reference book for engineers and scientists working in the area of research and development of display technologies. |
liquid crystal displays fundamental physics and technology: Transflective Liquid Crystal Displays Zhibing Ge, Shin-Tson Wu, 2010-04-01 Sunlight readable transflective liquid crystal displays, used on devices from cell phones and portable media players, to GPS and even some desktop monitors, have become indispensable in our day-to-day lives. Transflective Liquid Crystal Displays is a methodical examination of this display technology, providing a useful reference to the fundamentals of the topic. Including thorough descriptions of the essential physics of transflective LCD technologies, the book also compares transflective LCD technology with alternatives, such as OLED displays, to enable display engineers to appropriately select the correct device for their particular application. Includes detailed descriptions of both pure transmissive and reflective LCDs, and the design considerations and performance of combining these into small mobile displays. Focuses on fundamental elements, such as double cell gap transflective LCDs, wide-viewing angle technology, light polarization and wide-view linear and circular polarizers, video rate display by colour sequential technologies, colour sciences and engineering, and backlights. Describes the latest LCD technologies, such as polymer-sustained surface alignment technology, and the possible trends which could be applied to transflective LCDs in the future. Its focus on the fundamentals of transflective liquid crystal displays makes this an ideal graduate text, while display engineers, scientists, developers and technicians working with this technology will also welcome this resource. The Society for Information Display (SID) is an international society, which has the aim of encouraging the development of all aspects of the field of information display. Complementary to the aims of the society, the Wiley-SID series is intended to explain the latest developments in information display technology at a professional level. The broad scope of the series addresses all facets of information displays from technical aspects through systems and prototypes to standards and ergonomics |
liquid crystal displays fundamental physics and technology: Liquid Crystals and Display Technology Morteza Sasani Ghamsari, Irina Carlescu, 2020-10-07 Liquid crystals have attracted scientific attention for potential applications in advanced devices. Display technology is continuously growing and expanding and, as such, this book provides an overview of the most recent advances in liquid crystals and displays. Chapters cover such topics as nematic liquid crystals, active matrix organic light-emitting diodes, and tetradentate platinum(II) emitters, among others. |
liquid crystal displays fundamental physics and technology: Soap, Science, and Flat-Screen TVs David Dunmur, Timothy J. Sluckin, 2011 Liquid crystals had a controversial discovery at the end of the 19th century but were later accepted as a 'fourth state' of matter, and finally used throughout the world in modern displays and new materials. This book explains the fascinating science in accessible terms, and puts it into social, political, and historical perspectives. |
liquid crystal displays fundamental physics and technology: Liquid Crystals, Laptops and Life Michael R. Fisch, 2004 Life, Laptops and Liquid Crystals connects the science of one of the icons of the digital age, the laptop computer, with life itself via liquid crystals, the phase of matter essential to both. The book begins with a review of basic chemistry and physics, then goes on to discuss semiconductors, polymers, liquid crystals, and the molecules of life. Applications of these basic concepts to electronic devices, liquid crystal displays, art, and of course the laptop computer, complete the text. Physics, chemistry, materials science, electronics, and biology are all essential to understanding those topics. The necessary concepts in each field are developed with an eye to emphasizing molecules and molecular interactions. Each chapter concludes with review exercise, as well as references and research questions that encourage the reader to explore the topics in more depth. |
liquid crystal displays fundamental physics and technology: Introduction to Thin Film Transistors S.D. Brotherton, 2013-04-16 Introduction to Thin Film Transistors reviews the operation, application and technology of the main classes of thin film transistor (TFT) of current interest for large area electronics. The TFT materials covered include hydrogenated amorphous silicon (a-Si:H), poly-crystalline silicon (poly-Si), transparent amorphous oxide semiconductors (AOS), and organic semiconductors. The large scale manufacturing of a-Si:H TFTs forms the basis of the active matrix flat panel display industry. Poly-Si TFTs facilitate the integration of electronic circuits into portable active matrix liquid crystal displays, and are increasingly used in active matrix organic light emitting diode (AMOLED) displays for smart phones. The recently developed AOS TFTs are seen as an alternative option to poly-Si and a-Si:H for AMOLED TV and large AMLCD TV applications, respectively. The organic TFTs are regarded as a cost effective route into flexible electronics. As well as treating the highly divergent preparation and properties of these materials, the physics of the devices fabricated from them is also covered, with emphasis on performance features such as carrier mobility limitations, leakage currents and instability mechanisms. The thin film transistors implemented with these materials are the conventional, insulated gate field effect transistors, and a further chapter describes a new thin film transistor structure: the source gated transistor, SGT. The driving force behind much of the development of TFTs has been their application to AMLCDs, and there is a chapter dealing with the operation of these displays, as well as of AMOLED and electrophoretic displays. A discussion of TFT and pixel layout issues is also included. For students and new-comers to the field, introductory chapters deal with basic semiconductor surface physics, and with classical MOSFET operation. These topics are handled analytically, so that the underlying device physics is clearly revealed. These treatments are then used as a reference point, from which the impact of additional band-gap states on TFT behaviour can be readily appreciated. This reference book, covering all the major TFT technologies, will be of interest to a wide range of scientists and engineers in the large area electronics industry. It will also be a broad introduction for research students and other scientists entering the field, as well as providing an accessible and comprehensive overview for undergraduate and postgraduate teaching programmes. |
