Kernel Linear Algebra

Advertisement



  kernel linear algebra: A First Course in Linear Algebra Kenneth Kuttler, Ilijas Farah, 2020 A First Course in Linear Algebra, originally by K. Kuttler, has been redesigned by the Lyryx editorial team as a first course for the general students who have an understanding of basic high school algebra and intend to be users of linear algebra methods in their profession, from business & economics to science students. All major topics of linear algebra are available in detail, as well as justifications of important results. In addition, connections to topics covered in advanced courses are introduced. The textbook is designed in a modular fashion to maximize flexibility and facilitate adaptation to a given course outline and student profile. Each chapter begins with a list of student learning outcomes, and examples and diagrams are given throughout the text to reinforce ideas and provide guidance on how to approach various problems. Suggested exercises are included at the end of each section, with selected answers at the end of the textbook.--BCcampus website.
  kernel linear algebra: Linear Algebra As An Introduction To Abstract Mathematics Bruno Nachtergaele, Anne Schilling, Isaiah Lankham, 2015-11-30 This is an introductory textbook designed for undergraduate mathematics majors with an emphasis on abstraction and in particular, the concept of proofs in the setting of linear algebra. Typically such a student would have taken calculus, though the only prerequisite is suitable mathematical grounding. The purpose of this book is to bridge the gap between the more conceptual and computational oriented undergraduate classes to the more abstract oriented classes. The book begins with systems of linear equations and complex numbers, then relates these to the abstract notion of linear maps on finite-dimensional vector spaces, and covers diagonalization, eigenspaces, determinants, and the Spectral Theorem. Each chapter concludes with both proof-writing and computational exercises.
  kernel linear algebra: Iterative Methods for Sparse Linear Systems Yousef Saad, 2003-04-01 Mathematics of Computing -- General.
  kernel linear algebra: Linear Algebra Done Right Sheldon Axler, 1997-07-18 This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
  kernel linear algebra: Linear Algebra Via Exterior Products Sergei Winitzki, 2009-07-30 This is a pedagogical introduction to the coordinate-free approach in basic finite-dimensional linear algebra. The reader should be already exposed to the array-based formalism of vector and matrix calculations. This book makes extensive use of the exterior (anti-commutative, wedge) product of vectors. The coordinate-free formalism and the exterior product, while somewhat more abstract, provide a deeper understanding of the classical results in linear algebra. Without cumbersome matrix calculations, this text derives the standard properties of determinants, the Pythagorean formula for multidimensional volumes, the formulas of Jacobi and Liouville, the Cayley-Hamilton theorem, the Jordan canonical form, the properties of Pfaffians, as well as some generalizations of these results.
  kernel linear algebra: Kernel Functions and Elliptic Differential Equations in Mathematical Physics Stefan Bergman, Menahem Schiffer, 2005-09-01 This text focuses on the theory of boundary value problems in partial differential equations, which plays a central role in various fields of pure and applied mathematics, theoretical physics, and engineering. Geared toward upper-level undergraduates and graduate students, it discusses a portion of the theory from a unifying point of view and provides a systematic and self-contained introduction to each branch of the applications it employs.
  kernel linear algebra: Supercomputing Frontiers David Abramson, Bronis R. de Supinski, 2019-06-07 This open access book constitutes the refereed proceedings of the 5th Asian Supercomputing Conference, SCFA 2019, held in Singapore in March 2019. The 6 full papers presented in this book were carefully reviewed and selected from 33 submissions. They cover a range of topics including memory fault handling, linear algebra, image processing, heterogeneous computing, resource usage prediction, and data caching.
  kernel linear algebra: Modular Forms, a Computational Approach William A. Stein, 2007-02-13 This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.
