Advertisement
linear algebra and quantum mechanics: Linear Operators for Quantum Mechanics Thomas F. Jordan, 2012-09-20 Suitable for advanced undergraduates and graduate students, this compact treatment examines linear space, functionals, and operators; diagonalizing operators; operator algebras; and equations of motion. 1969 edition. |
linear algebra and quantum mechanics: Linear Algebra for Quantum Theory Per-Olov Löwdin, 1998-04-09 Essential mathematical tools for the study of modern quantumtheory. Linear Algebra for Quantum Theory offers an excellent survey ofthose aspects of set theory and the theory of linear spaces andtheir mappings that are indispensable to the study of quantumtheory. Unlike more conventional treatments, this text postponesits discussion of the binary product concept until later chapters,thus allowing many important properties of the mappings to bederived without it. The book begins with a thorough exploration of set theoryfundamentals, including mappings, cardinalities of sets, andarithmetic and theory of complex numbers. Next is an introductionto linear spaces, with coverage of linear operators, eigenvalue andthe stability problem of linear operators, and matrices withspecial properties. Material on binary product spaces features self-adjoint operatorsin a space of indefinite metric, binary product spaces with apositive definite metric, properties of the Hilbert space, andmore. The final section is devoted to axioms of quantum theoryformulated as trace algebra. Throughout, chapter-end problem setshelp reinforce absorption of the material while letting readerstest their problem-solving skills. Ideal for advanced undergraduate and graduate students intheoretical and computational chemistry and physics, Linear Algebrafor Quantum Theory provides the mathematical means necessary toaccess and understand the complex world of quantum theory. |
linear algebra and quantum mechanics: Quantum Algorithms via Linear Algebra Richard J. Lipton, Kenneth W. Regan, 2014-12-05 Quantum computing explained in terms of elementary linear algebra, emphasizing computation and algorithms and requiring no background in physics. This introduction to quantum algorithms is concise but comprehensive, covering many key algorithms. It is mathematically rigorous but requires minimal background and assumes no knowledge of quantum theory or quantum mechanics. The book explains quantum computation in terms of elementary linear algebra; it assumes the reader will have some familiarity with vectors, matrices, and their basic properties, but offers a review of all the relevant material from linear algebra. By emphasizing computation and algorithms rather than physics, this primer makes quantum algorithms accessible to students and researchers in computer science without the complications of quantum mechanical notation, physical concepts, and philosophical issues. After explaining the development of quantum operations and computations based on linear algebra, the book presents the major quantum algorithms, from seminal algorithms by Deutsch, Jozsa, and Simon through Shor's and Grover's algorithms to recent quantum walks. It covers quantum gates, computational complexity, and some graph theory. Mathematical proofs are generally short and straightforward; quantum circuits and gates are used to illuminate linear algebra; and the discussion of complexity is anchored in computational problems rather than machine models. Quantum Algorithms via Linear Algebra is suitable for classroom use or as a reference for computer scientists and mathematicians. |
linear algebra and quantum mechanics: Introduction to Quantum Mechanics David J. Griffiths, 2017 This bestselling textbook teaches students how to do quantum mechanics and provides an insightful discussion of what it actually means. |
linear algebra and quantum mechanics: Linear Algebra and Group Theory for Physicists and Engineers Yair Shapira, 2019-05-11 This textbook demonstrates the strong interconnections between linear algebra and group theory by presenting them simultaneously, a pedagogical strategy ideal for an interdisciplinary audience. Being approached together at the same time, these two topics complete one another, allowing students to attain a deeper understanding of both subjects. The opening chapters introduce linear algebra with applications to mechanics and statistics, followed by group theory with applications to projective geometry. Then, high-order finite elements are presented to design a regular mesh and assemble the stiffness and mass matrices in advanced applications in quantum chemistry and general relativity. This text is ideal for undergraduates majoring in engineering, physics, chemistry, computer science, or applied mathematics. It is mostly self-contained—readers should only be familiar with elementary calculus. There are numerous exercises, with hints or full solutions provided. A series of roadmaps are also provided to help instructors choose the optimal teaching approach for their discipline. |
