Least Squares Approximation Linear Algebra

Advertisement



  least squares approximation linear algebra: Introduction to Applied Linear Algebra Stephen Boyd, Lieven Vandenberghe, 2018-06-07 A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
  least squares approximation linear algebra: Least-squares Approximation Open University. Linear Mathematics Course Team, 1972
  least squares approximation linear algebra: Numerical Methods for Least Squares Problems Ake Bjorck, 1996-01-01 The method of least squares was discovered by Gauss in 1795. It has since become the principal tool to reduce the influence of errors when fitting models to given observations. Today, applications of least squares arise in a great number of scientific areas, such as statistics, geodetics, signal processing, and control. In the last 20 years there has been a great increase in the capacity for automatic data capturing and computing. Least squares problems of large size are now routinely solved. Tremendous progress has been made in numerical methods for least squares problems, in particular for generalized and modified least squares problems and direct and iterative methods for sparse problems. Until now there has not been a monograph that covers the full spectrum of relevant problems and methods in least squares. This volume gives an in-depth treatment of topics such as methods for sparse least squares problems, iterative methods, modified least squares, weighted problems, and constrained and regularized problems. The more than 800 references provide a comprehensive survey of the available literature on the subject.
  least squares approximation linear algebra: Sketching as a Tool for Numerical Linear Algebra David P. Woodruff, 2014-11-14 Sketching as a Tool for Numerical Linear Algebra highlights the recent advances in algorithms for numerical linear algebra that have come from the technique of linear sketching, whereby given a matrix, one first compressed it to a much smaller matrix by multiplying it by a (usually) random matrix with certain properties. Much of the expensive computation can then be performed on the smaller matrix, thereby accelerating the solution for the original problem. It is an ideal primer for researchers and students of theoretical computer science interested in how sketching techniques can be used to speed up numerical linear algebra applications.
  least squares approximation linear algebra: Introduction To Numerical Computation, An (Second Edition) Wen Shen, 2019-08-28 This book serves as a set of lecture notes for a senior undergraduate level course on the introduction to numerical computation, which was developed through 4 semesters of teaching the course over 10 years. The book requires minimum background knowledge from the students, including only a three-semester of calculus, and a bit on matrices.The book covers many of the introductory topics for a first course in numerical computation, which fits in the short time frame of a semester course. Topics range from polynomial approximations and interpolation, to numerical methods for ODEs and PDEs. Emphasis was made more on algorithm development, basic mathematical ideas behind the algorithms, and the implementation in Matlab.The book is supplemented by two sets of videos, available through the author's YouTube channel. Homework problem sets are provided for each chapter, and complete answer sets are available for instructors upon request.The second edition contains a set of selected advanced topics, written in a self-contained manner, suitable for self-learning or as additional material for an honored version of the course. Videos are also available for these added topics.
  least squares approximation linear algebra: Econometric Methods with Applications in Business and Economics Christiaan Heij, Paul de Boer, Philip Hans Franses, Teun Kloek, Herman K. van Dijk, All at the Erasmus University in Rotterdam, 2004-03-25 Nowadays applied work in business and economics requires a solid understanding of econometric methods to support decision-making. Combining a solid exposition of econometric methods with an application-oriented approach, this rigorous textbook provides students with a working understanding and hands-on experience of current econometrics. Taking a 'learning by doing' approach, it covers basic econometric methods (statistics, simple and multiple regression, nonlinear regression, maximum likelihood, and generalized method of moments), and addresses the creative process of model building with due attention to diagnostic testing and model improvement. Its last part is devoted to two major application areas: the econometrics of choice data (logit and probit, multinomial and ordered choice, truncated and censored data, and duration data) and the econometrics of time series data (univariate time series, trends, volatility, vector autoregressions, and a brief discussion of SUR models, panel data, and simultaneous equations). · Real-world text examples and practical exercise questions stimulate active learning and show how econometrics can solve practical questions in modern business and economic management. · Focuses on the core of econometrics, regression, and covers two major advanced topics, choice data with applications in marketing and micro-economics, and time series data with applications in finance and macro-economics. · Learning-support features include concise, manageable sections of text, frequent cross-references to related and background material, summaries, computational schemes, keyword lists, suggested further reading, exercise sets, and online data sets and solutions. · Derivations and theory exercises are clearly marked for students in advanced courses. This textbook is perfect for advanced undergraduate students, new graduate students, and applied researchers in econometrics, business, and economics, and for researchers in other fields that draw on modern applied econometrics.