  kernel linear algebra: Elementary Linear Algebra Stephen Andrilli, David Hecker, 2010-02-04 Elementary Linear Algebra develops and explains in careful detail the computational techniques and fundamental theoretical results central to a first course in linear algebra. This highly acclaimed text focuses on developing the abstract thinking essential for further mathematical study The authors give early, intensive attention to the skills necessary to make students comfortable with mathematical proofs. The text builds a gradual and smooth transition from computational results to general theory of abstract vector spaces. It also provides flexbile coverage of practical applications, exploring a comprehensive range of topics. Ancillary list:* Maple Algorithmic testing- Maple TA- www.maplesoft.com - Includes a wide variety of applications, technology tips and exercises, organized in chart format for easy reference - More than 310 numbered examples in the text at least one for each new concept or application - Exercise sets ordered by increasing difficulty, many with multiple parts for a total of more than 2135 questions - Provides an early introduction to eigenvalues/eigenvectors - A Student solutions manual, containing fully worked out solutions and instructors manual available
  kernel linear algebra: Matrices and Linear Transformations Charles G. Cullen, 1990-01-01 Undergraduate-level introduction to linear algebra and matrix theory. Explores matrices and linear systems, vector spaces, determinants, spectral decomposition, Jordan canonical form, much more. Over 375 problems. Selected answers. 1972 edition.
  kernel linear algebra: Linear Algebra and Optimization for Machine Learning Charu C. Aggarwal, 2020-05-13 This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.
  kernel linear algebra: Practical Linear Algebra Gerald Farin, Dianne Hansford, 2021-10-12 Linear algebra is growing in importance. 3D entertainment, animations in movies and video games are developed using linear algebra. Animated characters are generated using equations straight out of this book. Linear algebra is used to extract knowledge from the massive amounts of data generated from modern technology. The Fourth Edition of this popular text introduces linear algebra in a comprehensive, geometric, and algorithmic way. The authors start with the fundamentals in 2D and 3D, then move on to higher dimensions, expanding on the fundamentals and introducing new topics, which are necessary for many real-life applications and the development of abstract thought. Applications are introduced to motivate topics. The subtitle, A Geometry Toolbox, hints at the book’s geometric approach, which is supported by many sketches and figures. Furthermore, the book covers applications of triangles, polygons, conics, and curves. Examples demonstrate each topic in action. This practical approach to a linear algebra course, whether through classroom instruction or self-study, is unique to this book. New to the Fourth Edition: Ten new application sections. A new section on change of basis. This concept now appears in several places. Chapters 14-16 on higher dimensions are notably revised. A deeper look at polynomials in the gallery of spaces. Introduces the QR decomposition and its relevance to least squares. Similarity and diagonalization are given more attention, as are eigenfunctions. A longer thread on least squares, running from orthogonal projections to a solution via SVD and the pseudoinverse. More applications for PCA have been added. More examples, exercises, and more on the kernel and general linear spaces. A list of applications has been added in Appendix A. The book gives instructors the option of tailoring the course for the primary interests of their students: mathematics, engineering, science, computer graphics, and geometric modeling.
  kernel linear algebra: Advanced Linear Algebra Hugo Woerdeman, 2015-12-23 Advanced Linear Algebra features a student-friendly approach to the theory of linear algebra. The author’s emphasis on vector spaces over general fields, with corresponding current applications, sets the book apart. He focuses on finite fields and complex numbers, and discusses matrix algebra over these fields. The text then proceeds to cover vector spaces in depth. Also discussed are standard topics in linear algebra including linear transformations, Jordan canonical form, inner product spaces, spectral theory, and, as supplementary topics, dual spaces, quotient spaces, and tensor products. Written in clear and concise language, the text sticks to the development of linear algebra without excessively addressing applications. A unique chapter on How to Use Linear Algebra is offered after the theory is presented. In addition, students are given pointers on how to start a research project. The proofs are clear and complete and the exercises are well designed. In addition, full solutions are included for almost all exercises.
