Advertisement
kernel methods book: Advances in Kernel Methods Bernhard Schölkopf, Christopher J. C. Burges, Alexander J. Smola, 1999 A young girl hears the story of her great-great-great-great- grandfather and his brother who came to the United States to make a better life for themselves helping to build the transcontinental railroad. |
kernel methods book: Kernel Methods in Computer Vision Christoph H. Lampert, 2009 Few developments have influenced the field of computer vision in the last decade more than the introduction of statistical machine learning techniques. Particularly kernel-based classifiers, such as the support vector machine, have become indispensable tools, providing a unified framework for solving a wide range of image-related prediction tasks, including face recognition, object detection and action classification. By emphasizing the geometric intuition that all kernel methods rely on, Kernel Methods in Computer Vision provides an introduction to kernel-based machine learning techniques accessible to a wide audience including students, researchers and practitioners alike, without sacrificing mathematical correctness. It covers not only support vector machines but also less known techniques for kernel-based regression, outlier detection, clustering and dimensionality reduction. Additionally, it offers an outlook on recent developments in kernel methods that have not yet made it into the regular textbooks: structured prediction, dependency estimation and learning of the kernel function. Each topic is illustrated with examples of successful application in the computer vision literature, making Kernel Methods in Computer Vision a useful guide not only for those wanting to understand the working principles of kernel methods, but also for anyone wanting to apply them to real-life problems. |
kernel methods book: Kernel Methods and Machine Learning S. Y. Kung, 2014-04-17 Covering the fundamentals of kernel-based learning theory, this is an essential resource for graduate students and professionals in computer science. |
kernel methods book: Kernel Methods for Pattern Analysis , 2004 The kernel functions methodology described here provides a powerful and unified framework for disciplines ranging from neural networks and pattern recognition to machine learning and data mining. This book provides practitioners with a large toolkit of algorithms, kernels and solutions ready to be implemented, suitable for standard pattern discovery problems. |
kernel methods book: Kernel Methods Fouad Sabry, 2023-06-23 What Is Kernel Methods In the field of machine learning, kernel machines are a class of methods for pattern analysis. The support-vector machine (also known as SVM) is the most well-known member of this group. Pattern analysis frequently makes use of specific kinds of algorithms known as kernel approaches. Utilizing linear classifiers in order to solve nonlinear issues is what these strategies entail. Finding and studying different sorts of general relations present in datasets is the overarching goal of pattern analysis. Kernel methods, on the other hand, require only a user-specified kernel, which can be thought of as a similarity function over all pairs of data points computed using inner products. This is in contrast to many algorithms that solve these tasks, which require the data in their raw representation to be explicitly transformed into feature vector representations via a user-specified feature map. According to the Representer theorem, although the feature map in kernel machines has an unlimited number of dimensions, all that is required as user input is a matrix with a finite number of dimensions. Without parallel processing, computation on kernel machines is painfully slow for data sets with more than a few thousand individual cases. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Kernel method Chapter 2: Support vector machine Chapter 3: Radial basis function Chapter 4: Positive-definite kernel Chapter 5: Sequential minimal optimization Chapter 6: Regularization perspectives on support vector machines Chapter 7: Representer theorem Chapter 8: Radial basis function kernel Chapter 9: Kernel perceptron Chapter 10: Regularized least squares (II) Answering the public top questions about kernel methods. (III) Real world examples for the usage of kernel methods in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of kernel methods' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of kernel methods. |
kernel methods book: Machine Learning with Svm and Other Kernel Methods K.P. Soman, 2011 |
kernel methods book: Learning with Kernels Bernhard Scholkopf, Alexander J. Smola, 2018-06-05 A comprehensive introduction to Support Vector Machines and related kernel methods. In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs—-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years. |
kernel methods book: Kernel Methods in Bioengineering, Signal and Image Processing Gustavo Camps-Valls, José Luis Rojo-Álvarez, Manel Martínez-Ramón, 2007-01-01 This book presents an extensive introduction to the field of kernel methods and real world applications. The book is organized in four parts: the first is an introductory chapter providing a framework of kernel methods; the others address Bioegineering, Signal Processing and Communications and Image Processing--Provided by publisher. |