liquid crystal displays fundamental physics and technology: Polymer-modified Liquid Crystals Ingo Dierking, 2019-01-03 Bridging soft matter physics, materials science and engineering, polymer-modified liquid crystals are an exciting class of materials. They represent a vibrant field of research, promising advances in display technologies, as well as non-display uses. Describing all aspects of polymer-dispersed and polymer-stabilized liquid crystals, the broad coverage of this book makes it a must-have resource for anyone working in the area. The reader will find expert accounts covering basic concepts, materials synthesis and polymerization techniques, properties of various dispersed and stabilized phases, and critical overviews of their applications. Written by leaders in the field, this book provides a state-of-the-art treatment of the topic. It will be essential reading for graduate students, as well as academic and industrial researchers needing an up-to-date guide to the field. |
liquid crystal displays fundamental physics and technology: Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO Shunpei Yamazaki, Masahiro Fujita, 2016-10-24 This book describes the application of c-axis aligned crystalline In-Ga-Zn oxide (CAAC-IGZO) technology in large-scale integration (LSI) circuits. The applications include Non-volatile Oxide Semiconductor Random Access Memory (NOSRAM), Dynamic Oxide Semiconductor Random Access Memory (DOSRAM), central processing unit (CPU), field-programmable gate array (FPGA), image sensors, and etc. The book also covers the device physics (e.g., off-state characteristics) of the CAAC-IGZO field effect transistors (FETs) and process technology for a hybrid structure of CAAC-IGZO and Si FETs. It explains an extremely low off-state current technology utilized in the LSI circuits, demonstrating reduced power consumption in LSI prototypes fabricated by the hybrid process. A further two books in the series will describe the fundamentals; and the specific application of CAAC-IGZO to LCD and OLED displays. Key features: • Outlines the physics and characteristics of CAAC-IGZO FETs that contribute to favorable operations of LSI devices. • Explains the application of CAAC-IGZO to LSI devices, highlighting attributes including low off-state current, low power consumption, and excellent charge retention. • Describes the NOSRAM, DOSRAM, CPU, FPGA, image sensors, and etc., referring to prototype chips fabricated by a hybrid process of CAAC-IGZO and Si FETs. |
liquid crystal displays fundamental physics and technology: Introduction to Flat Panel Displays Jiun-Haw Lee, I-Chun Cheng, Hong Hua, Shin-Tson Wu, 2020-06-10 THE PERFECT GUIDE TO FLAT PANEL DISPLAYS FOR RESEARCHERS AND INDUSTRY PERSONNEL ALIKE Introduction to Flat Panel Displays, 2nd Edition is the leading introductory reference to state-of-the-art flat panel display technologies. The 2nd edition has been newly updated to include the latest developments for high pixel resolution support, high brightness, improved contrast settings, and low power consumption. The 2nd edition has also been updated to include the latest developments of head-mounted displays for virtual and augmented reality applications. Introduction to Flat Panel Displays introduces and updates both the fundamental physics and materials concepts underlying flat panel display technology and their application to smart phones, ultra-high definitions TVs, computers, and virtual and augmented reality systems. The book includes new information on quantum-dot enhanced LCDs, device configurations and performance, and nitrate-based LEDs. The authors also provide updates on technologies like: OLED materials, including phosphorescent, TTA, and TADF OLEDs White light OLED and light extraction OLED for mobile and TV Light and flexible OLED Reflective displays, including e-paper technology Low power consumption displays The perfect reference for graduate students and new entrants to the display industry, Introduction to Flat Panel Displays offers problem and homework sets at the end of each chapter to measure retention and learning. |
liquid crystal displays fundamental physics and technology: Handbook of Digital Imaging Michael Kriss, 2015-02-16 A comprehensive and practical analysis and overview of the imaging chain through acquisition, processing and display The Handbook of Digital Imaging provides a coherent overview of the imaging science amalgam, focusing on the capture, storage and display of images. The volumes are arranged thematically to provide a seamless analysis of the imaging chain from source (image acquisition) to destination (image print/display). The coverage is planned to have a very practical orientation to provide a comprehensive source of information for practicing engineers designing and developing modern digital imaging systems. The content will be drawn from all aspects of digital imaging including optics, sensors, quality, control, colour encoding and decoding, compression, projection and display. Contains approximately 50 highly illustrated articles printed in full colour throughout Over 50 Contributors from Europe, US and Asia from academia and industry The 3 volumes are organized thematically for enhanced usability: Volume 1: Image Capture and Storage; Volume 2: Image Display and Reproduction, Hardcopy Technology, Halftoning and Physical Evaluation, Models for Halftone Reproduction; Volume 3: Imaging System Applications, Media Imaging, Remote Imaging, Medical and Forensic Imaging 3 Volumes www.handbookofdigitalimaging.com |
liquid crystal displays fundamental physics and technology: Modeling and Optimization of LCD Optical Performance Dmitry A. Yakovlev, Vladimir G. Chigrinov, Hoi-Sing Kwok, 2015-02-04 Focusing on polarization matrix optics in many forms, this book includes coverage of a wide range of methods which have been applied to LCD modeling, ranging from the simple Jones matrix method to elaborate and high accuracy algorithms suitable for off-axis optics. Researchers and scientists are constantly striving for improved performance, faster response times, wide viewing angles, improved colour in liquid crystal display development, and with this comes the need to model LCD devices effectively. The authors have significant experience in dealing with the problems related to the practical application of liquid crystals, in particular their optical performance. Key features: Explores analytical solutions and approximations to important cases in the matrix treatment of different LC layer configurations, and the application of these results to improve the computational method Provides the analysis of accuracies of the different approaches discussed in the book Explains the development of the Eigenwave Jones matrix method which offers a path to improved accuracy compared to Jones matrix and extended Jones matrix formalisms, while achieving significant improvement in computational speed and versatility compared to full 4x4 matrix methods Includes a companion website hosting the authors' program library LMOPTICS (FORTRAN 90), a collection of routines for calculating the optical characteristics of stratified media, the use of which allows for the easy implementation of the methods described in this book. The website also contains a set of sample programs (source codes) using LMOPTICS, which exemplify the application of these methods in different situations |
