Lectures Problems And Solutions For Ordinary Differential Equations

Advertisement



  lectures problems and solutions for ordinary differential equations: Lectures, Problems And Solutions For Ordinary Differential Equations Yuefan Deng, 2014-09-02 This unique book on ordinary differential equations addresses practical issues of composing and solving such equations by large number of examples and homework problems with solutions. These problems originate in engineering, finance, as well as science at appropriate levels that readers with the basic knowledge of calculus, physics or economics are assumed able to follow.
  lectures problems and solutions for ordinary differential equations: Lectures, Problems and Solutions for Ordinary Differential Equations Deng Yuefan, 2017
  lectures problems and solutions for ordinary differential equations: Ordinary and Partial Differential Equations Ravi P. Agarwal, Donal O'Regan, 2008-11-13 In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.
  lectures problems and solutions for ordinary differential equations: Ordinary Differential Equations Morris Tenenbaum, Harry Pollard, 1985-10-01 Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
  lectures problems and solutions for ordinary differential equations: A Course in Ordinary Differential Equations Bindhyachal Rai, D. P. Choudhury, Herbert I. Freedman, 2002 Designed as a text for both under and postgraduate students of mathematics and engineering, A Course in Ordinary Differential Equations deals with theory and methods of solutions as well as applications of ordinary differential equations. The treatment is lucid and gives a detailed account of Laplace transforms and their applications, Legendre and Bessel functions, and covers all the important numerical methods for differential equations.
  lectures problems and solutions for ordinary differential equations: Classical Methods in Ordinary Differential Equations Stuart P. Hastings, J. Bryce McLeod, 2011-12-15 This text emphasizes rigorous mathematical techniques for the analysis of boundary value problems for ODEs arising in applications. The emphasis is on proving existence of solutions, but there is also a substantial chapter on uniqueness and multiplicity questions and several chapters which deal with the asymptotic behavior of solutions with respect to either the independent variable or some parameter. These equations may give special solutions of important PDEs, such as steady state or traveling wave solutions. Often two, or even three, approaches to the same problem are described. The advantages and disadvantages of different methods are discussed. The book gives complete classical proofs, while also emphasizing the importance of modern methods, especially when extensions to infinite dimensional settings are needed. There are some new results as well as new and improved proofs of known theorems. The final chapter presents three unsolved problems which have received much attention over the years. Both graduate students and more experienced researchers will be interested in the power of classical methods for problems which have also been studied with more abstract techniques. The presentation should be more accessible to mathematically inclined researchers from other areas of science and engineering than most graduate texts in mathematics.
  lectures problems and solutions for ordinary differential equations: Applied Stochastic Differential Equations Simo Särkkä, Arno Solin, 2019-05-02 With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
  lectures problems and solutions for ordinary differential equations: Numerical Methods for Ordinary Differential Equations David F. Griffiths, Desmond J. Higham, 2010-11-11 Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com
  lectures problems and solutions for ordinary differential equations: Differential Equations and Dynamical Systems Lawrence Perko, 2012-12-06 Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.
  lectures problems and solutions for ordinary differential equations: Linear Ordinary Differential Equations Earl A. Coddington, Robert Carlson, 1997-01-01 A thorough development of the main topics in linear differential equations with applications, examples, and exercises illustrating each topic.
  lectures problems and solutions for ordinary differential equations: An Introduction to Ordinary Differential Equations Ravi P. Agarwal, Donal O'Regan, 2008-12-10 Ordinary differential equations serve as mathematical models for many exciting real world problems. Rapid growth in the theory and applications of differential equations has resulted in a continued interest in their study by students in many disciplines. This textbook organizes material around theorems and proofs, comprising of 42 class-tested lectures that effectively convey the subject in easily manageable sections. The presentation is driven by detailed examples that illustrate how the subject works. Numerous exercise sets, with an answers and hints section, are included. The book further provides a background and history of the subject.
  lectures problems and solutions for ordinary differential equations: Ordinary Differential Equations And Calculus Of Variations Victor Yu Reshetnyak, Mikola Vladimirovich Makarets, 1995-06-30 This problem book contains exercises for courses in differential equations and calculus of variations at universities and technical institutes. It is designed for non-mathematics students and also for scientists and practicing engineers who feel a need to refresh their knowledge. The book contains more than 260 examples and about 1400 problems to be solved by the students — much of which have been composed by the authors themselves. Numerous references are given at the end of the book to furnish sources for detailed theoretical approaches, and expanded treatment of applications.