kernel methods book: Function Approximation with Kernel Methods Xuan Zhou, 2015 |
kernel methods book: Kernel Methods for Remote Sensing Data Analysis Gustau Camps-Valls, Lorenzo Bruzzone, 2009-09-03 Kernel methods have long been established as effective techniques in the framework of machine learning and pattern recognition, and have now become the standard approach to many remote sensing applications. With algorithms that combine statistics and geometry, kernel methods have proven successful across many different domains related to the analysis of images of the Earth acquired from airborne and satellite sensors, including natural resource control, detection and monitoring of anthropic infrastructures (e.g. urban areas), agriculture inventorying, disaster prevention and damage assessment, and anomaly and target detection. Presenting the theoretical foundations of kernel methods (KMs) relevant to the remote sensing domain, this book serves as a practical guide to the design and implementation of these methods. Five distinct parts present state-of-the-art research related to remote sensing based on the recent advances in kernel methods, analysing the related methodological and practical challenges: Part I introduces the key concepts of machine learning for remote sensing, and the theoretical and practical foundations of kernel methods. Part II explores supervised image classification including Super Vector Machines (SVMs), kernel discriminant analysis, multi-temporal image classification, target detection with kernels, and Support Vector Data Description (SVDD) algorithms for anomaly detection. Part III looks at semi-supervised classification with transductive SVM approaches for hyperspectral image classification and kernel mean data classification. Part IV examines regression and model inversion, including the concept of a kernel unmixing algorithm for hyperspectral imagery, the theory and methods for quantitative remote sensing inverse problems with kernel-based equations, kernel-based BRDF (Bidirectional Reflectance Distribution Function), and temperature retrieval KMs. Part V deals with kernel-based feature extraction and provides a review of the principles of several multivariate analysis methods and their kernel extensions. This book is aimed at engineers, scientists and researchers involved in remote sensing data processing, and also those working within machine learning and pattern recognition. |
kernel methods book: Advances in Kernel Methods Bernhard SchoÌ?lkopf, Christopher J. C. Burges, Alexander J. Smola, 1998 |
kernel methods book: Kernel Methods in Computational Biology Bernhard Schölkopf, Koji Tsuda, Jean-Philippe Vert, 2004 This book provides a detailed overview of current research in kernel methods and their applications to computational biology. Following three introductory chapters -- an introduction to molecular and computational biology, a short review of kernel methods that focuses on intuitive concepts rather than technical details, and a detailed survey of recent applications of kernel methods in computational biology -- the book is divided into three sections that reflect three general trends in current research. The first part presents different ideas for the design of kernel functions specifically adapted to various biological data; the second part covers different approaches to learning from heterogeneous data; and the third part offers examples of successful applications of support vector machine methods. |
kernel methods book: Kernels For Structured Data Thomas Gartner, 2008-08-29 This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains. Originally, kernel methods were developed with data in mind that can easily be embedded in a Euclidean vector space. Much real-world data does not have this property but is inherently structured. An example of such data, often consulted in the book, is the (2D) graph structure of molecules formed by their atoms and bonds. The book guides the reader from the basics of kernel methods to advanced algorithms and kernel design for structured data. It is thus useful for readers who seek an entry point into the field as well as experienced researchers. |
kernel methods book: Kernel Methods for Machine Learning with Math and R Joe Suzuki, 2022-05-04 The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than relying on knowledge or experience. This textbook addresses the fundamentals of kernel methods for machine learning by considering relevant math problems and building R programs. The book’s main features are as follows: The content is written in an easy-to-follow and self-contained style. The book includes 100 exercises, which have been carefully selected and refined. As their solutions are provided in the main text, readers can solve all of the exercises by reading the book. The mathematical premises of kernels are proven and the correct conclusions are provided, helping readers to understand the nature of kernels. Source programs and running examples are presented to help readers acquire a deeper understanding of the mathematics used. Once readers have a basic understanding of the functional analysis topics covered in Chapter 2, the applications are discussed in the subsequent chapters. Here, no prior knowledge of mathematics is assumed. This book considers both the kernel for reproducing kernel Hilbert space (RKHS) and the kernel for the Gaussian process; a clear distinction is made between the two. |