liquid crystal displays fundamental physics and technology: Flat Panel Display Manufacturing Jun Souk, Shinji Morozumi, Fang-Chen Luo, Ion Bita, 2018-07-11 An extensive introduction to the engineering and manufacture of current and next-generation flat panel displays This book provides a broad overview of the manufacturing of flat panel displays, with a particular emphasis on the display systems at the forefront of the current mobile device revolution. It is structured to cover a broad spectrum of topics within the unifying theme of display systems manufacturing. An important theme of this book is treating displays as systems, which expands the scope beyond the technologies and manufacturing of traditional display panels (LCD and OLED) to also include key components for mobile device applications, such as flexible OLED, thin LCD backlights, as well as the manufacturing of display module assemblies. Flat Panel Display Manufacturing fills an important gap in the current book literature describing the state of the art in display manufacturing for today's displays, and looks to create a reference the development of next generation displays. The editorial team brings a broad and deep perspective on flat panel display manufacturing, with a global view spanning decades of experience at leading institutions in Japan, Korea, Taiwan, and the USA, and including direct pioneering contributions to the development of displays. The book includes a total of 24 chapters contributed by experts at leading manufacturing institutions from the global FPD industry in Korea, Japan, Taiwan, Germany, Israel, and USA. Provides an overview of the evolution of display technologies and manufacturing Treats display products as systems with manifold applications, expanding the scope beyond traditional display panel manufacturing to key components for mobile devices and TV applications Provides a detailed overview of LCD manufacturing, including panel architectures, process flows, and module manufacturing Provides a detailed overview of OLED manufacturing for both mobile and TV applications, including a chapter dedicated to the young field of flexible OLED manufacturing Provides a detailed overview of the key unit processes and corresponding manufacturing equipment, including manufacturing test & repair of TFT array panels as well as display module inspection & repair Introduces key topics in display manufacturing science and engineering, including productivity & quality, factory architectures, and green manufacturing Flat Panel Display Manufacturing will appeal to professionals and engineers in R&D departments for display-related technology development, as well as to graduates and Ph.D. students specializing in LCD/OLED/other flat panel displays. |
liquid crystal displays fundamental physics and technology: Liquid Crystal Photonics Vladimir G. Chigrinov, 2015 Liquid crystal devices for photonics applications is a hot topic of research. This book provides engineers, physicists, and designers with the most up-to-date descriptions of the dielectric, optical, and viscoelastic properties of LCs; photonics applications; and the knowledge to design better performing liquid crystal photonic and display devices (LCD). The book gives the knowledge needed to optimise LC cell geometry, select proper display configurations, and develop photonics LC applications. The book is intended for a wide range of engineers, scientists and managers, who are willing to understand the hot topics of LC applications in photonics and displays. Liquid crystal physical properties, geometry of liquid crystal cell and characteristics of electrooptical effects to choose and/or to develop liquid crystal photonics devices with optimal parameters are highlighted. Special attention was paid to photoalignment technology for LC photonics and emergent display devices. University researchers and students, who are specialised in the condensed matter physics and liquid crystal device developments will also find some useful information in this book. |
liquid crystal displays fundamental physics and technology: Polarization Engineering for LCD Projection Michael D. Robinson, Gary Sharp, Jianmin Chen, 2005-08-19 Liquid Crystal Display (LCD) projection technology has, in recent years, led the way in large area displays because of its potential to deliver scalable, high-resolution images at a low cost. Since large displayed images demand high brightness and contrast, a full understanding of polarization, and how to manage its effects, is essential for the development of quality systems. Using the example of LCD projection technology, this practical text provides a thorough coverage of polarization engineering problems, with appropriate solutions and mathematical tools for analysis. Key features: A comprehensive introduction to the basics of polarization, LCDs, projection technologies and LCD projection system engineering. A detailed examination of optical system components, including polarizers and retarder stack filters. A full treatment of system contrast and color management issues. In-depth analyses of how to manage polarization in the major LCD projection systems. Display engineers, scientists and technicians active in this field will find this a valuable resource, as will developers of large screen projection displays and microdisplays. Also useful for graduate students and researchers as an accessible introduction to the technology. The Society for Information Display (SID) is an international society, which has the aim of encouraging the development of all aspects of the field of information display. Complementary to the aims of the society, the Wiley-SID series is intended to explain the latest developments in information display technology at a professional level. The broad scope of the series addresses all facets of information displays from technical aspects through systems and prototypes to standards and ergonomics |