  kernel linear algebra: Elements of Linear Algebra P.M. Cohn, 2017-10-19 This volume presents a thorough discussion of systems of linear equations and their solutions. Vectors and matrices are introduced as required and an account of determinants is given. Great emphasis has been placed on keeping the presentation as simple as possible, with many illustrative examples. While all mathematical assertions are proved, the student is led to view the mathematical content intuitively, as an aid to understanding.The text treats the coordinate geometry of lines, planes and quadrics, provides a natural application for linear algebra and at the same time furnished a geometrical interpretation to illustrate the algebraic concepts.
  kernel linear algebra: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
  kernel linear algebra: Lectures on Symplectic Geometry Ana Cannas da Silva, 2004-10-27 The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
  kernel linear algebra: Basic Linear Algebra T.S. Blyth, E.F. Robertson, 2013-12-01 Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be ofparticular interest to readers: this will take the form of a tutorial on the use of the LinearAlgebra package in MAPLE 7 and will deal with all the aspects of linear algebra developed within the book.
  kernel linear algebra: No Bullshit Guide to Linear Algebra Ivan Savov, 2020-10-25 This textbook covers the material for an undergraduate linear algebra course: vectors, matrices, linear transformations, computational techniques, geometric constructions, and theoretical foundations. The explanations are given in an informal conversational tone. The book also contains 100+ problems and exercises with answers and solutions. A special feature of this textbook is the prerequisites chapter that covers topics from high school math, which are necessary for learning linear algebra. The presence of this chapter makes the book suitable for beginners and the general audience-readers need not be math experts to read this book. Another unique aspect of the book are the applications chapters (Ch 7, 8, and 9) that discuss applications of linear algebra to engineering, computer science, economics, chemistry, machine learning, and even quantum mechanics.
  kernel linear algebra: Essential Linear Algebra Jared M. Maruskin, 2012-12 This text introduces linear algebra--boiled to its essence--presented in a clear and concise fashion. Designed around a single-semester undergraduate course, Essential Linear Algebra introduces key concepts, various real-world applications, and provides detailed yet understandable proofs of key results that are aimed towards students with no advanced preparation in proof writing. The level of sophistication gradually increases from beginning to end in order to prepare students for subsequent studies.We begin with a detailed introduction to systems of linear equations and elementary row operations. We then advance to a discussion of linear transformations, which provide a second, more geometric, interpretation of the operation of matrix-vector product. We go on to introduce vector spaces and their subspaces, the image and kernel of a transformation, and change of coordinates. Following, we discuss matrices of orthogonal projections and orthogonal matrices. Our penultimate chapter is devoted to the theory of determinants, which are presented, first, in terms of area and volume expansion factors of 2x2 and 3x3 matrices, respectively. We use a geometric understanding of volume in n-dimensions to introduce general determinants axiomatically as multilinear, antisymmetric mappings, and prove existence and uniqueness. Our final chapter is devoted to the theory of eigenvalues and eigenvectors. We conclude with a number of discussions on various types of diagonalization: real, complex, and orthogonal.
  kernel linear algebra: Introduction to Applied Linear Algebra Stephen Boyd, Lieven Vandenberghe, 2018-06-07 A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
  kernel linear algebra: Linear Algebra and Geometry Igor R. Shafarevich, Alexey O. Remizov, 2012-08-23 This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.
  kernel linear algebra: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
  kernel linear algebra: Linear Algebra in Action Harry Dym, 2023-06-23 This book is based largely on courses that the author taught at the Feinberg Graduate School of the Weizmann Institute. It conveys in a user-friendly way the basic and advanced techniques of linear algebra from the point of view of a working analyst. The techniques are illustrated by a wide sample of applications and examples that are chosen to highlight the tools of the trade. In short, this is material that the author has found to be useful in his own research and wishes that he had been exposed to as a graduate student. Roughly the first quarter of the book reviews the contents of a basic course in linear algebra, plus a little. The remaining chapters treat singular value decompositions, convexity, special classes of matrices, projections, assorted algorithms, and a number of applications. The applications are drawn from vector calculus, numerical analysis, control theory, complex analysis, convex optimization, and functional analysis. In particular, fixed point theorems, extremal problems, best approximations, matrix equations, zero location and eigenvalue location problems, matrices with nonnegative entries, and reproducing kernels are discussed. This new edition differs significantly from the second edition in both content and style. It includes a number of topics that did not appear in the earlier edition and excludes some that did. Moreover, most of the material that has been adapted from the earlier edition has been extensively rewritten and reorganized.