linear algebra and quantum mechanics: Alice and Bob Meet Banach Guillaume Aubrun, Stanisław J. Szarek, 2017-08-30 The quest to build a quantum computer is arguably one of the major scientific and technological challenges of the twenty-first century, and quantum information theory (QIT) provides the mathematical framework for that quest. Over the last dozen or so years, it has become clear that quantum information theory is closely linked to geometric functional analysis (Banach space theory, operator spaces, high-dimensional probability), a field also known as asymptotic geometric analysis (AGA). In a nutshell, asymptotic geometric analysis investigates quantitative properties of convex sets, or other geometric structures, and their approximate symmetries as the dimension becomes large. This makes it especially relevant to quantum theory, where systems consisting of just a few particles naturally lead to models whose dimension is in the thousands, or even in the billions. Alice and Bob Meet Banach is aimed at multiple audiences connected through their interest in the interface of QIT and AGA: at quantum information researchers who want to learn AGA or apply its tools; at mathematicians interested in learning QIT, or at least the part of QIT that is relevant to functional analysis/convex geometry/random matrix theory and related areas; and at beginning researchers in either field. Moreover, this user-friendly book contains numerous tables and explicit estimates, with reasonable constants when possible, which make it a useful reference even for established mathematicians generally familiar with the subject. |
linear algebra and quantum mechanics: Introduction to Quantum Algorithms via Linear Algebra, second edition Richard J. Lipton, Kenneth W. Regan, 2021-04-06 Quantum computing explained in terms of elementary linear algebra, emphasizing computation and algorithms and requiring no background in physics. This introduction to quantum algorithms is concise but comprehensive, covering many key algorithms. It is mathematically rigorous but requires minimal background and assumes no knowledge of quantum theory or quantum mechanics. The book explains quantum computation in terms of elementary linear algebra; it assumes the reader will have some familiarity with vectors, matrices, and their basic properties, but offers a review of the relevant material from linear algebra. By emphasizing computation and algorithms rather than physics, it makes quantum algorithms accessible to students and researchers in computer science who have not taken courses in quantum physics or delved into fine details of quantum effects, apparatus, circuits, or theory. |
linear algebra and quantum mechanics: A Modern Approach to Quantum Mechanics John S. Townsend, 2000 Inspired by Richard Feynman and J.J. Sakurai, A Modern Approach to Quantum Mechanics allows lecturers to expose their undergraduates to Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical and pedagogically sound. This book covers all the topics that are typically presented in a standard upper-level course in quantum mechanics, but its teaching approach is new. Rather than organizing his book according to the historical development of the field and jumping into a mathematical discussion of wave mechanics, Townsend begins his book with the quantum mechanics of spin. Thus, the first five chapters of the book succeed in laying out the fundamentals of quantum mechanics with little or no wave mechanics, so the physics is not obscured by mathematics. Starting with spin systems it gives students straightfoward examples of the structure of quantum mechanics. When wave mechanics is introduced later, students should perceive it correctly as only one aspect of quantum mechanics and not the core of the subject. |
linear algebra and quantum mechanics: Quantum Mechanics Leonard Susskind, Art Friedman, 2014-02-25 From the bestselling author of The Theoretical Minimum, a DIY introduction to the math and science of quantum physics First he taught you classical mechanics. Now, physicist Leonard Susskind has teamed up with data engineer Art Friedman to present the theory and associated mathematics of the strange world of quantum mechanics. In this follow-up to The Theoretical Minimum, Susskind and Friedman provide a lively introduction to this famously difficult field, which attempts to understand the behavior of sub-atomic objects through mathematical abstractions. Unlike other popularizations that shy away from quantum mechanics’ weirdness, Quantum Mechanics embraces the utter strangeness of quantum logic. The authors offer crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics, and each chapter includes exercises to ensure mastery of each area. Like The Theoretical Minimum, this volume runs parallel to Susskind’s eponymous Stanford University-hosted continuing education course. An approachable yet rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace. |
linear algebra and quantum mechanics: Quantum Theory, Groups and Representations Peter Woit, 2017-11-01 This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations. |
linear algebra and quantum mechanics: Lectures on Quantum Mechanics for Mathematics Students L. D. Faddeev, Oleg Aleksandrovich I︠A︡kubovskiĭ, 2009 Describes the relation between classical and quantum mechanics. This book contains a discussion of problems related to group representation theory and to scattering theory. It intends to give a mathematically oriented student the opportunity to grasp the main points of quantum theory in a mathematical framework. |