liquid crystal displays fundamental physics and technology: A Study on Liquid Crystal Display (LCD) in Optoelectronics Iduabo John Afa, 2013-04-22 Research Paper (postgraduate) from the year 2011 in the subject Physics - Optics, Wilberforce Island, language: English, abstract: Liquid crystals are understood not to emit light directly. The idea of liquid crystal display (LCD) is that they use the light modulating properties of liquid crystals. These LCDs are used in a wide range of applications including computer monitors, gaming devices, video players, watches, clock display, calculators and many more. The aim of our study is to show how with the use of the concept of LCs, LCDs have replaced older display methods such as Cathode Ray tube displays in display in modern devices like computer monitor display. We talk about the history, quality control, classifications and uses of LCDs. The advantages of these LCDs have proved to be far more over the CRTs. It is concluded that LCDs are currently the best for monitor and screen applications. |
liquid crystal displays fundamental physics and technology: Handbook of Optoelectronics John P. Dakin, Robert G. W. Brown, 2017-10-05 Handbook of Optoelectronics offers a self-contained reference from the basic science and light sources to devices and modern applications across the entire spectrum of disciplines utilizing optoelectronic technologies. This second edition gives a complete update of the original work with a focus on systems and applications. Volume I covers the details of optoelectronic devices and techniques including semiconductor lasers, optical detectors and receivers, optical fiber devices, modulators, amplifiers, integrated optics, LEDs, and engineered optical materials with brand new chapters on silicon photonics, nanophotonics, and graphene optoelectronics. Volume II addresses the underlying system technologies enabling state-of-the-art communications, imaging, displays, sensing, data processing, energy conversion, and actuation. Volume III is brand new to this edition, focusing on applications in infrastructure, transport, security, surveillance, environmental monitoring, military, industrial, oil and gas, energy generation and distribution, medicine, and free space. No other resource in the field comes close to its breadth and depth, with contributions from leading industrial and academic institutions around the world. Whether used as a reference, research tool, or broad-based introduction to the field, the Handbook offers everything you need to get started. John P. Dakin, PhD, is professor (emeritus) at the Optoelectronics Research Centre, University of Southampton, UK. Robert G. W. Brown, PhD, is chief executive officer of the American Institute of Physics and an adjunct full professor in the Beckman Laser Institute and Medical Clinic at the University of California, Irvine. |
liquid crystal displays fundamental physics and technology: Liquid Crystal Elastomers: Materials and Applications Wim H. de Jeu, 2012-07-02 Preparation of Liquid Crystalline Elastomers, by F. Brömmel, D. Kramer, H. Finkelmann Applications of Liquid Crystalline Elastomers, by C. Ohm, M. Brehmer und R. Zentel Liquid Crystal Elastomers and Light, by Peter Palffy-Muhoray Electro-Opto-Mechanical Effects in Swollen Nematic Elastomers, by Kenji Urayama The Isotropic-to-Nematic Conversion in Liquid Crystalline Elastomers, by Andrija Lebar, George Cordoyiannis, Zdravko Kutnjak und Bostjan Zalar Order and Disorder in Liquid-Crystalline Elastomers, by Wim H. de Jeu und Boris I. Ostrovskii |
liquid crystal displays fundamental physics and technology: Fundamentals of Liquid Crystal Devices Deng-Ke Yang, Shin-Tson Wu, 2014-10-01 Liquid Crystal Devices are crucial and ubiquitous components of an ever-increasing number of technologies. They are used in everything from cellular phones, eBook readers, GPS devices, computer monitors and automotive displays to projectors and TVs, to name but a few. This second edition continues to serve as an introductory guide to the fundamental properties of liquid crystals and their technical application, while explicating the recent advancements within LCD technology. This edition includes important new chapters on blue-phase display technology, advancements in LCD research significantly contributed to by the authors themselves. This title is of particular interest to engineers and researchers involved in display technology and graduate students involved in display technology research. Key features: Updated throughout to reflect the latest technical state-of-the-art in LCD research and development, including new chapters and material on topics such as the properties of blue-phase liquid crystal displays and 3D liquid crystal displays; Explains the link between the fundamental scientific principles behind liquid crystal technology and their application to photonic devices and displays, providing a thorough understanding of the physics, optics, electro-optics and material aspects of Liquid Crystal Devices; Revised material reflecting developments in LCD technology, including updates on optical modelling methods, transmissive LCDs and tunable liquid crystal photonic devices; Chapters conclude with detailed homework problems to further cement an understanding of the topic. |
liquid crystal displays fundamental physics and technology: Liquid Crystal Displays Ernst Lueder, Peter Knoll, Seung Hee Lee, 2022-04-04 LIQUID CRYSTAL DISPLAYS THE NEW EDITION OF THE GOLD-STANDARD IN TEACHING AND REFERENCING THE FUNDAMENTALS OF LCD TECHNOLOGIES This book presents an up-to-date view of modern LCD technology. Offering balanced coverage of all major aspects of the field, this comprehensive volume provides the theoretical and practical information required for the development and manufacture of high-performance, energy-efficient LCDs. The third edition incorporates new technologies and applications throughout. Several brand-new chapters discuss topics such as the application of Oxide TFTs and high mobility circuits, high-mobility TFT-semiconductors in LCD addressing, liquid crystal displays in automotive instrument clusters and touch-screen systems, and the use of ultra-high-resolution LCD panels in augmented reality (AR) and virtual reality (VR) displays. This practical reference and guide: Provides a complete account of commercially relevant LCD technologies, including their physics, mathematical descriptions, and electronic addressing Features extensively revised and expanded information, including more than 150 pages of new material Includes the addition of Oxide Transistors and their increased mobilities, the advances of fringe field switching and an overview of automotive displays Presents quantitative results with full equation sets, their derivation, and tabular summaries of related information sets |