  kernel linear algebra: Kernel-based Data Fusion for Machine Learning Shi Yu, Léon-Charles Tranchevent, Bart Moor, Yves Moreau, 2011-03-29 Data fusion problems arise frequently in many different fields. This book provides a specific introduction to data fusion problems using support vector machines. In the first part, this book begins with a brief survey of additive models and Rayleigh quotient objectives in machine learning, and then introduces kernel fusion as the additive expansion of support vector machines in the dual problem. The second part presents several novel kernel fusion algorithms and some real applications in supervised and unsupervised learning. The last part of the book substantiates the value of the proposed theories and algorithms in MerKator, an open software to identify disease relevant genes based on the integration of heterogeneous genomic data sources in multiple species. The topics presented in this book are meant for researchers or students who use support vector machines. Several topics addressed in the book may also be interesting to computational biologists who want to tackle data fusion challenges in real applications. The background required of the reader is a good knowledge of data mining, machine learning and linear algebra.
  kernel linear algebra: Mathematical Foundations of Network Analysis Paul Slepian, 2012-12-06 In this book we attempt to develop the fundamental results of resistive network analysis, based upon a sound mathematical structure. The axioms upon which our development is based are Ohm's Law, Kirchhoff's Voltage Law, and Kirchhoff's Current Law. In order to state these axioms precisely, and use them in the development of our network analysis, an elaborate mathematical structure is introduced, involving concepts of graph theory, linear algebra, and one dimensional algebraic topology. The graph theory and one dimensional algebraic topology used are developed from first principles; the reader needs no background in these subjects. However, we do assume that the reader has some familiarity with elementary linear algebra. It is now stylish to teach elementary linear algebra at the sophomore college level, and we feel that the require ment that the reader should be familiar with elementary linear algebra is no more demanding than the usual requirement in most electrical engineering texts that the reader should be familiar with calculus. In this book, however, no calculus is needed. Although no formal training in circuit theory is needed for an understanding of the book, such experience would certainly help the reader by presenting him with familiar examples relevant to the mathematical abstractions introduced. It is our intention in this book to exhibit the effect of the topological properties of the network upon the branch voltages and branch currents, the objects of interest in network analysis.
  kernel linear algebra: Invariant Subspaces of Matrices with Applications Israel Gohberg, Peter Lancaster, Leiba Rodman, 2006-03-01 This unique book addresses advanced linear algebra using invariant subspaces as the central notion and main tool. It comprehensively covers geometrical, algebraic, topological, and analytic properties of invariant subspaces, laying clear mathematical foundations for linear systems theory with a thorough treatment of analytic perturbation theory for matrix functions.
  kernel linear algebra: Interactive Linear Algebra with Maple V Elias Deeba, Ananda Gunawardena, 1998-03-16 A complete software package consisting of the printed book and a CD-ROM (with diskettes available on request). The interactive text includes: * A graphical user interface for easy navigation through the text along with animations that explain linear algebra concepts geometrically. * Interactive lessons with emphasis on experimentation and conjecturing. * A collection of labs which strengthens the learning of the concepts. * Applications which stress modelling and the use of linear algebra in various disciplines. * A unique library of interactive high-level functions written in Maple V that can be used in different modes. * A stand alone testing system. The authors believe that students of mathematics should enjoy, understand, assimilate, and apply the skills and concepts they study, and, as such, here they play a fundamental and active role throughout the learning process.
  kernel linear algebra: Python Data Science Handbook Jake VanderPlas, 2016-11-21 For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
  kernel linear algebra: Kernel Methods and Machine Learning S. Y. Kung, 2014-04-17 Covering the fundamentals of kernel-based learning theory, this is an essential resource for graduate students and professionals in computer science.
