Linear Algebra By Hoffman And Kunze

Advertisement



  linear algebra by hoffman and kunze: Linear Algebra Kenneth Hoffman, Ray Alden Kunze, 2015
  linear algebra by hoffman and kunze: Linear Algebra Done Right Sheldon Axler, 1997-07-18 This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
  linear algebra by hoffman and kunze: MATRIX AND LINEAR ALGEBRA AIDED WITH MATLAB, Third Edition Kanti Bhushan Datta, 2016-12-01 With the inclusion of applications of singular value decomposition (SVD) and principal component analysis (PCA) to image compression and data analysis, this edition provides a strong foundation of linear algebra needed for a higher study in signal processing. The use of MATLAB in the study of linear algebra for a variety of computational purposes and the programmes provided in this text are the most attractive features of this book which strikingly distinguishes it from the existing linear algebra books needed as pre-requisites for the study of engineering subjects. This book is highly suitable for undergraduate as well as postgraduate students of mathematics, statistics, and all engineering disciplines. The book will also be useful to Ph.D. students for relevant mathematical resources. NEW TO THIS EDITION The Third Edition of this book includes: • Simultaneous diagonalization of two diagonalizable matrices • Comprehensive exposition of SVD with applications in shear analysis in engineering • Polar Decomposition of a matrix • Numerical experimentation with a colour and a black-and-white image compression using MATLAB • PCA methods of data analysis and image compression with a list of MATLAB codes
  linear algebra by hoffman and kunze: Solutions Manual for Linear Algebra, Hoffman and Kunze Maurice Stadler, Gregory Grant, 2020-08-14 In addition to well-explained solutions, this manual includes corrections and clarifications to the classic textbook Linear Algebra, second edition, by Kenneth Hoffman and Ray Kunze. This manual is a great resource for checking answers, preparing for exams, and discovering new solution techniques as two or three solutions are provided for many exercises.
  linear algebra by hoffman and kunze: Linear Algebra Via Exterior Products Sergei Winitzki, 2009-07-30 This is a pedagogical introduction to the coordinate-free approach in basic finite-dimensional linear algebra. The reader should be already exposed to the array-based formalism of vector and matrix calculations. This book makes extensive use of the exterior (anti-commutative, wedge) product of vectors. The coordinate-free formalism and the exterior product, while somewhat more abstract, provide a deeper understanding of the classical results in linear algebra. Without cumbersome matrix calculations, this text derives the standard properties of determinants, the Pythagorean formula for multidimensional volumes, the formulas of Jacobi and Liouville, the Cayley-Hamilton theorem, the Jordan canonical form, the properties of Pfaffians, as well as some generalizations of these results.
  linear algebra by hoffman and kunze: Advanced Linear Algebra Steven Roman, 2007-12-31 Covers a notably broad range of topics, including some topics not generally found in linear algebra books Contains a discussion of the basics of linear algebra
  linear algebra by hoffman and kunze: Linear Algebra Harold M. Edwards, 2004-10-15 * Proposes a radically new and thoroughly algorithmic approach to linear algebra * Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples * Designed for a one-semester course, this text gives the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject
  linear algebra by hoffman and kunze: Introduction to Linear Algebra Serge Lang, 2012-12-06 This is a short text in linear algebra, intended for a one-term course. In the first chapter, Lang discusses the relation between the geometry and the algebra underlying the subject, and gives concrete examples of the notions which appear later in the book. He then starts with a discussion of linear equations, matrices and Gaussian elimination, and proceeds to discuss vector spaces, linear maps, scalar products, determinants, and eigenvalues. The book contains a large number of exercises, some of the routine computational type, while others are conceptual.
  linear algebra by hoffman and kunze: Linear Algebra and Its Applications Peter D. Lax, 2013-05-20 This set features Linear Algebra and Its Applications, Second Edition (978-0-471-75156-4) Linear Algebra and Its Applications, Second Edition presents linear algebra as the theory and practice of linear spaces and linear maps with a unique focus on the analytical aspects as well as the numerous applications of the subject. In addition to thorough coverage of linear equations, matrices, vector spaces, game theory, and numerical analysis, the Second Edition features student-friendly additions that enhance the book's accessibility, including expanded topical coverage in the early chapters, additional exercises, and solutions to selected problems. Beginning chapters are devoted to the abstract structure of finite dimensional vector spaces, and subsequent chapters address convexity and the duality theorem as well as describe the basics of normed linear spaces and linear maps between normed spaces. Further updates and revisions have been included to reflect the most up-to-date coverage of the topic, including: The QR algorithm for finding the eigenvalues of a self-adjoint matrix The Householder algorithm for turning self-adjoint matrices into tridiagonal form The compactness of the unit ball as a criterion of finite dimensionality of a normed linear space Additionally, eight new appendices have been added and cover topics such as: the Fast Fourier Transform; the spectral radius theorem; the Lorentz group; the compactness criterion for finite dimensionality; the characterization of commentators; proof of Liapunov's stability criterion; the construction of the Jordan Canonical form of matrices; and Carl Pearcy's elegant proof of Halmos' conjecture about the numerical range of matrices. Clear, concise, and superbly organized, Linear Algebra and Its Applications, Second Edition serves as an excellent text for advanced undergraduate- and graduate-level courses in linear algebra. Its comprehensive treatment of the subject also makes it an ideal reference or self-study for industry professionals. and Functional Analysis (978-0-471-55604-6) both by Peter D. Lax.