liquid crystal displays fundamental physics and technology: Photoalignment of Liquid Crystalline Materials Vladimir G. Chigrinov, Vladimir M. Kozenkov, Hoi-Sing Kwok, 2008-09-15 Photoalignment possesses significant advantages in comparison with the usual ‘rubbing’ treatment of the substrates of liquid crystal display (LCD) cells as it is a non-contact method with a high resolution. A new technique recently pioneered by the authors of this book, namely the photo-induced diffusion reorientation of azodyes, does not involve any photochemical or structural transformations of the molecules. This results in photoaligning films which are robust and possess good aligning properties making them particularly suitable for the new generation of liquid crystal devices. Photoalignment of Liquid Crystalline Materials covers state-of-the-art techniques and key applications, as well as the authors’ own diffusion model for photoalignment. The book aims to stimulate new research and development in the field of liquid crystalline photoalignment and in so doing, enable the technology to be used in large scale LCD production. Key features: Provides a full examination of the mechanisms of photoalignment. Examines the properties of liquid crystals during photoalignment, with particular reference made to the effect on their chemical structure and stability. Considers the most useful photosensitive materials and preparation procedures suitable for liquid crystalline photoalignment. Presents several methods for photoalignment of liquid crystals. Compares various applications of photoalignment technology for in-cell patterned polarizers and phase retarders, transflective and micro displays, security and other liquid crystal devices. Through its interdisciplinary approach, this book is aimed at a wide range of practising electrical engineers, optical engineers, display technologists, materials scientists, physicists and chemists working on the development of liquid crystal devices. It will also appeal to researchers and graduate students taking courses on liquid crystals or display technologies. The Society for Information Display (SID) is an international society, which has the aim of encouraging the development of all aspects of the field of information display. Complementary to the aims of the society, the Wiley-SID series is intended to explain the latest developments in information display technology at a professional level. The broad scope of the series addresses all facets of information displays from technical aspects through systems and prototypes to standards and ergonomics |
liquid crystal displays fundamental physics and technology: Liquid Crystals: Frontiers In Biomedical Applications Gregory P Crawford, Gregory D Jay, Scott Woltman, 2007-08-13 The confluence of the fields of liquid crystals and biomedical engineering is resulting in remarkable interdisciplinary research. This book focuses on the potential for inherently translational research in one field of engineering to radically alter the scope of another. The text reviews the exciting advances being made in displays, spectroscopy, sensors and diagnostics, biomimicking, actuators and lasers with regards to liquid crystalline materials, and biomedicine. The liquid crystal field — which has delivered revolutionary devices in the display, optics, and telecommunications industries — is now poised to make significant inroads into biology, medicine, and biomedical engineering. |
liquid crystal displays fundamental physics and technology: Introduction to Liquid Crystals Peter J. Collings, Michael Hird, 2017-09-06 This text relies on only introductory level physics and chemistry as the foundation for understanding liquid crystal science. Liquid crystals combine the material properties of solids with the flow properties of fluids. As such they have provided the foundation for a revolution in low- power, flat-panel display technology LCDs. In this book, the essential elements of liquid crystal science are introduced and explained from the perspectives of both the chemist and the physicist.; The text begins with an historical account of the discovery of liquid crystals and continues with a description of how different phases are generated and how different molecular architectures affect liquid crystalline properties. The rest of the book is concerned with understanding and explaining the properties of the various types of liquid crystals, and in the final part of the book, the technology of LCDs is discussed and illustrated. |
liquid crystal displays fundamental physics and technology: Introduction to Liquid Crystals for Optical Design and Engineering Sergio R. Restaino, Scott W. Teare, 2015-06 Devices based on liquid crystals have become the mainstay of display technology used in mobile devices, vehicles, computer systems, and almost any other opportunity for information display imaginable. The aim of this book is to provide the optics community a liquid crystals primer that focuses on the optical components made from these fascinating materials. The book provides a functional overview of liquid crystal devices, their history, and their applications so that readers are prepared for more advanced texts and can continue to grow their abilities in this field. While it is not meant to be a complete mathematical treatise on the basics and applications of liquid crystals, the book does fill in some of the technical gaps, in particular in the area of adaptive optics applications. |
liquid crystal displays fundamental physics and technology: Liquid Crystal on Silicon Devices Andrés Márquez, Ángel Lizana, 2019-11-19 Liquid Crystal on Silicon (LCoS) has become one of the most widespread technologies for spatial light modulation in optics and photonics applications. These reflective microdisplays are composed of a high-performance silicon complementary metal oxide semiconductor (CMOS) backplane, which controls the light-modulating properties of the liquid crystal layer. State-of-the-art LCoS microdisplays may exhibit a very small pixel pitch (below 4 μm), a very large number of pixels (resolutions larger than 4K), and high fill factors (larger than 90%). They modulate illumination sources covering the UV, visible, and far IR. LCoS are used not only as displays but also as polarization, amplitude, and phase-only spatial light modulators, where they achieve full phase modulation. Due to their excellent modulating properties and high degree of flexibility, they are found in all sorts of spatial light modulation applications, such as in LCOS-based display systems for augmented and virtual reality, true holographic displays, digital holography, diffractive optical elements, superresolution optical systems, beam-steering devices, holographic optical traps, and quantum optical computing. In order to fulfil the requirements in this extensive range of applications, specific models and characterization techniques are proposed. These devices may exhibit a number of degradation effects such as interpixel cross-talk and fringing field, and time flicker, which may also depend on the analog or digital backplane of the corresponding LCoS device. The use of appropriate characterization and compensation techniques is then necessary. |