  least squares approximation linear algebra: Generalized Inverses Adi Ben-Israel, Thomas N.E. Greville, 2006-04-18 This second edition accounts for many major developments in generalized inverses while maintaining the informal and leisurely style of the 1974 first edition. Added material includes a chapter on applications, new exercises, and an appendix on the work of E.H. Moore.
  least squares approximation linear algebra: The Total Least Squares Problem Sabine Van Huffel, Joos Vandewalle, 1991-01-01 This is the first book devoted entirely to total least squares. The authors give a unified presentation of the TLS problem. A description of its basic principles are given, the various algebraic, statistical and sensitivity properties of the problem are discussed, and generalizations are presented. Applications are surveyed to facilitate uses in an even wider range of applications. Whenever possible, comparison is made with the well-known least squares methods. A basic knowledge of numerical linear algebra, matrix computations, and some notion of elementary statistics is required of the reader; however, some background material is included to make the book reasonably self-contained.
  least squares approximation linear algebra: Total Least Squares and Errors-in-Variables Modeling S. van Huffel, P. Lemmerling, 2013-03-14 In response to a growing interest in Total Least Squares (TLS) and Errors-In-Variables (EIV) modeling by researchers and practitioners, well-known experts from several disciplines were invited to prepare an overview paper and present it at the third international workshop on TLS and EIV modeling held in Leuven, Belgium, August 27-29, 2001. These invited papers, representing two-thirds of the book, together with a selection of other presented contributions yield a complete overview of the main scientific achievements since 1996 in TLS and Errors-In-Variables modeling. In this way, the book nicely completes two earlier books on TLS (SIAM 1991 and 1997). Not only computational issues, but also statistical, numerical, algebraic properties are described, as well as many new generalizations and applications. Being aware of the growing interest in these techniques, it is a strong belief that this book will aid and stimulate users to apply the new techniques and models correctly to their own practical problems.
  least squares approximation linear algebra: Iterative Methods for Sparse Linear Systems Yousef Saad, 2003-04-01 Mathematics of Computing -- General.
  least squares approximation linear algebra: Data-Driven Science and Engineering Steven L. Brunton, J. Nathan Kutz, 2022-05-05 A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
  least squares approximation linear algebra: Applied Numerical Linear Algebra James W. Demmel, 1997-01-01 Designed for use by first-year graduate students from a variety of engineering and scientific disciplines, this comprehensive textbook covers the solution of linear systems, least squares problems, eigenvalue problems, and the singular value decomposition. The author, who helped design the widely-used LAPACK and ScaLAPACK linear algebra libraries, draws on this experience to present state-of-the-art techniques for these problems, including recommendations of which algorithms to use in a variety of practical situations. Algorithms are derived in a mathematically illuminating way, including condition numbers and error bounds. Direct and iterative algorithms, suitable for dense and sparse matrices, are discussed. Algorithm design for modern computer architectures, where moving data is often more expensive than arithmetic operations, is discussed in detail, using LAPACK as an illustration. There are many numerical examples throughout the text and in the problems at the ends of chapters, most of which are written in Matlab and are freely available on the Web. Demmel discusses several current research topics, making students aware of both the lively research taking place and connections to other parts of numerical analysis, mathematics, and computer science. Some of this material is developed in questions at the end of each chapter, which are marked Easy, Medium, or Hard according to their difficulty. Some questions are straightforward, supplying proofs of lemmas used in the text. Others are more difficult theoretical or computing problems. Questions involving significant amounts of programming are marked Programming. The computing questions mainly involve Matlab programming, and others involve retrieving, using, and perhaps modifying LAPACK code from NETLIB.