  linear algebra by hoffman and kunze: A First Course in Calculus Serge Lang, 2012-09-17 The purpose of a first course in calculus is to teach the student the basic notions of derivative and integral, and the basic techniques and applica tions which accompany them. The very talented students, with an ob vious aptitude for mathematics, will rapidly require a course in functions of one real variable, more or less as it is understood by professional is not primarily addressed to them (although mathematicians. This book I hope they will be able to acquire from it a good introduction at an early age). I have not written this course in the style I would use for an advanced monograph, on sophisticated topics. One writes an advanced monograph for oneself, because one wants to give permanent form to one's vision of some beautiful part of mathematics, not otherwise ac cessible, somewhat in the manner of a composer setting down his sym phony in musical notation. This book is written for the students to give them an immediate, and pleasant, access to the subject. I hope that I have struck a proper com promise, between dwelling too much on special details and not giving enough technical exercises, necessary to acquire the desired familiarity with the subject. In any case, certain routine habits of sophisticated mathematicians are unsuitable for a first course. Rigor. This does not mean that so-called rigor has to be abandoned.
  linear algebra by hoffman and kunze: Linear Algebra Georgi E. Shilov, 2012-04-26 Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, and more.
  linear algebra by hoffman and kunze: A (Terse) Introduction to Linear Algebra Yitzhak Katznelson, Yonatan R. Katznelson, 2008 Linear algebra is the study of vector spaces and the linear maps between them. It underlies much of modern mathematics and is widely used in applications.
  linear algebra by hoffman and kunze: A Concise Text on Advanced Linear Algebra Yisong Yang, 2014-12-04 This engaging textbook for advanced undergraduate students and beginning graduates covers the core subjects in linear algebra. The author motivates the concepts by drawing clear links to applications and other important areas, such as differential topology and quantum mechanics. The book places particular emphasis on integrating ideas from analysis wherever appropriate. For example, the notion of determinant is shown to appear from calculating the index of a vector field which leads to a self-contained proof of the Fundamental Theorem of Algebra, and the Cayley–Hamilton theorem is established by recognizing the fact that the set of complex matrices of distinct eigenvalues is dense. The material is supplemented by a rich collection of over 350 mostly proof-oriented exercises, suitable for students from a wide variety of backgrounds. Selected solutions are provided at the back of the book, making it suitable for self-study as well as for use as a course text.
  linear algebra by hoffman and kunze: A Course in Linear Algebra David B. Damiano, John B. Little, 1988-08-01
  linear algebra by hoffman and kunze: Linear Algebra in Action Harry Dym, 2023-06-23 This book is based largely on courses that the author taught at the Feinberg Graduate School of the Weizmann Institute. It conveys in a user-friendly way the basic and advanced techniques of linear algebra from the point of view of a working analyst. The techniques are illustrated by a wide sample of applications and examples that are chosen to highlight the tools of the trade. In short, this is material that the author has found to be useful in his own research and wishes that he had been exposed to as a graduate student. Roughly the first quarter of the book reviews the contents of a basic course in linear algebra, plus a little. The remaining chapters treat singular value decompositions, convexity, special classes of matrices, projections, assorted algorithms, and a number of applications. The applications are drawn from vector calculus, numerical analysis, control theory, complex analysis, convex optimization, and functional analysis. In particular, fixed point theorems, extremal problems, best approximations, matrix equations, zero location and eigenvalue location problems, matrices with nonnegative entries, and reproducing kernels are discussed. This new edition differs significantly from the second edition in both content and style. It includes a number of topics that did not appear in the earlier edition and excludes some that did. Moreover, most of the material that has been adapted from the earlier edition has been extensively rewritten and reorganized.