linear algebra and quantum mechanics: Mathematics of Economics and Business Frank Werner, Yuri N. Sotskov, 2006-04-18 For all students who wish to understand current economic and business literature, knowledge of mathematical methods has become a prerequisite. Clear and concise, with precise definitions and theorems, Werner and Sotskov cover all the major topics required to gain a firm grounding in this subject including sequences, series, applications in finance, functions, differentiations, differentials and difference equations, optimizations with and without constraints, integrations and much more. Containing exercises and worked examples, precise definitions and theorems as well as economic applications, this book provides the reader with a comprehensive understanding of the mathematical models and tools used in both economics and business. |
linear algebra and quantum mechanics: Principles of Quantum Mechanics R. Shankar, 2012-12-06 R. Shankar has introduced major additions and updated key presentations in this second edition of Principles of Quantum Mechanics. New features of this innovative text include an entirely rewritten mathematical introduction, a discussion of Time-reversal invariance, and extensive coverage of a variety of path integrals and their applications. Additional highlights include: - Clear, accessible treatment of underlying mathematics - A review of Newtonian, Lagrangian, and Hamiltonian mechanics - Student understanding of quantum theory is enhanced by separate treatment of mathematical theorems and physical postulates - Unsurpassed coverage of path integrals and their relevance in contemporary physics The requisite text for advanced undergraduate- and graduate-level students, Principles of Quantum Mechanics, Second Edition is fully referenced and is supported by many exercises and solutions. The book’s self-contained chapters also make it suitable for independent study as well as for courses in applied disciplines. |
linear algebra and quantum mechanics: Introduction to Quantum Mechanics David J. Griffiths, Darrell F. Schroeter, 2019-11-20 Changes and additions to the new edition of this classic textbook include a new chapter on symmetries, new problems and examples, improved explanations, more numerical problems to be worked on a computer, new applications to solid state physics, and consolidated treatment of time-dependent potentials. |
linear algebra and quantum mechanics: Quantum Mechanics Caio Lima Firme, 2022-06-15 Main features: i) A different approach for teaching Quantum Mechanics encompassing old quantum mechanics, matrix mechanics and wave mechanics in a historical perspective which helps to consolidate most important concepts of Quantum Mechanics; ii) Original information from the most important papers of Quantum Mechanics; iii) Derivation of all important equations of Quantum Mechanics, for example, Heisenberg’s uncertainty principle, de Broglie’s wave-particle duality, Schrödinger’s wave equation, etc., showing their interrelations through Dirac’s equations and other applications of matrix and wave mechanics; iv) Comprehensive mathematical support for the understanding of Quantum Mechanics; derivation of all equations make reading easier; v) The illustrations of the book cover examples, exercises and do-it-yourself activities; vi) Fundamentals of Fortran and numerical calculation along with the source codes for numerical solutions of several mathematical and quantum problems. All source codes are in the author’s site: (https://www.fortrancodes.com/); vii) Chapters devoted to linear algebra and differential equations applied to quantum mechanics and their numerical solutions; viii) Complete solution for the one-electron and two-electron problems using Schrödinger’s time independent equation along with their source codes. |
linear algebra and quantum mechanics: Quantum Mechanics for Mathematicians Leon Armenovich Takhtadzhi͡an, 2008-01-01 This book is written in a concise style with careful attention to precise mathematics formulation of methods and results. Numerous problems, from routine to advanced, help the reader to master the subject. In addition to providing a fundamental knowledge of quantum mechanics, this book could also serve as a bridge for studying more advanced topics in quantum physics, among them quantum field theory.--BOOK JACKET. |
linear algebra and quantum mechanics: Quantum Computing for Everyone Chris Bernhardt, 2019-03-19 An accessible introduction to an exciting new area in computation, explaining such topics as qubits, entanglement, and quantum teleportation for the general reader. Quantum computing is a beautiful fusion of quantum physics and computer science, incorporating some of the most stunning ideas from twentieth-century physics into an entirely new way of thinking about computation. In this book, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone who is comfortable with high school mathematics. He explains qubits, entanglement, quantum teleportation, quantum algorithms, and other quantum-related topics as clearly as possible for the general reader. Bernhardt, a mathematician himself, simplifies the mathematics as much as he can and provides elementary examples that illustrate both how the math works and what it means. Bernhardt introduces the basic unit of quantum computing, the qubit, and explains how the qubit can be measured; discusses entanglement—which, he says, is easier to describe mathematically than verbally—and what it means when two qubits are entangled (citing Einstein's characterization of what happens when the measurement of one entangled qubit affects the second as “spooky action at a distance”); and introduces quantum cryptography. He recaps standard topics in classical computing—bits, gates, and logic—and describes Edward Fredkin's ingenious billiard ball computer. He defines quantum gates, considers the speed of quantum algorithms, and describes the building of quantum computers. By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing. The basic unit of computation is the qubit, not the bit. |