  kernel linear algebra: Graph Algorithms in the Language of Linear Algebra Jeremy Kepner, John Gilbert, 2011-01-01 The current exponential growth in graph data has forced a shift to parallel computing for executing graph algorithms. Implementing parallel graph algorithms and achieving good parallel performance have proven difficult. This book addresses these challenges by exploiting the well-known duality between a canonical representation of graphs as abstract collections of vertices and edges and a sparse adjacency matrix representation. This linear algebraic approach is widely accessible to scientists and engineers who may not be formally trained in computer science. The authors show how to leverage existing parallel matrix computation techniques and the large amount of software infrastructure that exists for these computations to implement efficient and scalable parallel graph algorithms. The benefits of this approach are reduced algorithmic complexity, ease of implementation, and improved performance.
  kernel linear algebra: Frames for Undergraduates Deguang Han, 2007 The early chapters contain the topics from linear algebra that students need to know in order to read the rest of the book. The later chapters are devoted to advanced topics, which allow students with more experience to study more intricate types of frames. Toward that end, a Student Presentation section gives detailed proofs of fairly technical results with the intention that a student could work out these proofs independently and prepare a presentation to a class or research group. The authors have also presented some stories in the Anecdotes section about how this material has motivated and influenced their students.--BOOK JACKET.
  kernel linear algebra: A Brief on Tensor Analysis James G. Simmonds, 2012-10-31 There are three changes in the second edition. First, with the help of readers and colleagues-thanks to all-I have corrected typographical errors and made minor changes in substance and style. Second, I have added a fewmore Exercises,especially at the end ofChapter4.Third, I have appended a section on Differential Geometry, the essential mathematical tool in the study of two-dimensional structural shells and four-dimensional general relativity. JAMES G. SIMMONDS vii Preface to the First Edition When I was an undergraduate, working as a co-op student at North Ameri can Aviation, I tried to learn something about tensors. In the Aeronautical Engineering Department at MIT, I had just finished an introductory course in classical mechanics that so impressed me that to this day I cannot watch a plane in flight-especially in a turn-without imaging it bristling with vec tors. Near the end of the course the professor showed that, if an airplane is treated as a rigid body, there arises a mysterious collection of rather simple looking integrals called the components of the moment of inertia tensor.
  kernel linear algebra: Principles of Linear Algebra with Mathematica Kenneth M. Shiskowski, Karl Frinkle, 2013-06-07 A hands-on introduction to the theoretical and computational aspects of linear algebra using Mathematica® Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica® are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings, and the commands required to solve complex and computationally challenging problems using Mathematica are provided. The book begins with an introduction to the commands and programming guidelines for working with Mathematica. Next, the authors explore linear systems of equations and matrices, applications of linear systems and matrices, determinants, inverses, and Cramer's rule. Basic linear algebra topics, such as vectors, dot product, cross product, and vector projection are explored, as well as a unique variety of more advanced topics including rotations in space, 'rolling' a circle along a curve, and the TNB Frame. Subsequent chapters feature coverage of linear transformations from Rn to Rm, the geometry of linear and affine transformations, with an exploration of their effect on arclength, area, and volume, least squares fits, and pseudoinverses. Mathematica is used to enhance concepts and is seamlessly integrated throughout the book through symbolic manipulations, numerical computations, graphics in two and three dimensions, animations, and programming. Each section concludes with standard problems in addition to problems that were specifically designed to be solved with Mathematica, allowing readers to test their comprehension of the presented material. All related Mathematica code is available on a corresponding website, along with solutions to problems and additional topical resources. Extensively class-tested to ensure an accessible presentation, Principles of Linear Algebra with Mathematica is an excellent book for courses on linear algebra at the undergraduate level. The book is also an ideal reference for students and professionals who would like to gain a further understanding of the use of Mathematica to solve linear algebra problems.