  least squares approximation linear algebra: Chemometrics in Spectroscopy Howard Mark, Jerry Workman Jr., 2021-09-30 Chemometrics in Spectroscopy, Revised Second Edition provides the reader with the methodology crucial to apply chemometrics to real world data. The book allows scientists using spectroscopic instruments to find explanations and solutions to their problems when they are confronted with unexpected and unexplained results. Unlike other books on these topics, it explains the root causes of the phenomena that lead to these results. While books on NIR spectroscopy sometimes cover basic chemometrics, they do not mention many of the advanced topics this book discusses. This revised second edition has been expanded with 50% more content on advances in the field that have occurred in the last 10 years, including calibration transfer, units of measure in spectroscopy, principal components, clinical data reporting, classical least squares, regression models, spectral transfer, and more. - Written in the column format of the authors' online magazine - Presents topical and important chapters for those involved in analysis work, both research and routine - Focuses on practical issues in the implementation of chemometrics for NIR Spectroscopy - Includes a companion website with 350 additional color figures that illustrate CLS concepts
  least squares approximation linear algebra: Interpolation and Least Squares Approximation in Bivariate Tensor Product Spaces Andrea Rott, 1999
  least squares approximation linear algebra: C# for Financial Markets Daniel J. Duffy, Andrea Germani, 2013-01-14 A practice-oriented guide to using C# to design and program pricing and trading models In this step-by-step guide to software development for financial analysts, traders, developers and quants, the authors show both novice and experienced practitioners how to develop robust and accurate pricing models and employ them in real environments. Traders will learn how to design and implement applications for curve and surface modeling, fixed income products, hedging strategies, plain and exotic option modeling, interest rate options, structured bonds, unfunded structured products, and more. A unique mix of modern software technology and quantitative finance, this book is both timely and practical. The approach is thorough and comprehensive and the authors use a combination of C# language features, design patterns, mathematics and finance to produce efficient and maintainable software. Designed for quant developers, traders and MSc/MFE students, each chapter has numerous exercises and the book is accompanied by a dedicated companion website, www.datasimfinancial.com/forum/viewforum.php?f=196&sid=f30022095850dee48c7db5ff62192b34, providing all source code, alongside audio, support and discussion forums for readers to comment on the code and obtain new versions of the software.
  least squares approximation linear algebra: Numerical Matrix Analysis Ilse C. F. Ipsen, 2009-07-23 Matrix analysis presented in the context of numerical computation at a basic level.
  least squares approximation linear algebra: Solving Least Squares Problems Charles L. Lawson, Richard J. Hanson, 1995-12-01 This Classic edition includes a new appendix which summarizes the major developments since the book was originally published in 1974. The additions are organized in short sections associated with each chapter. An additional 230 references have been added, bringing the bibliography to over 400 entries. Appendix C has been edited to reflect changes in the associated software package and software distribution method.
  least squares approximation linear algebra: Numerical Linear Algebra and Applications Biswa Nath Datta, 2010-01-01 Full of features and applications, this acclaimed textbook for upper undergraduate level and graduate level students includes all the major topics of computational linear algebra, including solution of a system of linear equations, least-squares solutions of linear systems, computation of eigenvalues, eigenvectors, and singular value problems. Drawing from numerous disciplines of science and engineering, the author covers a variety of motivating applications. When a physical problem is posed, the scientific and engineering significance of the solution is clearly stated. Each chapter contains a summary of the important concepts developed in that chapter, suggestions for further reading, and numerous exercises, both theoretical and MATLAB and MATCOM based. The author also provides a list of key words for quick reference. The MATLAB toolkit available online, 'MATCOM', contains implementations of the major algorithms in the book and will enable students to study different algorithms for the same problem, comparing efficiency, stability, and accuracy.
  least squares approximation linear algebra: Data Analysis Using the Method of Least Squares John Wolberg, 2009-09-02 Develops the full power of the least-squares method Enables engineers and scientists to apply the method to their specific problem Deals with linear as well as with non-linear least-squares, parametric as well as non-parametric methods
  least squares approximation linear algebra: Data Fitting and Uncertainty Tilo Strutz, 2015-12-16 The subject of data fitting bridges many disciplines, especially those traditionally dealing with statistics like physics, mathematics, engineering, biology, economy, or psychology, but also more recent fields like computer vision. This book addresses itself to engineers and computer scientists or corresponding undergraduates who are interested in data fitting by the method of least-squares approximation, but have no or only limited pre-knowledge in this field. Experienced readers will find in it new ideas or might appreciate the book as a useful work of reference. Familiarity with basic linear algebra is helpful though not essential as the book includes a self-contained introduction and presents the method in a logical and accessible fashion. The