  lectures problems and solutions for ordinary differential equations: Lectures on Differential and Integral Equations K?saku Yoshida, 1991-01-01 Lucid, self-contained exposition of theory of ordinary differential equations and integral equations. Boundary value problem of second order linear ordinary differential equations, Fredholm integral equations, many other topics. Bibliography. 1960 edition.
  lectures problems and solutions for ordinary differential equations: Lectures on Analytic Differential Equations I︠U︡. S. Ilʹi︠a︡shenko, S. Yakovenko, 2008 The book combines the features of a graduate-level textbook with those of a research monograph and survey of the recent results on analysis and geometry of differential equations in the real and complex domain. As a graduate textbook, it includes self-contained, sometimes considerably simplified demonstrations of several fundamental results, which previously appeared only in journal publications (desingularization of planar analytic vector fields, existence of analytic separatrices, positive and negative results on the Riemann-Hilbert problem, Ecalle-Voronin and Martinet-Ramis moduli, solution of the Poincare problem on the degree of an algebraic separatrix, etc.). As a research monograph, it explores in a systematic way the algebraic decidability of local classification problems, rigidity of holomorphic foliations, etc. Each section ends with a collection of problems, partly intended to help the reader to gain understanding and experience with the material, partly drafting demonstrations of the mor The exposition of the book is mostly geometric, though the algebraic side of the constructions is also prominently featured. on several occasions the reader is introduced to adjacent areas, such as intersection theory for divisors on the projective plane or geometric theory of holomorphic vector bundles with meromorphic connections. The book provides the reader with the principal tools of the modern theory of analytic differential equations and intends to serve as a standard source for references in this area.
  lectures problems and solutions for ordinary differential equations: Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations Ratan Prakash Agarwal, Ravi P. Agarwal, V. Lakshmikantham, 1993 This monograph aims to fill a void by making available a source book which first systematically describes all the available uniqueness and nonuniqueness criteria for ordinary differential equations, and compares and contrasts the merits of these criteria, and second, discusses open problems and offers some directions towards possible solutions.
  lectures problems and solutions for ordinary differential equations: Mastering Differential Equations Teaching Company, 2011 In this course, Boston University Professor Robert L. Devaney presents an introduction to differential equations.
  lectures problems and solutions for ordinary differential equations: Notes on Diffy Qs Jiri Lebl, 2019-11-13 Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.
  lectures problems and solutions for ordinary differential equations: Time-dependent Partial Differential Equations and Their Numerical Solution Heinz-Otto Kreiss, Hedwig Ulmer Busenhart, 2012-12-06 This book studies time-dependent partial differential equations and their numerical solution, developing the analytic and the numerical theory in parallel, and placing special emphasis on the discretization of boundary conditions. The theoretical results are then applied to Newtonian and non-Newtonian flows, two-phase flows and geophysical problems. This book will be a useful introduction to the field for applied mathematicians and graduate students.
  lectures problems and solutions for ordinary differential equations: Lecture Notes on Mixed Type Partial Differential Equations John Michael Rassias, 1990 This book discusses various parts of the theory of mixed type partial differential equations with boundary conditions such as: Chaplygin's classical dynamical equation of mixed type, the theory of regularity of solutions in the sense of Tricomi, Tricomi's fundamental idea and one-dimensional singular integral equations on non-Carleman type, Gellerstedt's characteristic problem and Frankl's non-characteristic problem, Bitsadze and Lavrentjev's mixed type boundary value problems, quasi-regularity of solutions in the classical sense. Some of the latest results of the author are also presented in this book.
  lectures problems and solutions for ordinary differential equations: Lectures On The Theory Of Group Properties Of Differential Equations Lev Vasilyevich Ovsyannikov, 2013-05-20 These lecturers provide a clear introduction to Lie group methods for determining and using symmetries of differential equations, a variety of their applications in gas dynamics and other nonlinear models as well as the author's remarkable contribution to this classical subject. It contains material that is useful for students and teachers but cannot be found in modern texts. For example, the theory of partially invariant solutions developed by Ovsyannikov provides a powerful tool for solving systems of nonlinear differential equations and investigating complicated mathematical models.
  lectures problems and solutions for ordinary differential equations: Second Order Differential Equations Gerhard Kristensson, 2010-08-05 Second Order Differential Equations presents a classical piece of theory concerning hypergeometric special functions as solutions of second-order linear differential equations. The theory is presented in an entirely self-contained way, starting with an introduction of the solution of the second-order differential equations and then focusingon the systematic treatment and classification of these solutions. Each chapter contains a set of problems which help reinforce the theory. Some of the preliminaries are covered in appendices at the end of the book, one of which provides an introduction to Poincaré-Perron theory, and the appendix also contains a new way of analyzing the asymptomatic behavior of solutions of differential equations. This textbook is appropriate for advanced undergraduate and graduate students in Mathematics, Physics, and Engineering interested in Ordinary and Partial Differntial Equations. A solutions manual is available online.