liquid crystal displays fundamental physics and technology: Ferroelectric and Antiferroelectric Liquid Crystals Sven T. Lagerwall, 2008-07-11 The study of ferroelectricity is a branch of solid state physics which has shown rapid growth during the recent years. Ferroelectric materials exhibit unusual electric properties which make them useful in modern (opto)electronic technology, esp. display technology. Ferroelectric and antiferroelectric liquid crystals, including also various polymer forms, are the hottest research topic today in liquid crystals. The field is at the very beginning of industrial exploitation - a sensitive phase in which a good reference work is needed and will have a broad spectrum of readers both at universities and in industry. |
liquid crystal displays fundamental physics and technology: Liquid Crystal Colloids Igor Muševič, 2017-05-14 This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which deals with elastic deformation of nematic liquid crystals due to inclusions and surface alignment. This is discussed in the context of basic mean field Landau-de Gennes Q-tensor theory, with a brief explanation of the free-energy minimization numerical methods. There then follows an excursion into the topology of complex nematic colloidal structures, colloidal entanglement, knotting and linking. Nematic droplets, shells, handlebodies and chiral topological structures are addressed in separate chapters. The book concludes with an extensive chapter on the photonic properties of nematic dispersions, presenting the concept of integrated soft matter photonics and discussing the concepts of nematic and chiral nematic microlasers, surface-sensitive photonic devices and smectic microfibers. The text is complemented by a large bibliography, explanatory sketches and beautiful micrographs. |
liquid crystal displays fundamental physics and technology: An Introduction to Liquid Crystals Gregory A. DiLisi, 2019 Practically every display technology in use today relies on the flat, energy-efficient construction made possible by liquid crystals. These displays provide visually-crisp, vibrantly-colored images that a short time ago were thought only possible in science fiction. Liquid crystals are known mainly for their use in display technologies, but they also provide many diverse and useful applications: adaptive optics, electro-optical devices, films, lasers, photovoltaics, privacy windows, skin cleansers and soaps, and thermometers. The striking images of liquid crystals changing color under polarized lighting conditions are even on display in many museums and art galleries--true examples of 'science meeting art'. Although liquid crystals provide us with visually stunning displays, fascinating applications, and are a rich and fruitful source of interdisciplinary research, their full potential may yet remain untapped. |
liquid crystal displays fundamental physics and technology: Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO Noboru Kimizuka, Shunpei Yamazaki, 2016-10-17 Electronic devices based on oxide semiconductors are the focus of much attention, with crystalline materials generating huge commercial success. Indium–gallium–zinc oxide (IGZO) transistors have a higher mobility than amorphous silicon transistors, and an extremely low off-state current. C-axis aligned crystalline (CAAC) IGZO enables aggressive down-scaling, high reliability, and process simplification of transistors in displays and LSI devices. This original book introduces the CAAC-IGZO structure, and describes the physics and technology of this new class of oxide materials. It explains the crystallographic classification and characteristics of crystalline oxide semiconductors, their crystallographic characteristics and physical properties, and how this unique material has made a major contribution to the field of oxide semiconductor thin films. Two further books in this series describe applications of CAAC-IGZO in flat-panel displays and LSI devices. Key features: Introduces the unique and revolutionary, yet relatively unknown crystalline oxide semiconductor CAAC-IGZO Presents crystallographic overviews of IGZO and related compounds. Offers an in-depth understanding of CAAC-IGZO. Explains the fabrication method of CAAC-IGZO thin films. Presents the physical properties and latest data to support high-reliability crystalline IGZO based on hands-on experience. Describes the manufacturing process the CAAC-IGZO transistors and introduces the device application using CAAC-IGZO. |
liquid crystal displays fundamental physics and technology: Addressing Techniques of Liquid Crystal Displays Temkar N. Ruckmongathan, 2014-11-03 Unique reference source that can be used from the beginning to end of a design project to aid choosing an appropriate LCD addressing technique for a given application This book will be aimed at design engineers who are likely to embed LCD drivers and controllers in many systems including systems on chip. Such designers face the challenge of making the right choice of an addressing technique that will serve them with best performance at minimal cost and complexity. Readers will be able to learn about various methods available for driving matrix LCDs and the comparisons at the end of each chapter will aid readers to make an informed design choice. The book will address the various driving techniques related to LCDs. Due to the non-linear response of the liquid crystal to external voltages, different driving methods such as passive and active matrix driving can be utilized. The associated theoretical basis of these driving techniques is introduced, and this theoretical analysis is supplemented by information on the implementation of drivers and controllers to link the theory to practice. Written by an experienced research scientist with over 30 years in R&D in this field. Acts as an exhaustive review and comparison of techniques developed for passive-matrix addressing of twisted nematic and super-twisted nematic (STN) LCDs. Discusses the trend towards High Definition displays and that a hybrid approach to drive matrix LCDs (combination of active and passive matrix addressing) will be the future of LCD addressing. Contains the author’s recent work on Bit-Slice Addressing that is useful for fast responding LCDs, as well as a chapter on driving ferroelectric LCDs Provides an objective comparison that will enable designers to make an informed choice of an addressing technique for a specific application. Includes examples of the practical applications of addressing techniques. Organised in a way that each chapter can be read independently; with the basic knowledge and historical background gained from the introductory chapters, adequate for understanding the techniques that are presented in the remaining chapters making it a self-contained reference. |