kernel methods book: Kernel Methods for Regression and Classification Volker Roth, 2001 |
kernel methods book: Covariances in Computer Vision and Machine Learning Hà Quang Minh, Vittorio Murino, 2017-11-07 Covariance matrices play important roles in many areas of mathematics, statistics, and machine learning, as well as their applications. In computer vision and image processing, they give rise to a powerful data representation, namely the covariance descriptor, with numerous practical applications. In this book, we begin by presenting an overview of the {\it finite-dimensional covariance matrix} representation approach of images, along with its statistical interpretation. In particular, we discuss the various distances and divergences that arise from the intrinsic geometrical structures of the set of Symmetric Positive Definite (SPD) matrices, namely Riemannian manifold and convex cone structures. Computationally, we focus on kernel methods on covariance matrices, especially using the Log-Euclidean distance. We then show some of the latest developments in the generalization of the finite-dimensional covariance matrix representation to the {\it infinite-dimensional covariance operator} representation via positive definite kernels. We present the generalization of the affine-invariant Riemannian metric and the Log-Hilbert-Schmidt metric, which generalizes the Log Euclidean distance. Computationally, we focus on kernel methods on covariance operators, especially using the Log-Hilbert-Schmidt distance. Specifically, we present a two-layer kernel machine, using the Log-Hilbert-Schmidt distance and its finite-dimensional approximation, which reduces the computational complexity of the exact formulation while largely preserving its capability. Theoretical analysis shows that, mathematically, the approximate Log-Hilbert-Schmidt distance should be preferred over the approximate Log-Hilbert-Schmidt inner product and, computationally, it should be preferred over the approximate affine-invariant Riemannian distance. Numerical experiments on image classification demonstrate significant improvements of the infinite-dimensional formulation over the finite-dimensional counterpart. Given the numerous applications of covariance matrices in many areas of mathematics, statistics, and machine learning, just to name a few, we expect that the infinite-dimensional covariance operator formulation presented here will have many more applications beyond those in computer vision. |
kernel methods book: Digital Signal Processing with Kernel Methods Jose Luis Rojo-Alvarez, Manel Martinez-Ramon, Jordi Munoz-Mari, Gustau Camps-Valls, 2017-12-22 A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research. Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors: http://github.com/DSPKM • Presents the necessary basic ideas from both digital signal processing and machine learning concepts • Reviews the state-of-the-art in SVM algorithms for classification and detection problems in the context of signal processing • Surveys advances in kernel signal processing beyond SVM algorithms to present other highly relevant kernel methods for digital signal processing An excellent book for signal processing researchers and practitioners, Digital Signal Processing with Kernel Methods will also appeal to those involved in machine learning and pattern recognition. |
kernel methods book: Kernel Methods for Machine Learning with Life Science Applications Trine Julie Abrahamsen, 2013 |
kernel methods book: Kernel Methods for Machine Learning with Math and Python Joe Suzuki, 2022-05-14 The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than relying on knowledge or experience. This textbook addresses the fundamentals of kernel methods for machine learning by considering relevant math problems and building Python programs. The book’s main features are as follows: The content is written in an easy-to-follow and self-contained style. The book includes 100 exercises, which have been carefully selected and refined. As their solutions are provided in the main text, readers can solve all of the exercises by reading the book. The mathematical premises of kernels are proven and the correct conclusions are provided, helping readers to understand the nature of kernels. Source programs and running examples are presented to help readers acquire a deeper understanding of the mathematics used. Once readers have a basic understanding of the functional analysis topics covered in Chapter 2, the applications are discussed in the subsequent chapters. Here, no prior knowledge of mathematics is assumed. This book considers both the kernel for reproducing kernel Hilbert space (RKHS) and the kernel for the Gaussian process; a clear distinction is made between the two. |
kernel methods book: Kernel Methods for Unsupervised Learning Francesco Camastra, 2004 |
kernel methods book: Digital Signal Processing with Kernel Methods Jose Luis Rojo-Alvarez, Manel Martinez-Ramon, Jordi Munoz-Mari, Gustau Camps-Valls, 2018-02-05 A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research. Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors: http://github.com/DSPKM • Presents the necessary basic ideas from both digital signal processing and machine learning concepts • Reviews the state-of-the-art in SVM algorithms for classification and detection problems in the context of signal processing • Surveys advances in kernel signal processing beyond SVM algorithms to present other highly relevant kernel methods for digital signal processing An excellent book for signal processing researchers and practitioners, Digital Signal Processing with Kernel Methods will also appeal to those involved in machine learning and pattern recognition. |