  lectures problems and solutions for ordinary differential equations: An Introduction to Ordinary Differential Equations James C. Robinson, 2004-01-08 This refreshing, introductory textbook covers both standard techniques for solving ordinary differential equations, as well as introducing students to qualitative methods such as phase-plane analysis. The presentation is concise, informal yet rigorous; it can be used either for 1-term or 1-semester courses. Topics such as Euler's method, difference equations, the dynamics of the logistic map, and the Lorenz equations, demonstrate the vitality of the subject, and provide pointers to further study. The author also encourages a graphical approach to the equations and their solutions, and to that end the book is profusely illustrated. The files to produce the figures using MATLAB are all provided in an accompanying website. Numerous worked examples provide motivation for and illustration of key ideas and show how to make the transition from theory to practice. Exercises are also provided to test and extend understanding: solutions for these are available for teachers.
  lectures problems and solutions for ordinary differential equations: Ordinary Differential Equations and Dynamical Systems Gerald Teschl, 2024-01-12 This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.
  lectures problems and solutions for ordinary differential equations: Lectures on Ordinary Differential Equations Robert W. McKelvey, 1970
  lectures problems and solutions for ordinary differential equations: An Introduction To Differential Equations With Applications Harold Cohen, Daniel Gallup, 2020-07-28 This book is for students in a first course in ordinary differential equations. The material is organized so that the presentations begin at a reasonably introductory level. Subsequent material is developed from this beginning. As such, readers with little experience can start at a lower level, while those with some experience can use the beginning material as a review, or skip this part to proceed to the next level.The book contains methods of approximation to solutions of various types of differential equations with practical applications, which will serve as a guide to programming so that such differential equations can be solved numerically with the use of a computer. Students who intend to pursue a major in engineering, physical sciences, or mathematics will find this book useful.
  lectures problems and solutions for ordinary differential equations: Introduction to Partial Differential Equations with Applications E. C. Zachmanoglou, Dale W. Thoe, 2012-04-20 This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.
  lectures problems and solutions for ordinary differential equations: Differential Equations and Linear Algebra Gilbert Strang, 2015-02-12 Differential equations and linear algebra are two central topics in the undergraduate mathematics curriculum. This innovative textbook allows the two subjects to be developed either separately or together, illuminating the connections between two fundamental topics, and giving increased flexibility to instructors. It can be used either as a semester-long course in differential equations, or as a one-year course in differential equations, linear algebra, and applications. Beginning with the basics of differential equations, it covers first and second order equations, graphical and numerical methods, and matrix equations. The book goes on to present the fundamentals of vector spaces, followed by eigenvalues and eigenvectors, positive definiteness, integral transform methods and applications to PDEs. The exposition illuminates the natural correspondence between solution methods for systems of equations in discrete and continuous settings. The topics draw on the physical sciences, engineering and economics, reflecting the author's distinguished career as an applied mathematician and expositor.
  lectures problems and solutions for ordinary differential equations: Nonlinear Ordinary Differential Equations R. Grimshaw, 2017-10-19 Ordinary differential equations have long been an important area of study because of their wide application in physics, engineering, biology, chemistry, ecology, and economics. Based on a series of lectures given at the Universities of Melbourne and New South Wales in Australia, Nonlinear Ordinary Differential Equations takes the reader from basic elementary notions to the point where the exciting and fascinating developments in the theory of nonlinear differential equations can be understood and appreciated. Each chapter is self-contained, and includes a selection of problems together with some detailed workings within the main text. Nonlinear Ordinary Differential Equations helps develop an understanding of the subtle and sometimes unexpected properties of nonlinear systems and simultaneously introduces practical analytical techniques to analyze nonlinear phenomena. This excellent book gives a structured, systematic, and rigorous development of the basic theory from elementary concepts to a point where readers can utilize ideas in nonlinear differential equations.
  lectures problems and solutions for ordinary differential equations: Basic Theory Of Fractional Differential Equations (Third Edition) Yong Zhou, 2023-10-06 This accessible monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary differential equations and evolution equations. It is self-contained and unified in presentation, and provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, Picard operators technique, critical point theory and semigroups theory. This book is based on the research work done so far by the author and other experts, and contains comprehensive up-to-date materials on the topic.In this third edition, four new topics have been added: Hilfer fractional evolution equations and infinite interval problems, oscillations and nonoscillations, fractional Hamiltonian systems, fractional Rayleigh-Stokes equations, and wave equations. The bibliography has also been updated and expanded.This book is useful to researchers, graduate or PhD students dealing with fractional calculus and applied analysis, differential equations, and related areas of research.