primary goal of the text is to explain how data fitting via least squares works. The reader will find that the emphasis of the book is on practical matters, not on theoretical problems. In addition, the book enables the reader to design own software implementations with application-specific model functions based on the comprehensive discussion of several examples. The text is accompanied with working source code in ANSI-C for fitting with weighted least squares including outlier detection. Among others the book covers following topics * fitting of linear and nonlinear functions with one- or multi-dimensional variables * weighted least-squares * outlier detection * evaluation of the fitting results * different optimisation strategies * combined fitting of different model functions * total least-squares approach with multi-dimensional conditions
  least squares approximation linear algebra: Generalized Inverses of Linear Transformations Stephen L. Campbell, Carl D. Meyer, 2009-03-26 Provides comprehensive coverage of the mathematical theory of generalized inverses and a wide range of important and practical applications.
  least squares approximation linear algebra: Least Squares Support Vector Machines Johan A K Suykens, Tony Van Gestel, Joseph De Brabanter, Bart De Moor, Joos P L Vandewalle, 2002-11-12 This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing sparseness and employing robust statistics.The framework is further extended towards unsupervised learning by considering PCA analysis and its kernel version as a one-class modelling problem. This leads to new primal-dual support vector machine formulations for kernel PCA and kernel CCA analysis. Furthermore, LS-SVM formulations are given for recurrent networks and control. In general, support vector machines may pose heavy computational challenges for large data sets. For this purpose, a method of fixed size LS-SVM is proposed where the estimation is done in the primal space in relation to a Nyström sampling with active selection of support vectors. The methods are illustrated with several examples.
  least squares approximation linear algebra: Matrix Methods in Data Mining and Pattern Recognition Lars Elden, 2007-07-12 Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.Matrix Methods in Data Mining and Pattern Recognition is divided into three parts. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB®. Some mathematical proofs that emphasize the existence and properties of the matrix decompositions are included. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed by the author are: classification of handwritten digits, text mining, text summarization, pagerank computations related to the GoogleÔ search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.Audience The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.Contents Preface; Part I: Linear Algebra Concepts and Matrix Decompositions. Chapter 1: Vectors and Matrices in Data Mining and Pattern Recognition; Chapter 2: Vectors and Matrices; Chapter 3: Linear Systems and Least Squares; Chapter 4: Orthogonality; Chapter 5: QR Decomposition; Chapter 6: Singular Value Decomposition; Chapter 7: Reduced-Rank Least Squares Models; Chapter 8: Tensor Decomposition; Chapter 9: Clustering and Nonnegative Matrix Factorization; Part II: Data Mining Applications. Chapter 10: Classification of Handwritten Digits; Chapter 11: Text Mining; Chapter 12: Page Ranking for a Web Search Engine; Chapter 13: Automatic Key Word and Key Sentence Extraction; Chapter 14: Face Recognition Using Tensor SVD. Part III: Computing the Matrix Decompositions. Chapter 15: Computing Eigenvalues and Singular Values; Bibliography; Index.
  least squares approximation linear algebra: Introduction to Mathematics for Understanding Deep Learning Kazuyuki FUJII, 2018-08-30 Deep Learning is the heart of Artificial Intelligence and will become a most important field in Data Science in the near future. Deep Learning has attracted much attention recently. It is usually carried out by the gradient descent method, which is not always easy to understand for beginners. When one starts studying Deep Learning first hurdles are (1) how to choose the learning rate (2) how to avoid being trapped by local minima (3) what is a deep meaning of the minibatch. In this book I plan to offer intuitive answers to these questions within my understandings. As a matter of course, when beginners study Deep Learning some mathematical knowledge from Calculus, Linear Algebra, Statistics and Information are required. In the book I gave minimum knowledge required for understanding Deep learning. After reading the book, readers are encouraged to challenge advanced books of Deep Learning (or Artificial Intelligence).
  least squares approximation linear algebra: Numerical Linear Algebra with Applications William Ford, 2014-09-02 Designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, Numerical Linear Algebra with Applications contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. It provides necessary mathematical background information for those who want to learn to solve linear algebra problems, and offers a thorough explanation of the issues and methods for practical computing, using MATLAB as the vehicle for computation. The proofs of required results are provided without leaving out critical details. The Preface suggests ways in which the book can be used with or without an intensive study of proofs. Six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra Detailed explanations and examples A through discussion of the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra Examples from engineering and science applications