linear algebra and quantum mechanics: Quantum Mechanics and Experience David Z Albert, 1994-03-15 Presents a guide to the basics of quantum mechanics and measurement. |
linear algebra and quantum mechanics: Linear Algebra Kenneth Hoffman, Ray Alden Kunze, 2015 |
linear algebra and quantum mechanics: Quantum Mechanics for Electrical Engineers Dennis M. Sullivan, 2011-11-30 The main topic of this book is quantum mechanics, as the title indicates. It specifically targets those topics within quantum mechanics that are needed to understand modern semiconductor theory. It begins with the motivation for quantum mechanics and why classical physics fails when dealing with very small particles and small dimensions. Two key features make this book different from others on quantum mechanics, even those usually intended for engineers: First, after a brief introduction, much of the development is through Fourier theory, a topic that is at the heart of most electrical engineering theory. In this manner, the explanation of the quantum mechanics is rooted in the mathematics familiar to every electrical engineer. Secondly, beginning with the first chapter, simple computer programs in MATLAB are used to illustrate the principles. The programs can easily be copied and used by the reader to do the exercises at the end of the chapters or to just become more familiar with the material. Many of the figures in this book have a title across the top. This title is the name of the MATLAB program that was used to generate that figure. These programs are available to the reader. Appendix D lists all the programs, and they are also downloadable at http://booksupport.wiley.com |
linear algebra and quantum mechanics: Quantum Mechanics with Applications to Nanotechnology and Information Science Yehuda B. Band, Yshai Avishai, 2013-01-10 Quantum mechanics transcends and supplants classical mechanics at the atomic and subatomic levels. It provides the underlying framework for many subfields of physics, chemistry and materials science, including condensed matter physics, atomic physics, molecular physics, quantum chemistry, particle physics, and nuclear physics. It is the only way we can understand the structure of materials, from the semiconductors in our computers to the metal in our automobiles. It is also the scaffolding supporting much of nanoscience and nanotechnology. The purpose of this book is to present the fundamentals of quantum theory within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. Hence, the emphasis on new topics that are not included in older reference texts, such as quantum information theory, decoherence and dissipation, and on applications to nanotechnology, including quantum dots, wires and wells. - This book provides a novel approach to Quantum Mechanics whilst also giving readers the requisite background and training for the scientists and engineers of the 21st Century who need to come to grips with quantum phenomena - The fundamentals of quantum theory are provided within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology - Older books on quantum mechanics do not contain the amalgam of ideas, concepts and tools necessary to prepare engineers and scientists to deal with the new facets of quantum mechanics and their application to quantum information science and nanotechnology - As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today - There are many excellent quantum mechanics books available, but none have the emphasis on nanotechnology and quantum information science that this book has |
linear algebra and quantum mechanics: Mathematical Methods in the Physical Sciences Mary L. Boas, 2006 Market_Desc: · Physicists and Engineers· Students in Physics and Engineering Special Features: · Covers everything from Linear Algebra, Calculus, Analysis, Probability and Statistics, to ODE, PDE, Transforms and more· Emphasizes intuition and computational abilities· Expands the material on DE and multiple integrals· Focuses on the applied side, exploring material that is relevant to physics and engineering· Explains each concept in clear, easy-to-understand steps About The Book: The book provides a comprehensive introduction to the areas of mathematical physics. It combines all the essential math concepts into one compact, clearly written reference. This book helps readers gain a solid foundation in the many areas of mathematical methods in order to achieve a basic competence in advanced physics, chemistry, and engineering. |
linear algebra and quantum mechanics: The Schrodinger Equation Walter Thirring, Paul Urban, 1977-04-29 |
linear algebra and quantum mechanics: The Schrödinger Equation F.A. Berezin, M. Shubin, 1991-05-31 |