kernel methods book: Prior Knowledge in Kernel Methods Alexei Pozdnoukhov, 2006 |
kernel methods book: Kernel Mode Decomposition and the Programming of Kernels Houman Owhadi, Clint Scovel, Gene Ryan Yoo, 2022-01-01 This monograph demonstrates a new approach to the classical mode decomposition problem through nonlinear regression models, which achieve near-machine precision in the recovery of the modes. The presentation includes a review of generalized additive models, additive kernels/Gaussian processes, generalized Tikhonov regularization, empirical mode decomposition, and Synchrosqueezing, which are all related to and generalizable under the proposed framework. Although kernel methods have strong theoretical foundations, they require the prior selection of a good kernel. While the usual approach to this kernel selection problem is hyperparameter tuning, the objective of this monograph is to present an alternative (programming) approach to the kernel selection problem while using mode decomposition as a prototypical pattern recognition problem. In this approach, kernels are programmed for the task at hand through the programming of interpretable regression networks in the context of additive Gaussian processes. It is suitable for engineers, computer scientists, mathematicians, and students in these fields working on kernel methods, pattern recognition, and mode decomposition problems. |
kernel methods book: Large-scale Machine Learning Using Kernel Methods Gang Wu, 2006 Through theoretical analysis and extensive empirical studies, we show that our proposed approaches are able to perform more effectively, and efficiently, than traditional methods. |
kernel methods book: Spectral Properties of the Kernel Matrix and Their Relation to Kernel Methods in Machine Learning Mikio Ludwig Braun, 2005 |
kernel methods book: Scalable Kernel Methods for Machine Learning Brian Joseph Kulis, 2008 Machine learning techniques are now essential for a diverse set of applications in computer vision, natural language processing, software analysis, and many other domains. As more applications emerge and the amount of data continues to grow, there is a need for increasingly powerful and scalable techniques. Kernel methods, which generalize linear learning methods to non-linear ones, have become a cornerstone for much of the recent work in machine learning and have been used successfully for many core machine learning tasks such as clustering, classification, and regression. Despite the recent popularity in kernel methods, a number of issues must be tackled in order for them to succeed on large-scale data. First, kernel methods typically require memory that grows quadratically in the number of data objects, making it difficult to scale to large data sets. Second, kernel methods depend on an appropriate kernel function--an implicit mapping to a high-dimensional space--which is not clear how to choose as it is dependent on the data. Third, in the context of data clustering, kernel methods have not been demonstrated to be practical for real-world clustering problems. This thesis explores these questions, offers some novel solutions to them, and applies the results to a number of challenging applications in computer vision and other domains. We explore two broad fundamental problems in kernel methods. First, we introduce a scalable framework for learning kernel functions based on incorporating prior knowledge from the data. This frame-work scales to very large data sets of millions of objects, can be used for a variety of complex data, and outperforms several existing techniques. In the transductive setting, the method can be used to learn low-rank kernels, whose memory requirements are linear in the number of data points. We also explore extensions of this framework and applications to image search problems, such as object recognition, human body pose estimation, and 3-d reconstructions. As a second problem, we explore the use of kernel methods for clustering. We show a mathematical equivalence between several graph cut objective functions and the weighted kernel k-means objective. This equivalence leads to the first eigenvector-free algorithm for weighted graph cuts, which is thousands of times faster than existing state-of-the-art techniques while using significantly less memory. We benchmark this algorithm against existing methods, apply it to image segmentation, and explore extensions to semi-supervised clustering. |
kernel methods book: Kernel Methods for Knowledge Structures Stephan Bloehdorn, 2008 |
kernel methods book: Kernel Methods for Classification and Signal Separation Arthur Lindsey Gretton, 2004 |
kernel methods book: Learning Functions with Kernel Methods Francesco Dinuzzo, 2011 |
kernel methods book: Various Kernel Methods with Applications , 2008 |