  lectures problems and solutions for ordinary differential equations: The Qualitative Theory of Ordinary Differential Equations Fred Brauer, John A. Nohel, 2012-12-11 Superb, self-contained graduate-level text covers standard theorems concerning linear systems, existence and uniqueness of solutions, and dependence on parameters. Focuses on stability theory and its applications to oscillation phenomena, self-excited oscillations, more. Includes exercises.
  lectures problems and solutions for ordinary differential equations: Problems and Solutions in Mathematics Ji-Xiu Chen, 2011 This book contains a selection of more than 500 mathematical problems and their solutions from the PhD qualifying examination papers of more than ten famous American universities. The mathematical problems cover six aspects of graduate school mathematics: Algebra, Topology, Differential Geometry, Real Analysis, Complex Analysis and Partial Differential Equations. While the depth of knowledge involved is not beyond the contents of the textbooks for graduate students, discovering the solution of the problems requires a deep understanding of the mathematical principles plus skilled techniques. For students, this book is a valuable complement to textbooks. Whereas for lecturers teaching graduate school mathematics, it is a helpful reference.
  lectures problems and solutions for ordinary differential equations: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
  lectures problems and solutions for ordinary differential equations: An Introduction to Ordinary Differential Equations Earl A. Coddington, 1968
  lectures problems and solutions for ordinary differential equations: Differential Equations and Boundary Value Problems Charles Henry Edwards, David E. Penney, David Calvis, 2015 Written from the perspective of the applied mathematician, the latest edition of this bestselling book focuses on the theory and practical applications of Differential Equations to engineering and the sciences. Emphasis is placed on the methods of solution, analysis, and approximation. Use of technology, illustrations, and problem sets help readers develop an intuitive understanding of the material. Historical footnotes trace the development of the discipline and identify outstanding individual contributions. This book builds the foundation for anyone who needs to learn differential equations and then progress to more advanced studies.
  lectures problems and solutions for ordinary differential equations: A First Course in Differential Equations J. David Logan, 2006 This book is intended as an alternative to the standard differential equations text, which typically includes a large collection of methods and applications, packaged with state-of-the-art color graphics, student solution manuals, the latest fonts, marginal notes, and web-based supplements. These texts adds up to several hundred pages of text and can be very expensive for students to buy. Many students do not have the time or desire to read voluminous texts and explore internet supplements. Here, however, the author writes concisely, to the point, and in plain language. Many examples and exercises are included. In addition, this text also encourages students to use a computer algebra system to solve problems numerically, and as such, templates of MATLAB programs that solve differential equations are given in an appendix, as well as basic Maple and Mathematica commands.
  lectures problems and solutions for ordinary differential equations: Differential Equations George Finlay Simmons, 1972
  lectures problems and solutions for ordinary differential equations: Differential Equations with Boundary-Value Problems Dennis Zill, Michael Cullen, 2004-10-19 Master differential equations and succeed in your course DIFFERENTIAL EQUATIONS WITH BOUNDARY-VALUE PROBLEMS with accompanying CD-ROM and technology! Straightfoward and readable, this mathematics text provides you with tools such as examples, explanations, definitions, and applications designed to help you succeed. The accompanying DE Tools CD-ROM makes helps you master difficult concepts through twenty-one demonstration tools such as Project Tools and Text Tools. Studying is made easy with iLrn Tutorial, a text-specific, interactive tutorial software program that gives the practice you need to succeed. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
  lectures problems and solutions for ordinary differential equations: Ordinary Differential Equations Garrett Birkhoff, Gian-Carlo Rota, 1978 First-order differentail equations; Second-order linear equations; Linear equations with constant coefficients; Power series solutions; Plane autonomous systems; Existence and uniqueness theorems; Approximate solutions; Regular singular points.
  lectures problems and solutions for ordinary differential equations: Differential Equations Paul Blanchard, Robert L. Devaney, Glen R. Hall, 2012-07-25 Incorporating an innovative modeling approach, this book for a one-semester differential equations course emphasizes conceptual understanding to help users relate information taught in the classroom to real-world experiences. Certain models reappear throughout the book as running themes to synthesize different concepts from multiple angles, and a dynamical systems focus emphasizes predicting the long-term behavior of these recurring models. Users will discover how to identify and harness the mathematics they will use in their careers, and apply it effectively outside the classroom. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
LECTURE Definition & Meaning - Merriam-Webster
The meaning of LECTURE is a discourse given before an audience or class especially for instruction. How to use lecture in a sentence.