  least squares approximation linear algebra: Numerical Linear Algebra and Matrix Factorizations Tom Lyche, 2020-04-13 After reading this book, students should be able to analyze computational problems in linear algebra such as linear systems, least squares- and eigenvalue problems, and to develop their own algorithms for solving them. Since these problems can be large and difficult to handle, much can be gained by understanding and taking advantage of special structures. This in turn requires a good grasp of basic numerical linear algebra and matrix factorizations. Factoring a matrix into a product of simpler matrices is a crucial tool in numerical linear algebra, because it allows us to tackle complex problems by solving a sequence of easier ones. The main characteristics of this book are as follows: It is self-contained, only assuming that readers have completed first-year calculus and an introductory course on linear algebra, and that they have some experience with solving mathematical problems on a computer. The book provides detailed proofs of virtually all results. Further, its respective parts can be used independently, making it suitable for self-study. The book consists of 15 chapters, divided into five thematically oriented parts. The chapters are designed for a one-week-per-chapter, one-semester course. To facilitate self-study, an introductory chapter includes a brief review of linear algebra.
  least squares approximation linear algebra: Linear Models in Statistics Alvin C. Rencher, G. Bruce Schaalje, 2008-01-07 The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
  least squares approximation linear algebra: Generalized Least Squares Takeaki Kariya, Hiroshi Kurata, 2004-11-19 Generalised Least Squares adopts a concise and mathematically rigorous approach. It will provide an up-to-date self-contained introduction to the unified theory of generalized least squares estimations, adopting a concise and mathematically rigorous approach. The book covers in depth the 'lower and upper bounds approach', pioneered by the first author, which is widely regarded as a very powerful and useful tool for generalized least squares estimation, helping the reader develop their understanding of the theory. The book also contains exercises at the end of each chapter and applications to statistics, econometrics, and biometrics, enabling use for self-study or as a course text.
  least squares approximation linear algebra: No Bullshit Guide to Linear Algebra Ivan Savov, 2020-10-25 This textbook covers the material for an undergraduate linear algebra course: vectors, matrices, linear transformations, computational techniques, geometric constructions, and theoretical foundations. The explanations are given in an informal conversational tone. The book also contains 100+ problems and exercises with answers and solutions. A special feature of this textbook is the prerequisites chapter that covers topics from high school math, which are necessary for learning linear algebra. The presence of this chapter makes the book suitable for beginners and the general audience-readers need not be math experts to read this book. Another unique aspect of the book are the applications chapters (Ch 7, 8, and 9) that discuss applications of linear algebra to engineering, computer science, economics, chemistry, machine learning, and even quantum mechanics.
  least squares approximation linear algebra: Numerical Algorithms Justin Solomon, 2015-06-24 Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
  least squares approximation linear algebra: LINPACK Users' Guide J. J. Dongarra, J. R. Bunch, C. B. Moler, G. W. Stewart, 1979-01-01 The authors of this carefully structured guide are the principal developers of LINPACK, a unique package of Fortran subroutines for analyzing and solving various systems of simultaneous linear algebraic equations and linear least squares problems. This guide supports both the casual user of LINPACK who simply requires a library subroutine, and the specialist who wishes to modify or extend the code to handle special problems. It is also recommended for classroom work.
  least squares approximation linear algebra: Applied Functional Analysis Jean-Pierre Aubin, 2011-09-30 A novel, practical introduction to functional analysis In the twenty years since the first edition of Applied Functional Analysis was published, there has been an explosion in the number of books on functional analysis. Yet none of these offers the unique perspective of this new edition. Jean-Pierre Aubin updates his popular reference on functional analysis with new insights and recent discoveries-adding three new chapters on set-valued analysis and convex analysis, viability kernels and capture basins, and first-order partial differential equations. He presents, for the first time at an introductory level, the extension of differential calculus in the framework of both the theory of distributions and set-valued analysis, and discusses their application for studying boundary-value problems for elliptic and parabolic partial differential equations and for systems of first-order partial differential equations. To keep the presentation concise and accessible, Jean-Pierre Aubin introduces functional analysis through the simple Hilbertian structure. He seamlessly blends pure mathematics with applied areas that illustrate the theory, incorporating a broad range of examples from numerical analysis, systems theory, calculus of variations, control and optimization theory, convex and nonsmooth analysis, and more. Finally, a summary of the essential theorems as well as exercises reinforcing key concepts are provided. Applied Functional Analysis, Second Edition is an excellent and timely resource for both pure and applied mathematicians.