linear algebra and quantum mechanics: Linear Algebra and Geometry P. K. Suetin, Alexandra I. Kostrikin, Yu I Manin, 1997-10-01 This advanced textbook on linear algebra and geometry covers a wide range of classical and modern topics. Differing from existing textbooks in approach, the work illustrates the many-sided applications and connections of linear algebra with functional analysis, quantum mechanics and algebraic and differential geometry. The subjects covered in some detail include normed linear spaces, functions of linear operators, the basic structures of quantum mechanics and an introduction to linear programming. Also discussed are Kahler's metic, the theory of Hilbert polynomials, and projective and affine geometries. Unusual in its extensive use of applications in physics to clarify each topic, this comprehensice volume should be of particular interest to advanced undergraduates and graduates in mathematics and physics, and to lecturers in linear and multilinear algebra, linear programming and quantum mechanics. |
linear algebra and quantum mechanics: An Introduction to Quantum Mechanics Tilak Sinha, 2021-08-19 The core content of even the most intricate intellectual edifices is often a simple fact or idea. So is it with quantum mechanics; the entire mathematical fabric of the formal description of quantum mechanics stems essentially from the fact that quantum probabilities interfere (i.e., from the superposition principle). This book is dedicated to substantiating this claim. In the process, the book tries to demonstrate how the factual content of quantum mechanics can be transcribed in the formal language of vector spaces and linear transformations by disentangling the empirical content from the usual formal description. More importantly, it tries to bring out what this transcription achieves. The book uses a pedagogic strategy which reverse engineers the postulates of quantum mechanics to device a schematic outline of the empirical content of quantum mechanics from which the postulates are then reconstructed step by step. This strategy is adopted to avoid the disconcerting details of actual experiments (however simplified) to spare the beginner of issues that lurk in the fragile foundations of the subject. In the Copenhagen interpretation of quantum mechanics, the key idea is measurement. But measurement carries an entirely different meaning from the connotation that the term carries elsewhere in physics. This book strives to underline this as strongly as possible. The book is intended as an undergraduate text for a first course in quantum mechanics. Since the book is self contained, it may also be used by enthusiastic outsiders interested to get a glimpse of the core content of the subject. Features: Demonstrates why linear algebra is the appropriate mathematical language for quantum mechanics. Uses a reconstructive approach to motivate the postulates of quantum mechanics. Builds the vocabulary of quantum mechanics by showing how the entire body of its conceptual ingredients can be constructed from the single notion of quantum measurement. |
linear algebra and quantum mechanics: Computational Quantum Mechanics Joshua Izaac, Jingbo Wang, 2019-02-15 Quantum mechanics undergraduate courses mostly focus on systems with known analytical solutions; the finite well, simple Harmonic, and spherical potentials. However, most problems in quantum mechanics cannot be solved analytically. This textbook introduces the numerical techniques required to tackle problems in quantum mechanics, providing numerous examples en route. No programming knowledge is required – an introduction to both Fortran and Python is included, with code examples throughout. With a hands-on approach, numerical techniques covered in this book include differentiation and integration, ordinary and differential equations, linear algebra, and the Fourier transform. By completion of this book, the reader will be armed to solve the Schrödinger equation for arbitrarily complex potentials, and for single and multi-electron systems. |
linear algebra and quantum mechanics: Tensor Network Contractions Shi-Ju Ran, Emanuele Tirrito, Cheng Peng, Xi Chen, Luca Tagliacozzo, Gang Su, Maciej Lewenstein, 2020-01-27 Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics. |
linear algebra and quantum mechanics: Advanced Quantum Mechanics: The Classical-Quantum Connection Reinhold Blumel, 2010-04-28 This book provides a coherent introduction to Gutzwiller’s trace formula accessible to well-prepared science, mathematics, and engineering students who have taken introductory courses in linear algebra, classical, and quantum mechanics. In addition to providing an enrichment of the undergraduate curriculum, this book may serve as the primary text for graduate courses on semiclassical methods. Since periodic-orbit expansions may be used to solve all types of wave systems that typically occur in mathematics, phyics, and engineering, this book is attractice for professional scientists and engineers as well. Following a thorough review of elementary concepts in classical and quantum mechanics the reader is introduced to the idea of classical periodic orbits, the foundation of Gutzwiller’s approach to quantum spectra. The trace formula itself is derived following an introduction to Feynman’s path integrals. Numerous applications, including the exact solutions of “unsolvable” one-dimensional quantum problems, illustrate the power of Gutzwiller’s method. Worked examples throughout the text illustrate the material and provide immediate “hands-on” demonstrations of tools and concepts just learned. Problems at the end of each section invite the reader to consolidate the acquired knowledge. |