  linear algebra by hoffman and kunze: LINEAR ALGEBRA KUMARESAN, S., 2000-01-01 This clear, concise and highly readable text is designed for a first course in linear algebra and is intended for undergraduate courses in mathematics. It focusses throughout on geometric explanations to make the student perceive that linear algebra is nothing but analytic geometry of n dimensions. From the very start, linear algebra is presented as an extension of the theory of simultaneous linear equations and their geometric interpretation is shown to be a recurring theme of the subject. The integration of abstract algebraic concepts with the underlying geometric notions is one of the most distinguishing features of this book — designed to help students in the pursuit of multivariable calculus and differential geometry in subsequent courses.Explanations and concepts are logically presented in a conversational tone and well-constructed writing style so that students at a variety of levels can understand the material and acquire a solid foundation in the basic skills of linear algebra.
  linear algebra by hoffman and kunze: Linear Algebra and Geometry Igor R. Shafarevich, Alexey O. Remizov, 2012-08-23 This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.
  linear algebra by hoffman and kunze: Linear Algebra Robert J. Valenza, 1993 Based on lectures given at Claremont McKenna College, this text constitutes a substantial, abstract introduction to linear algebra. The presentation emphasizes the structural elements over the computational - for example by connecting matrices to linear transformations from the outset - and prepares the student for further study of abstract mathematics. Uniquely among algebra texts at this level, it introduces group theory early in the discussion, as an example of the rigorous development of informal axiomatic systems.
  linear algebra by hoffman and kunze: Elementary Linear Algebra Lawrence E. Spence, Arnold J. Insel, Stephen H. Friedberg, 2008 Ideal as a reference or quick review of the fundamentals of linear algebra, this book offers a matrix-oriented approach--with more emphasis on Euclidean n-space, problem solving, and applications, and less emphasis on abstract vector spaces. It features a variety of applications, boxed statements of important results, and a large number of numbered and unnumbered examples. Matrices, Vectors, and Systems of Linear Equations. Matrices and Linear Transformations. Determinants. Subspaces and Their Properties. Eigenvalues, Eigenvectors, and Diagonalization. Orthogonality. Vector Spaces. Complex Numbers. A professional reference for computer scientists, statisticians, and some engineers.
  linear algebra by hoffman and kunze: Basic Matrix Theory Leonard E. Fuller, 2017-09-13 This guide to using matrices as a mathematical tool offers a model for procedure rather than an exposition of theory. Detailed examples illustrate the focus on computational methods. 1962 edition.
  linear algebra by hoffman and kunze: Linear Algebra and Optimization for Machine Learning Charu C. Aggarwal, 2020-05-13 This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.
  linear algebra by hoffman and kunze: Ordinary Differential Equations Morris Tenenbaum, Harry Pollard, 1985-10-01 Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
  linear algebra by hoffman and kunze: Abstract Algebra I. N. Herstein, 1990
  linear algebra by hoffman and kunze: Linear Algebra And Its Applications Tzuong-tsieng Moh, 2020-10-21 From Tzuong-Tsieng Moh, a seasoned expert in algebra, comes a new book for students to better understand linear algebra. Writing from an experienced standpoint, Moh covers the many standard aspects comprising linear algebra, such as echelon forms, matrix algebra, linear transformations, and more. Moh further includes several advanced topics and applications, as well as self-correcting codes, Heisenberg's uncertainty principle, Maxwell's equations in relativity form, Google's search engine, and the theory of finitely generated modules over a PID. This book is ideal for both newcomers and experienced readers who want to attain a deeper understanding on both the basics and advanced topics of linear algebra and its vast applications. The wide range of topics combined with the depth of each discussion make it essential to be on the shelf of every mathematical beginner and enthusiast.
  linear algebra by hoffman and kunze: Linear Algebra Kuldeep Singh, 2013-10-31 Linear algebra is a fundamental area of mathematics, and is arguably the most powerful mathematical tool ever developed. It is a core topic of study within fields as diverse as: business, economics, engineering, physics, computer science, ecology, sociology, demography and genetics. For an example of linear algebra at work, one needs to look no further than the Google search engine, which relies upon linear algebra to rank the results of a search with respect to relevance. The strength of the text is in the large number of examples and the step-by-step explanation of each topic as it is introduced. It is compiled in a way that allows distance learning, with explicit solutions to set problems freely available online. The miscellaneous exercises at the end of each chapter comprise questions from past exam papers from various universities, helping to reinforce the reader's confidence. Also included, generally at the beginning of sections, are short historical biographies of the leading players in the field of linear algebra to provide context for the topics covered. The dynamic and engaging style of the book includes frequent question and answer sections to test the reader's understanding of the methods introduced, rather than requiring rote learning. When first encountered, the subject can appear abstract and students will sometimes struggle to see its relevance; to counter this, the book also contains interviews with key people who use linear algebra in practice, in both professional and academic life. It will appeal to undergraduate students in mathematics, the physical sciences and engineering.