Free Great Courses Lectures - YouTube
The Great Courses (now called Wondrium) have added over 100 free lectures from their latest courses to their official YouTube channel. We've collected them here in this playlist.

TED: Ideas change everything
TED Talks are influential videos from expert speakers on education, business, science, tech and creativity, with subtitles in 100+ languages. Ideas free to stream and download.

LECTURE | English meaning - Cambridge Dictionary
Two (one hour) lectures a week are used for teaching programming. As with all expanded lectures, it suffers from unevenness of extrapolation, or even over-elaboration. His lectures …

Lectures On Tap
Lectures on Tap is an event series where professors and experts give thought-provoking lectures inside of bars. How do I buy tickets? What happens at Lectures on Tap? Lectures on Tap …

Courses | Open Yale Courses
Each course includes a full set of class lectures produced in high-quality video accompanied by such other course materials as syllabi, suggested readings, exams, and problem sets.

Stream Entertaining Nonfiction Learning | Plus
Stream over 18,000 lectures in history, science, philosophy, religion, literature, health, travel, and more. Learn from the world’s greatest professors and experts. Enjoy the convenience of on …

LECTURE Definition & Meaning - Merriam-Webster
The meaning of LECTURE is a discourse given before an audience or class especially for instruction. How to use lecture in a sentence.

Free Great Courses Lectures - YouTube
The Great Courses (now called Wondrium) have added over 100 free lectures from their latest courses to their official YouTube channel. We've collected them here in this playlist.

TED: Ideas change everything
TED Talks are influential videos from expert speakers on education, business, science, tech and creativity, with subtitles in 100+ languages. Ideas free to stream and download.

LECTURE | English meaning - Cambridge Dictionary
Two (one hour) lectures a week are used for teaching programming. As with all expanded lectures, it suffers from unevenness of extrapolation, or even over-elaboration. His lectures …

Lectures On Tap
Lectures on Tap is an event series where professors and experts give thought-provoking lectures inside of bars. How do I buy tickets? What happens at Lectures on Tap? Lectures on Tap …

Courses | Open Yale Courses
Each course includes a full set of class lectures produced in high-quality video accompanied by such other course materials as syllabi, suggested readings, exams, and problem sets.

Stream Entertaining Nonfiction Learning | Plus
Stream over 18,000 lectures in history, science, philosophy, religion, literature, health, travel, and more. Learn from the world’s greatest professors and experts. Enjoy the convenience of on …