kernel methods book: Reduced-set Models for Improving the Training and Execution Speed of Kernel Methods Hassan Kingravi, 2014 This thesis aims to contribute to the area of kernel methods, which are a class of machine learning methods known for their wide applicability and state-of-the-art performance, but which suffer from high training and evaluation complexity. The work in this thesis utilizes the notion of reduced-set models to alleviate the training and testing complexities of these methods in a unified manner. In the first part of the thesis, we use recent results in kernel smoothing and integral-operator learning to design a generic strategy to speed up various kernel methods. In Chapter 3, we present a method to speed up kernel PCA (KPCA), which is one of the fundamental kernel methods for manifold learning, by using reduced-set density estimates (RSDE) of the data. The proposed method induces an integral operator that is an approximation of the ideal integral operator associated to KPCA. It is shown that the error between the ideal and approximate integral operators is related to the error between the ideal and approximate kernel density estimates of the data. In Chapter 4, we derive similar approximation algorithms for Gaussian process regression, diffusion maps, and kernel embeddings of conditional distributions. In the second part of the thesis, we use reduced-set models for kernel methods to tackle online learning in model-reference adaptive control (MRAC). In Chapter 5, we relate the properties of the feature spaces induced by Mercer kernels to make a connection between persistency-of-excitation and the budgeted placement of kernels to minimize tracking and modeling error. In Chapter 6, we use a Gaussian process (GP) formulation of the modeling error to accommodate a larger class of errors, and design a reduced-set algorithm to learn a GP model of the modeling error. Proofs of stability for all the algorithms are presented, and simulation results on a challenging control problem validate the methods. |
kernel methods book: Digital Signal Processing with Kernel Methods Jose Luis Rojo-Alvarez, Manel Martinez-Ramon, Jordi Munoz-Mari, Gustau Camps-Valls, 2018-01-05 |
kernel methods book: Kernel Methods in Supervised and Unsupervised Learning Wai-Hung Tsang, 2003 |
kernel methods book: Support Vector Machines and Kernel Methods Nello Cristianini, Colin Campbell, Chris Burges, 2002 |
kernel methods book: Advances in Kernel Methods Yves-Laurent Kom Samo, 2017 |
kernel methods book: Transformation Knowledge in Pattern Analysis with Kernel Methods Bernard Haasdonk, 2006 |
kernel methods book: Regularization, Optimization, Kernels, and Support Vector Machines Johan A.K. Suykens, Marco Signoretto, Andreas Argyriou, 2014-10-23 Regularization, Optimization, Kernels, and Support Vector Machines offers a snapshot of the current state of the art of large-scale machine learning, providing a single multidisciplinary source for the latest research and advances in regularization, sparsity, compressed sensing, convex and large-scale optimization, kernel methods, and support vector machines. Consisting of 21 chapters authored by leading researchers in machine learning, this comprehensive reference: Covers the relationship between support vector machines (SVMs) and the Lasso Discusses multi-layer SVMs Explores nonparametric feature selection, basis pursuit methods, and robust compressive sensing Describes graph-based regularization methods for single- and multi-task learning Considers regularized methods for dictionary learning and portfolio selection Addresses non-negative matrix factorization Examines low-rank matrix and tensor-based models Presents advanced kernel methods for batch and online machine learning, system identification, domain adaptation, and image processing Tackles large-scale algorithms including conditional gradient methods, (non-convex) proximal techniques, and stochastic gradient descent Regularization, Optimization, Kernels, and Support Vector Machines is ideal for researchers in machine learning, pattern recognition, data mining, signal processing, statistical learning, and related areas. |
kernel methods book: Kernel Mean Embedding of Distributions Krikamol Muandet, Bharath Sriperumbudur, Kenji Fukumizu, Bernhard Schölkopf, 2017 A Hilbert space embedding of a distribution--in short, a kernel mean embedding--has recently emerged as a powerful tool for machine learning and statistical inference. The basic idea behind this framework is to map distributions into a reproducing kernel Hilbert space (RKHS) in which the whole arsenal of kernel methods can be extended to probability measures. It can be viewed as a generalization of the original feature map common to support vector machines (SVMs) and other kernel methods. In addition to the classical applications of kernel methods, the kernel mean embedding has found novel applications in fields ranging from probabilistic modeling to statistical inference, causal discovery, and deep learning. This survey aims to give a comprehensive review of existing work and recent advances in this research area, and to discuss challenging issues and open problems that could potentially lead to new research directions. The survey begins with a brief introduction to the RKHS and positive definite kernels which forms the backbone of this survey, followed by a thorough discussion of the Hilbert space embedding of marginal distributions, theoretical guarantees, and a review of its applications. The embedding of distributions enables us to apply RKHS methods to probability measures which prompts a wide range of applications such as kernel two-sample testing, independent testing, and learning on distributional data. Next, we discuss the Hilbert space embedding for conditional distributions, give theoretical insights, and review some applications. The conditional mean embedding enables us to perform sum, product, and Bayes' rules--which are ubiquitous in graphical model, probabilistic inference, and reinforcement learning-- in a non-parametric way using this new representation of distributions. We then discuss relationships between this framework and other related areas. Lastly, we give some suggestions on future research directions. |