  least squares approximation linear algebra: Episodes in Nineteenth and Twentieth Century Euclidean Geometry Ross Honsberger, 1995 Professor Honsberger has succeeded in 'finding' and 'extricating' unexpected and little known properties of such fundamental figures as triangles, results that deserve to be better known. He has laid the foundations for his proofs with almost entirely synthetic methods easily accessible to students of Euclidean geometry early on. While in most of his other books Honsberger presents each of his gems, morsels, and plums, as self contained tidbits, in this volume he connects chapters with some deductive treads. He includes exercises and gives their solutions at the end of the book. In addition to appealing to lovers of synthetic geometry, this book will stimulate also those who, in this era of revitalizing geometry, will want to try their hands at deriving the results by analytic methods. Many of the incidence properties call to mind the duality principle; other results tempt the reader to prove them by vector methods, or by projective transformations, or complex numbers.
  least squares approximation linear algebra: The History of Statistics Stephen M. Stigler, 1990-03-01 Stigler shows how statistics arose from the interplay of mathematical concepts and the needs of several applied sciences. His emphasis is upon how methods of probability theory were developed for measuring uncertainty, for reducing uncertainty, and as a conceptual framework for quantitative studies in the social sciences.
  least squares approximation linear algebra: Low Rank Approximation Ivan Markovsky, 2011-11-19 Data Approximation by Low-complexity Models details the theory, algorithms, and applications of structured low-rank approximation. Efficient local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. Much of the text is devoted to describing the applications of the theory including: system and control theory; signal processing; computer algebra for approximate factorization and common divisor computation; computer vision for image deblurring and segmentation; machine learning for information retrieval and clustering; bioinformatics for microarray data analysis; chemometrics for multivariate calibration; and psychometrics for factor analysis. Software implementation of the methods is given, making the theory directly applicable in practice. All numerical examples are included in demonstration files giving hands-on experience and exercises and MATLAB® examples assist in the assimilation of the theory.
  least squares approximation linear algebra: Approximation Algorithms for Complex Systems Emmanuil H Georgoulis, Armin Iske, Jeremy Levesley, 2011-01-04 This book collects up-to-date papers from world experts in a broad variety of relevant applications of approximation theory, including dynamical systems, multiscale modelling of fluid flow, metrology, and geometric modelling to mention a few. The 14 papers in this volume document modern trends in approximation through recent theoretical developments, important computational aspects and multidisciplinary applications. The book is arranged in seven invited surveys, followed by seven contributed research papers. The surveys of the first seven chapters are addressing the following relevant topics: emergent behaviour in large electrical networks, algorithms for multivariate piecewise constant approximation, anisotropic triangulation methods in adaptive image approximation, form assessment in coordinate metrology, discontinuous Galerkin methods for linear problems, a numerical analyst's view of the lattice Boltzmann method, approximation of probability measures on manifolds. Moreover, the diverse contributed papers of the remaining seven chapters reflect recent developments in approximation theory, approximation practice and their applications. Graduate students who wish to discover the state of the art in a number of important directions of approximation algorithms will find this a valuable volume. Established researchers from statisticians through to fluid modellers will find interesting new approaches to solving familiar but challenging problems. This book grew out of the sixth in the conference series on Algorithms for Approximation, which took place from 31st August to September 4th 2009 in Ambleside in the Lake District of the United Kingdom.
  least squares approximation linear algebra: Algebra and Trigonometry Jay P. Abramson, Valeree Falduto, Rachael Gross (Mathematics teacher), David Lippman, Rick Norwood, Melonie Rasmussen, Nicholas Belloit, Jean-Marie Magnier, Harold Whipple, Christina Fernandez, 2015-02-13 The text is suitable for a typical introductory algebra course, and was developed to be used flexibly. While the breadth of topics may go beyond what an instructor would cover, the modular approach and the richness of content ensures that the book meets the needs of a variety of programs.--Page 1.
LEAST Definition & Meaning - Merriam-Webster
The meaning of LEAST is lowest in importance or position. How to use least in a sentence.