  linear algebra by hoffman and kunze: Linear Algebra Lang, 1996
  linear algebra by hoffman and kunze: Linear Algebra As An Introduction To Abstract Mathematics Bruno Nachtergaele, Anne Schilling, Isaiah Lankham, 2015-11-30 This is an introductory textbook designed for undergraduate mathematics majors with an emphasis on abstraction and in particular, the concept of proofs in the setting of linear algebra. Typically such a student would have taken calculus, though the only prerequisite is suitable mathematical grounding. The purpose of this book is to bridge the gap between the more conceptual and computational oriented undergraduate classes to the more abstract oriented classes. The book begins with systems of linear equations and complex numbers, then relates these to the abstract notion of linear maps on finite-dimensional vector spaces, and covers diagonalization, eigenspaces, determinants, and the Spectral Theorem. Each chapter concludes with both proof-writing and computational exercises.
  linear algebra by hoffman and kunze: No Bullshit Guide to Linear Algebra Ivan Savov, 2020-10-25 This textbook covers the material for an undergraduate linear algebra course: vectors, matrices, linear transformations, computational techniques, geometric constructions, and theoretical foundations. The explanations are given in an informal conversational tone. The book also contains 100+ problems and exercises with answers and solutions. A special feature of this textbook is the prerequisites chapter that covers topics from high school math, which are necessary for learning linear algebra. The presence of this chapter makes the book suitable for beginners and the general audience-readers need not be math experts to read this book. Another unique aspect of the book are the applications chapters (Ch 7, 8, and 9) that discuss applications of linear algebra to engineering, computer science, economics, chemistry, machine learning, and even quantum mechanics.
  linear algebra by hoffman and kunze: Linear Algebra and Geometry Albert Cuoco, 2019 Linear Algebra and Geometry is organized around carefully sequenced problems that help students build both the tools and the habits that provide a solid basis for further study in mathematics. Requiring only high school algebra, it uses elementary geometry to build the beautiful edifice of results and methods that make linear algebra such an important field. The materials in Linear Algebra and Geometry have been used, field tested, and refined for over two decades. It is aimed at preservice and practicing high school mathematics teachers and advanced high school students looking for an additio.
  linear algebra by hoffman and kunze: Principles of Mathematical Analysis Walter Rudin, 1976 The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.
  linear algebra by hoffman and kunze: Linear Algebra Jim Hefferon, 2014-03 The approach is developmental. Although it covers the requisite material by proving things, it does not assume that students are already able at abstract work. Instead, it proceeds with a great deal of motivation, many computational examples, and exercises that range from routine verifications to (a few) challenges. The goal is, in the context of developing the usual material of an undergraduate linear algebra course, to help raise each student's level of mathematical maturity.
  linear algebra by hoffman and kunze: Lectures in Geometry Mikhail Mikhaĭlovich Postnikov, 1982
  linear algebra by hoffman and kunze: Introduction to Linear Algebra Gilbert Strang, 2009-01 This informally written text provides students with a clear introduction into the subject of linear algebra. Topics covered include matrix multiplication, row reduction, matrix inverse, orthogonality and computation. The self-teaching book is loaded with examples and graphics and provides a wide array of probing problems, accompanying solutions, and a glossary.
  linear algebra by hoffman and kunze: Lectures on Linear Algebra I. M. Gelfand, 1961
  linear algebra by hoffman and kunze: Advanced Calculus Lynn H. Loomis, Shlomo Sternberg, 2014 An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades. This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis. The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives. In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
  linear algebra by hoffman and kunze: Technology Brewing and Malting , 1999
  linear algebra by hoffman and kunze: Elementary linear algebra Stanley I. Grossman, 1994
  linear algebra by hoffman and kunze: Matrices and Linear Algebra Hans Schneider, George Phillip Barker, 1973 The algebra of matrices; Linear equations; Vector spaces; Determinants; Linear transformations; Eigenvalues and eigenvectors; Inner product spaces; Applications to differential equations.
  linear algebra by hoffman and kunze: An Introduction to Linear Algebra Visvanatha Krishnamurthy, Ved Prakash Mainra, Jawahar Lal Arora, 1976
  linear algebra by hoffman and kunze: Solutions Manual for Linear Algebra, Hoffman and Kunze Maurice Stadler, Gregory Grant, 2021-02-20 In addition to well-explained solutions, this manual includes corrections and clarifications to the classic textbook Linear Algebra, second edition, by Kenneth Hoffman and Ray Kunze. This manual is a great resource for checking answers, preparing for exams, and discovering new solution techniques as two or three solutions are provided for many exercises.
Linear – Plan and build products
Linear is a purpose-built tool for modern product development. Streamline issues, projects, and product roadmaps.