linear algebra and quantum mechanics: The Physics of Quantum Mechanics James Binney, David Skinner, 2013-12 This title gives students a good understanding of how quantum mechanics describes the material world. The text stresses the continuity between the quantum world and the classical world, which is merely an approximation to the quantum world. |
linear algebra and quantum mechanics: Mastering Quantum Mechanics Barton Zwiebach, 2022-04-12 A complete overview of quantum mechanics, covering essential concepts and results, theoretical foundations, and applications. This undergraduate textbook offers a comprehensive overview of quantum mechanics, beginning with essential concepts and results, proceeding through the theoretical foundations that provide the field’s conceptual framework, and concluding with the tools and applications students will need for advanced studies and for research. Drawn from lectures created for MIT undergraduates and for the popular MITx online course, “Mastering Quantum Mechanics,” the text presents the material in a modern and approachable manner while still including the traditional topics necessary for a well-rounded understanding of the subject. As the book progresses, the treatment gradually increases in difficulty, matching students’ increasingly sophisticated understanding of the material. • Part 1 covers states and probability amplitudes, the Schrödinger equation, energy eigenstates of particles in potentials, the hydrogen atom, and spin one-half particles • Part 2 covers mathematical tools, the pictures of quantum mechanics and the axioms of quantum mechanics, entanglement and tensor products, angular momentum, and identical particles. • Part 3 introduces tools and techniques that help students master the theoretical concepts with a focus on approximation methods. • 236 exercises and 286 end-of-chapter problems • 248 figures |
linear algebra and quantum mechanics: What's the Matter with Waves? William Parkinson, 2018-04-06 Like rocket science or brain surgery, quantum mechanics is pigeonholed as a daunting and inaccessible topic, which is best left to an elite or peculiar few. This classification was not earned without some degree of merit. Depending on perspective; quantum mechanics is a discipline or philosophy, a convention or conundrum, an answer or question. Authors have run the gamut from hand waving to heavy handed in hopes to dispel the common beliefs about quantum mechanics, but perhaps they continue to promulgate the stigma. The focus of this particular effort is to give the reader an introduction, if not at least an appreciation, of the role that linear algebra techniques play in the practical application of quantum mechanical methods. It interlaces aspects of the classical and quantum picture, including a number of both worked and parallel applications. Students with no prior experience in quantum mechanics, motivated graduate students, or researchers in other areas attempting to gain some introduction to quantum theory will find particular interest in this book. |
linear algebra and quantum mechanics: What is Quantum Mechanics? Transnational College of LEX., 1996 |
linear algebra and quantum mechanics: Elementary Linear Algebra (Classic Version) Lawrence Spence, Arnold Insel, Stephen Friedberg, 2017-03-20 For a sophomore-level course in Linear Algebra This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. Based on the recommendations of the Linear Algebra Curriculum Study Group, this introduction to linear algebra offers a matrix-oriented approach with more emphasis on problem solving and applications. Throughout the text, use of technology is encouraged. The focus is on matrix arithmetic, systems of linear equations, properties of Euclidean n-space, eigenvalues and eigenvectors, and orthogonality. Although matrix-oriented, the text provides a solid coverage of vector spaces |
linear algebra and quantum mechanics: No Bullshit Guide to Linear Algebra Ivan Savov, 2020-10-25 This textbook covers the material for an undergraduate linear algebra course: vectors, matrices, linear transformations, computational techniques, geometric constructions, and theoretical foundations. The explanations are given in an informal conversational tone. The book also contains 100+ problems and exercises with answers and solutions. A special feature of this textbook is the prerequisites chapter that covers topics from high school math, which are necessary for learning linear algebra. The presence of this chapter makes the book suitable for beginners and the general audience-readers need not be math experts to read this book. Another unique aspect of the book are the applications chapters (Ch 7, 8, and 9) that discuss applications of linear algebra to engineering, computer science, economics, chemistry, machine learning, and even quantum mechanics. |