LEAST | English meaning - Cambridge Dictionary
LEAST definition: 1. less than anything or anyone else; the smallest amount or number: 2. less than anything or…. Learn more.

LEAST Definition & Meaning | Dictionary.com
Least definition: smallest in size, amount, degree, etc.; slightest.. See examples of LEAST used in a sentence.

Least - definition of least by The Free Dictionary
1. smallest in size, amount, degree, etc.; slightest: to pay the least amount of attention. 2. lowest in consideration, position, or importance.

LEAST definition and meaning | Collins English Dictionary
You use the least to mean a smaller amount than anyone or anything else, or the smallest amount possible. I try to offend the least amount of people possible. If you like cheese, go for the ones …

Least - Definition, Meaning & Synonyms - Vocabulary.com
Definitions of least adjective the superlative of `little' that can be used with mass nouns and is usually preceded by `the'; a quantifier meaning smallest in amount or extent or degree

least - Wiktionary, the free dictionary
Jun 1, 2025 · The most little; the smallest amount or quantity of something. He earns the least money in his family. Of all the sisters, she has the least patience. I can only afford to pay the …

What does Least mean? - Definitions.net
Least can be defined as the smallest in amount, extent, or importance; the lowest or smallest possible or necessary. Etymology: [OE. last, lest, AS. lsast, lsest, superl. of lssa less. See …

Least Definition & Meaning - YourDictionary
Least definition: Lowest in importance or rank.

How to Use "Least" in the English Grammar - LanGeek
'Least' mainly functions as a determiner, an adjective, a pronoun, and an adverb. In this lesson, we are going to learn all about it.

LEAST Definition & Meaning - Merriam-Webster
The meaning of LEAST is lowest in importance or position. How to use least in a sentence.

LEAST | English meaning - Cambridge Dictionary
LEAST definition: 1. less than anything or anyone else; the smallest amount or number: 2. less than anything or…. Learn more.

LEAST Definition & Meaning | Dictionary.com
Least definition: smallest in size, amount, degree, etc.; slightest.. See examples of LEAST used in a sentence.

Least - definition of least by The Free Dictionary
1. smallest in size, amount, degree, etc.; slightest: to pay the least amount of attention. 2. lowest in consideration, position, or importance.

LEAST definition and meaning | Collins English Dictionary
You use the least to mean a smaller amount than anyone or anything else, or the smallest amount possible. I try to offend the least amount of people possible. If you like cheese, go for the ones …

Least - Definition, Meaning & Synonyms - Vocabulary.com
Definitions of least adjective the superlative of `little' that can be used with mass nouns and is usually preceded by `the'; a quantifier meaning smallest in amount or extent or degree

least - Wiktionary, the free dictionary
Jun 1, 2025 · The most little; the smallest amount or quantity of something. He earns the least money in his family. Of all the sisters, she has the least patience. I can only afford to pay the least …

What does Least mean? - Definitions.net
Least can be defined as the smallest in amount, extent, or importance; the lowest or smallest possible or necessary. Etymology: [OE. last, lest, AS. lsast, lsest, superl. of lssa less. See Less, a.]

Least Definition & Meaning - YourDictionary
Least definition: Lowest in importance or rank.

How to Use "Least" in the English Grammar - LanGeek
'Least' mainly functions as a determiner, an adjective, a pronoun, and an adverb. In this lesson, we are going to learn all about it.