kernel methods book: Efficient Kernel Methods for Large Scale Classification S. Asharaf, 2011 |
kernel methods book: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods Nello Cristianini, John Shawe-Taylor, 2000-03-23 This is a comprehensive introduction to Support Vector Machines, a generation learning system based on advances in statistical learning theory. |
The Linux Kernel Archives
Jun 8, 2025 · This site is operated by the Linux Kernel Organization, a 501(c)3 nonprofit corporation, with support from the following sponsors.501(c)3 nonprofit corporation, with …
The Linux Kernel Archives - Releases
May 26, 2025 · There are usually only a few bugfix kernel releases until next mainline kernel becomes available -- unless it is designated a "longterm maintenance kernel." Stable kernel …
The Linux Kernel documentation
The Linux Kernel documentation¶ This is the top level of the kernel’s documentation tree. Kernel documentation, like the kernel itself, is very much a work in progress; that is especially true as …
Linux Kernel Documentation
Standards documents applicable to the Linux kernel Single Unix Specification v4 (Also known as Open Group Base Specifications issue 7, and POSIX 2008. See especially system interfaces )
中文翻译 — The Linux Kernel documentation
另外,随时欢迎您对内核文档进行改进;如果您想提供帮助,请加入vger.kernel.org 上的linux-doc邮件列表,并按照Documentation/translations/zh_CN/how-to.rst的 指引提交补丁。提交补 …
About Linux Kernel
Aug 6, 2024 · If you're new to Linux, you don't want to download the kernel, which is just a component in a working Linux system. Instead, you want what is called a distribution of Linux, …
HOWTO do Linux kernel development
HOWTO do Linux kernel development¶ This is the be-all, end-all document on this topic. It contains instructions on how to become a Linux kernel developer and how to learn to work …
The Linux Kernel Archives - FAQ
Aug 6, 2024 · Where can I find kernel 3.10.0-1160.45.1.foo? Kernel versions that have a dash in them are packaged by distributions and are often extensively modified. Please contact the …
The kernel’s command-line parameters
Parameters for modules which are built into the kernel need to be specified on the kernel command line. modprobe looks through the kernel command line (/proc/cmdline) and collects …
The Linux Kernel Archives - About
Aug 6, 2024 · The Linux Kernel Organization is a California Public Benefit Corporation established in 2002 to distribute the Linux kernel and other Open Source software to the public without …
The Linux Kernel Archives
Jun 8, 2025 · This site is operated by the Linux Kernel Organization, a 501(c)3 nonprofit corporation, with support from the following sponsors.501(c)3 nonprofit corporation, with …
The Linux Kernel Archives - Releases
May 26, 2025 · There are usually only a few bugfix kernel releases until next mainline kernel becomes available -- unless it is designated a "longterm maintenance kernel." Stable kernel …
The Linux Kernel documentation
The Linux Kernel documentation¶ This is the top level of the kernel’s documentation tree. Kernel documentation, like the kernel itself, is very much a work in progress; that is especially true as …
Linux Kernel Documentation
Standards documents applicable to the Linux kernel Single Unix Specification v4 (Also known as Open Group Base Specifications issue 7, and POSIX 2008. See especially system interfaces )
中文翻译 — The Linux Kernel documentation
另外,随时欢迎您对内核文档进行改进;如果您想提供帮助,请加入vger.kernel.org 上的linux-doc邮件列表,并按照Documentation/translations/zh_CN/how-to.rst的 指引提交补丁。提交补 …
About Linux Kernel
Aug 6, 2024 · If you're new to Linux, you don't want to download the kernel, which is just a component in a working Linux system. Instead, you want what is called a distribution of Linux, …
HOWTO do Linux kernel development
HOWTO do Linux kernel development¶ This is the be-all, end-all document on this topic. It contains instructions on how to become a Linux kernel developer and how to learn to work with …
The Linux Kernel Archives - FAQ
Aug 6, 2024 · Where can I find kernel 3.10.0-1160.45.1.foo? Kernel versions that have a dash in them are packaged by distributions and are often extensively modified. Please contact the …
The kernel’s command-line parameters
Parameters for modules which are built into the kernel need to be specified on the kernel command line. modprobe looks through the kernel command line (/proc/cmdline) and collects …
The Linux Kernel Archives - About
Aug 6, 2024 · The Linux Kernel Organization is a California Public Benefit Corporation established in 2002 to distribute the Linux kernel and other Open Source software to the public without …