liquid crystal displays fundamental physics and technology: Fundamentals of Semiconductors Peter YU, Manuel Cardona, 2005-03-23 Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book. Physics Today Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors ... I know of no better text ... I am sure most semiconductor physicists will find this book useful and I recommend it to them. Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters. |
liquid crystal displays fundamental physics and technology: Jump-Starting America Jonathan Gruber, Simon Johnson, 2019-04-09 The untold story of how America once created the most successful economy the world has ever seen—and how we can do it again. The American economy glitters on the outside, but the reality is quite different. Job opportunities and economic growth are increasingly concentrated in a few crowded coastal enclaves. Corporations and investors are disproportionately developing technologies that benefit the wealthiest Americans in the most prosperous areas -- and destroying middle class jobs elsewhere. To turn this tide, we must look to a brilliant and all-but-forgotten American success story and embark on a plan that will create the industries of the future -- and the jobs that go with them. Beginning in 1940, massive public investment generated breakthroughs in science and technology that first helped win WWII and then created the most successful economy the world has ever seen. Private enterprise then built on these breakthroughs to create new industries -- such as radar, jet engines, digital computers, mobile telecommunications, life-saving medicines, and the internet-- that became the catalyst for broader economic growth that generated millions of good jobs. We lifted almost all boats, not just the yachts. Jonathan Gruber and Simon Johnson tell the story of this first American growth engine and provide the blueprint for a second. It's a visionary, pragmatic, sure-to-be controversial plan that will lead to job growth and a new American economy in places now left behind. |
liquid crystal displays fundamental physics and technology: OLED Microdisplays François Templier, 2014-08-08 Microdisplays are displays requiring optical magnification and OLEDs (Organic Light-Emitting Diode) are self-emitting displays where each pixel includes a LED made of organic material, in general composed of small-molecule organic material. This title reviews in detail how OLED microdisplays are made as well as how they are used. All aspects from theory to application will be addressed: basic principles, display design, display fabrication, operation and performances, present and future applications. The book will be useful to anyone interested in this rapidly developing field, such as students or researchers, industry professionals (engineers, project leaders) in the field of display development/fabrication and display end-users. |
liquid crystal displays fundamental physics and technology: Interactive Displays Achintya K. Bhowmik, 2014-07-07 How we interface and interact with computing, communications and entertainment devices is going through revolutionary changes, with natural user inputs based on touch, voice, and vision replacing or augmenting the use of traditional interfaces based on the keyboard, mouse, joysticks, etc. As a result, displays are morphing from one-way interface devices that merely show visual content to two-way interaction devices that provide more engaging and immersive experiences. This book provides an in-depth coverage of the technologies, applications, and trends in the rapidly emerging field of interactive displays enabled by natural human-interfaces. Key features: Provides a definitive reference reading on all the touch technologies used in interactive displays, including their advantages, limitations, and future trends. Covers the fundamentals and applications of speech input, processing and recognition techniques enabling voice-based interactions. Offers a detailed review of the emerging vision-based sensing technologies, and user interactions using gestures of hands, body, face, and eye gazes. Discusses multi-modal natural user interface schemes which intuitively combine touch, voice, and vision for life-like interactions. Examines the requirements and technology status towards realizing “true” 3D immersive and interactive displays. |
liquid crystal displays fundamental physics and technology: Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO Shunpei Yamazaki, Masahiro Fujita, 2016-10-24 This book describes the application of c-axis aligned crystalline In-Ga-Zn oxide (CAAC-IGZO) technology in large-scale integration (LSI) circuits. The applications include Non-volatile Oxide Semiconductor Random Access Memory (NOSRAM), Dynamic Oxide Semiconductor Random Access Memory (DOSRAM), central processing unit (CPU), field-programmable gate array (FPGA), image sensors, and etc. The book also covers the device physics (e.g., off-state characteristics) of the CAAC-IGZO field effect transistors (FETs) and process technology for a hybrid structure of CAAC-IGZO and Si FETs. It explains an extremely low off-state current technology utilized in the LSI circuits, demonstrating reduced power consumption in LSI prototypes fabricated by the hybrid process. A further two books in the series will describe the fundamentals; and the specific application of CAAC-IGZO to LCD and OLED displays. Key features: • Outlines the physics and characteristics of CAAC-IGZO FETs that contribute to favorable operations of LSI devices. • Explains the application of CAAC-IGZO to LSI devices, highlighting attributes including low off-state current, low power consumption, and excellent charge retention. • Describes the NOSRAM, DOSRAM, CPU, FPGA, image sensors, and etc., referring to prototype chips fabricated by a hybrid process of CAAC-IGZO and Si FETs. |