Download Linear
Download the Linear app for desktop and mobile. Available for Mac, Windows, iOS, and Android.

Pricing – Linear
Use Linear for free with your whole team. Upgrade to enable unlimited issues, enhanced security controls, and additional features.

Customer Requests – Linear
Capture feedback across any customer interaction – from sales calls to support chats – and turn it into a customer request linked to a Linear project or issue.

Linear MCP server – Changelog
May 1, 2025 · Your AI models and agents can use our official MCP server to access your Linear data in a simple and secure way. Connect to our MCP server natively as a new Claude …

About – Linear
Today, thousands of teams around the globe — from early-stage startups to public companies — use Linear to build their products. Linear helps them to focus on what they do best: Crafting …

Linear Method – Practices for building
The quality of a product is driven by both the talent of its creators and how they feel while they’re crafting it. To bring back the right focus, these are the foundational and evolving ideas Linear …

Features – Linear
With its meticulous design, breathtaking speed and purpose-built workflows, Linear unlocks your team’s full potential. It is the tool of choice for high-performance teams to build products better.

Linear Customers
Linear Projects give Mercury a source-of-truth across all their work. Read story. Watershed switched to Linear to accelerate their team. Read story. Linear keeps Retool's teams customer …

Building our way - Linear Blog
Jun 10, 2025 · Linear is unique because it actually manages all these workflows in a structured way and in a single product, bringing teams together. We see this end-to-end workflow as the …

Linear – Plan and build products
Linear is a purpose-built tool for modern product development. Streamline issues, projects, and product roadmaps.

Download Linear
Download the Linear app for desktop and mobile. Available for Mac, Windows, iOS, and Android.

Pricing – Linear
Use Linear for free with your whole team. Upgrade to enable unlimited issues, enhanced security controls, and additional features.

Customer Requests – Linear
Capture feedback across any customer interaction – from sales calls to support chats – and turn it into a customer request linked to a Linear project or issue.

Linear MCP server – Changelog
May 1, 2025 · Your AI models and agents can use our official MCP server to access your Linear data in a simple and secure way. Connect to our MCP server natively as a …