linear algebra and quantum mechanics: Quantum Physics A.I Lvovsky, 2018-05-12 This textbook is intended to accompany a two-semester course on quantum mechanics for physics students. Along with the traditional material covered in such a course (states, operators, Schrödinger equation, hydrogen atom), it offers in-depth discussion of the Hilbert space, the nature of measurement, entanglement, and decoherence – concepts that are crucial for the understanding of quantum physics and its relation to the macroscopic world, but rarely covered in entry-level textbooks. The book uses a mathematically simple physical system – photon polarization – as the visualization tool, permitting the student to see the entangled beauty of the quantum world from the very first pages. The formal concepts of quantum physics are illustrated by examples from the forefront of modern quantum research, such as quantum communication, teleportation and nonlocality. The author adopts a Socratic pedagogy: The student is guided to develop the machinery of quantum physics independently by solving sets of carefully chosen problems. Detailed solutions are provided. |
linear algebra and quantum mechanics: Quantum Mechanics: Foundations and Applications Arno Böhm, 2003-07-14 This edition differs from the second chiefly in the addition of about 100 pages devoted to the quantum (or geometric, or Berry) phase, a subject that did not exist when this book was written. The changes in the remainder of the book consist of corrections of a small number of misprints. While it may seem that adding two chapters on the quantum phase is overemphasizing a currently fashionable subject, they actually complete the development of quantum theory as given in this book. We start with simple models, synthesizing them into complicated molecules. With the new chap ters. we end with complicated molecules, dividing them into simpler parts. This process of dividing a complex system into parts quite naturally gives rise to a gauge theory, of which the geometric phase is a manifestation - with consequences not only in theory, but observable in experiments. For this rea son, the geometric phase is not a mere fashion, but a discovery that will retain its importance forever and must be discussed in textbooks on quantum mechanics. to acknowledge help and advice from Mark Loewe with the I would like writing and also of the new part of the book. In addition, I would like to express my gratitude to J. Anandan, M. Berry, and c.A. Mead, who have read parts or all of the new material and have provided valuable advice. |
linear algebra and quantum mechanics: Field Guide to Quantum Mechanics Brian Philip Anderson, 2019 |
linear algebra and quantum mechanics: Quantum Mechanics Built on Algebraic Geometry Akihito Kikuchi, 2021-01-04 This book presents a novel standpoint concerning contemporary physics, namely, quantum mechanics with a view toward algebraic geometry. As is well-known, algebraic geometry is the study of geometric objects delineated by polynomials, and the polynomial representations are ubiquitous in physics. For this reason, quantum mechanics is also an object of algebraic geometry. An example is the eigenvalue problem. It is a set of polynomial equations and has traditionally been the question of linear algebra. However, the modern method of computational algebraic geometry accurately unravels the information encapsulated in the polynomials. This approach shall not remain as a plaything. It has betokened an innovative style of electronic structure computation. The objects of this new method include the simultaneous determination of the wave-functions and the movements of nuclei, or the prediction of the required structure that shall show the desired property. Accordingly, this book explains the basic ideas of computational algebraic geometry and related topics, such as Groebner bases, primary ideal decomposition, Dmodules, Galois, class field theory, etc. The intention of the author is, nevertheless, not to give an irksome list of abstract concepts. He hopes that the readers shall use algebraic geometry as the active tool of the computations. For this reason, this book abundantly presents the model computations, by which the readers shall learn how to apply algebraic geometry toward quantum mechanics. The readers shall also see the modern computer algebra could facilitate the study when you would like to apply abstract mathematical ideas to definite physical problems. |
linear algebra and quantum mechanics: Groups, Matrices, and Vector Spaces James B. Carrell, 2018-08-03 This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory and cryptography are interwoven throughout. Each section ends with ample practice problems assisting the reader to better understand the material. Some of the applications are illustrated in the chapter appendices. The author's unique melding of topics evolved from a two semester course that he taught at the University of British Columbia consisting of an undergraduate honors course on abstract linear algebra and a similar course on the theory of groups. The combined content from both makes this rare text ideal for a year-long course, covering more material than most linear algebra texts. It is also optimal for independent study and as a supplementary text for various professional applications. Advanced undergraduate or graduate students in mathematics, physics, computer science and engineering will find this book both useful and enjoyable. |
Linear – Plan and build products
Linear is a purpose-built tool for modern product development. Streamline issues, projects, and product roadmaps.