liquid crystal displays fundamental physics and technology: Flat Panel Display Manufacturing Jun Souk, Shinji Morozumi, Fang-Chen Luo, Ion Bita, 2018-07-23 An extensive introduction to the engineering and manufacture of current and next-generation flat panel displays This book provides a broad overview of the manufacturing of flat panel displays, with a particular emphasis on the display systems at the forefront of the current mobile device revolution. It is structured to cover a broad spectrum of topics within the unifying theme of display systems manufacturing. An important theme of this book is treating displays as systems, which expands the scope beyond the technologies and manufacturing of traditional display panels (LCD and OLED) to also include key components for mobile device applications, such as flexible OLED, thin LCD backlights, as well as the manufacturing of display module assemblies. Flat Panel Display Manufacturing fills an important gap in the current book literature describing the state of the art in display manufacturing for today's displays, and looks to create a reference the development of next generation displays. The editorial team brings a broad and deep perspective on flat panel display manufacturing, with a global view spanning decades of experience at leading institutions in Japan, Korea, Taiwan, and the USA, and including direct pioneering contributions to the development of displays. The book includes a total of 24 chapters contributed by experts at leading manufacturing institutions from the global FPD industry in Korea, Japan, Taiwan, Germany, Israel, and USA. Provides an overview of the evolution of display technologies and manufacturing Treats display products as systems with manifold applications, expanding the scope beyond traditional display panel manufacturing to key components for mobile devices and TV applications Provides a detailed overview of LCD manufacturing, including panel architectures, process flows, and module manufacturing Provides a detailed overview of OLED manufacturing for both mobile and TV applications, including a chapter dedicated to the young field of flexible OLED manufacturing Provides a detailed overview of the key unit processes and corresponding manufacturing equipment, including manufacturing test & repair of TFT array panels as well as display module inspection & repair Introduces key topics in display manufacturing science and engineering, including productivity & quality, factory architectures, and green manufacturing Flat Panel Display Manufacturing will appeal to professionals and engineers in R&D departments for display-related technology development, as well as to graduates and Ph.D. students specializing in LCD/OLED/other flat panel displays. |
Liquid - Wikipedia
Liquid is a state of matter with a definite volume but no fixed shape. Liquids adapt to the shape of their container and are nearly incompressible, maintaining their volume even under pressure. …
Liquid Definition – Examples of Liquids - Science Notes and Projects
Mar 21, 2021 · A liquid is a state of matter that has a definite volume, but no fixed shape. In other words, a liquid takes the shape of its container. Liquids consist of atoms or molecules that are …
Liquid | Chemistry, Properties, & Facts | Britannica
May 9, 2025 · Liquid, in physics, one of the three principal states of matter, intermediate between gas and crystalline solid. The most obvious physical properties of a liquid are its retention of …
LIQUID Definition & Meaning - Merriam-Webster
The meaning of LIQUID is flowing freely like water. How to use liquid in a sentence.
What is a liquid? – TechTarget Definition
Dec 8, 2022 · What is a liquid? A liquid is a type of matter with specific properties that make it less rigid than a solid but more rigid than a gas. A liquid can flow and does not have a specific …
LIQUID | definition in the Cambridge English Dictionary
LIQUID meaning: 1. a substance, such as water, that is not solid or a gas and that can be poured easily: 2. a…. Learn more.
Apple introduces a delightful and elegant new software design
Jun 9, 2025 · The new material, Liquid Glass, is translucent and behaves like glass in the real world. Its color is informed by surrounding content and intelligently adapts between light and …
Liquid: Definition, Behavior, Examples, Properties, and Types
A liquid is one of the three main states of matter, along with solids and gases. It is made up of tiny particles, such as ions or molecules, that are close together but not as tightly packed as in solids.
What does Liquid mean? - Definitions.net
Jun 23, 2015 · Liquid is one of the four fundamental states of matter, and is the only state with a definite volume but no fixed shape. A liquid is made up of tiny vibrating particles of matter, …
Liquid - Simple English Wikipedia, the free encyclopedia
Water is a liquid. A liquid is a form of matter. It is settled between solid and gas. Liquid has an almost-fixed volume, but no set shape. [1] Every small force makes a liquid change its shape …
Liquid - Wikipedia
Liquid is a state of matter with a definite volume but no fixed shape. Liquids adapt to the shape of their container and are nearly incompressible, maintaining their volume even under pressure. …
Liquid Definition – Examples of Liquids - Science Notes and …
Mar 21, 2021 · A liquid is a state of matter that has a definite volume, but no fixed shape. In other words, a liquid takes the shape of its container. Liquids consist of atoms or molecules that are …
Liquid | Chemistry, Properties, & Facts | Britannica
May 9, 2025 · Liquid, in physics, one of the three principal states of matter, intermediate between gas and crystalline solid. The most obvious physical properties of a liquid are its retention of …
LIQUID Definition & Meaning - Merriam-Webster
The meaning of LIQUID is flowing freely like water. How to use liquid in a sentence.
What is a liquid? – TechTarget Definition
Dec 8, 2022 · What is a liquid? A liquid is a type of matter with specific properties that make it less rigid than a solid but more rigid than a gas. A liquid can flow and does not have a specific …
LIQUID | definition in the Cambridge English Dictionary
LIQUID meaning: 1. a substance, such as water, that is not solid or a gas and that can be poured easily: 2. a…. Learn more.
Apple introduces a delightful and elegant new software design
Jun 9, 2025 · The new material, Liquid Glass, is translucent and behaves like glass in the real world. Its color is informed by surrounding content and intelligently adapts between light and …
Liquid: Definition, Behavior, Examples, Properties, and Types
A liquid is one of the three main states of matter, along with solids and gases. It is made up of tiny particles, such as ions or molecules, that are close together but not as tightly packed as in solids.
What does Liquid mean? - Definitions.net
Jun 23, 2015 · Liquid is one of the four fundamental states of matter, and is the only state with a definite volume but no fixed shape. A liquid is made up of tiny vibrating particles of matter, …
Liquid - Simple English Wikipedia, the free encyclopedia
Water is a liquid. A liquid is a form of matter. It is settled between solid and gas. Liquid has an almost-fixed volume, but no set shape. [1] Every small force makes a liquid change its shape …