Download Linear
Download the Linear app for desktop and mobile. Available for Mac, Windows, iOS, and Android.
Pricing – Linear
Use Linear for free with your whole team. Upgrade to enable unlimited issues, enhanced security controls, and additional features.
Customer Requests – Linear
Capture feedback across any customer interaction – from sales calls to support chats – and turn it into a customer request linked to a Linear project or issue.
Linear MCP server – Changelog
May 1, 2025 · Your AI models and agents can use our official MCP server to access your Linear data in a simple and secure way. Connect to our MCP server natively as a new Claude …
About – Linear
Today, thousands of teams around the globe — from early-stage startups to public companies — use Linear to build their products. Linear helps them to focus on what they do best: Crafting …
Linear Method – Practices for building
The quality of a product is driven by both the talent of its creators and how they feel while they’re crafting it. To bring back the right focus, these are the foundational and evolving ideas Linear …
Features – Linear
With its meticulous design, breathtaking speed and purpose-built workflows, Linear unlocks your team’s full potential. It is the tool of choice for high-performance teams to build products better.
Linear Customers
Linear Projects give Mercury a source-of-truth across all their work. Read story. Watershed switched to Linear to accelerate their team. Read story. Linear keeps Retool's teams customer …
Building our way - Linear Blog
Jun 10, 2025 · Linear is unique because it actually manages all these workflows in a structured way and in a single product, bringing teams together. We see this end-to-end workflow as the …
Linear – Plan and build products
Linear is a purpose-built tool for modern product development. Streamline issues, projects, and product roadmaps.
Download Linear
Download the Linear app for desktop and mobile. Available for Mac, Windows, iOS, and Android.
Pricing – Linear
Use Linear for free with your whole team. Upgrade to enable unlimited issues, enhanced security controls, and additional features.
Customer Requests – Linear
Capture feedback across any customer interaction – from sales calls to support chats – and turn it into a customer request linked to a Linear project or issue.
Linear MCP server – Changelog
May 1, 2025 · Your AI models and agents can use our official MCP server to access your Linear data in a simple and secure way. Connect to our MCP server natively as a new Claude …
About – Linear
Today, thousands of teams around the globe — from early-stage startups to public companies — use Linear to build their products. Linear helps them to focus on what they do best: Crafting …
Linear Method – Practices for building
The quality of a product is driven by both the talent of its creators and how they feel while they’re crafting it. To bring back the right focus, these are the foundational and evolving ideas Linear …
Features – Linear
With its meticulous design, breathtaking speed and purpose-built workflows, Linear unlocks your team’s full potential. It is the tool of choice for high-performance teams to build products better.
Linear Customers
Linear Projects give Mercury a source-of-truth across all their work. Read story. Watershed switched to Linear to accelerate their team. Read story. Linear keeps Retool's teams customer …
Building our way - Linear Blog
Jun 10, 2025 · Linear is unique because it actually manages all these workflows in a structured way and in a single product, bringing teams together. We see this end-to-end workflow as the …