  kernel linear algebra: Linear Algebra Hugo J. Woerdeman, 2021-03-04 There is good reason to be excited about Linear Algebra. With the world becoming increasingly digital, Linear Algebra is gaining more and more importance. When we send texts, share video, do internet searches, there are Linear Algebra algorithms in the background that make it work. This concise introduction to Linear Algebra is authored by a leading researcher presents a book that covers all the requisite material for a first course on the topic in a more practical way. The book focuses on the development of the mathematical theory and presents many applications to assist instructors and students to master the material and apply it to their areas of interest, whether it be to further their studies in mathematics, science, engineering, statistics, economics, or other disciplines. Linear Algebra has very appealing features: •It is a solid axiomatic based mathematical theory that is accessible to a large variety of students. •It has a multitude of applications from many different fields, ranging from traditional science and engineering applications to more ‘daily life’ applications. •It easily allows for numerical experimentation through the use of a variety of readily available software (both commercial and open source). Several suggestions of different software are made. While MATLAB is certainly still a favorite choice, open-source programs such as Sage (especially among algebraists) and the Python libraries are increasingly popular. This text guides the student to try out different programs by providing specific commands.
  kernel linear algebra: Issues in Algebra, Geometry, and Topology: 2013 Edition , 2013-05-01 Issues in Algebra, Geometry, and Topology / 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Topology. The editors have built Issues in Algebra, Geometry, and Topology: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Topology in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Algebra, Geometry, and Topology: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
  kernel linear algebra: Linear Algebra Robert Messer, 1997 This text is designed to resolve the conflict between the abstractions of linear algebra and the needs and abilities of the students who may have dealt only briefly with the theoretical aspects of previous mathematics courses. The author recognizes that many students will at first feel uncomfortable, or at least unfamiliar, with the theoretical nature inherent in many of the topics in linear algebra. Numerous discussions of the logical structure of proofs, the need to translate terminology into notation, and suggestions about efficient ways to discover a proof are included. This text combines the many simple and elegant results of elementary linear algebra with some powerful computational techniques to demonstrate that theorectical mathematics need not be difficult, mysterious, or useless. This book is written for the second course in linear algebra (or the first course, if the instructor is receptive to this approach).
  kernel linear algebra: A Primer on Reproducing Kernel Hilbert Spaces Jonathan H. Manton, Pierre-Olivier Amblard, 2015 Reproducing kernel Hilbert spaces are elucidated without assuming prior familiarity with Hilbert spaces. Compared with extant pedagogic material, greater care is placed on motivating the definition of reproducing kernel Hilbert spaces and explaining when and why these spaces are efficacious. The novel viewpoint is that reproducing kernel Hilbert space theory studies extrinsic geometry, associating with each geometric configuration a canonical overdetermined coordinate system. This coordinate system varies continuously with changing geometric configurations, making it well-suited for studying problems whose solutions also vary continuously with changing geometry. This primer can also serve as an introduction to infinite-dimensional linear algebra because reproducing kernel Hilbert spaces have more properties in common with Euclidean spaces than do more general Hilbert spaces.
  kernel linear algebra: Linear Algebra for Everyone Gilbert Strang, 2020-11-26 Linear algebra has become the subject to know for people in quantitative disciplines of all kinds. No longer the exclusive domain of mathematicians and engineers, it is now used everywhere there is data and everybody who works with data needs to know more. This new book from Professor Gilbert Strang, author of the acclaimed Introduction to Linear Algebra, now in its fifth edition, makes linear algebra accessible to everybody, not just those with a strong background in mathematics. It takes a more active start, beginning by finding independent columns of small matrices, leading to the key concepts of linear combinations and rank and column space. From there it passes on to the classical topics of solving linear equations, orthogonality, linear transformations and subspaces, all clearly explained with many examples and exercises. The last major topics are eigenvalues and the important singular value decomposition, illustrated with applications to differential equations and image compression. A final optional chapter explores the ideas behind deep learning.
  kernel linear algebra: Data Science with R Programming Basics Dr.Sudhakar.K, Mrs.Geethanjali.S.G, Mrs.Rashmi.D.M, Mrs.Sinchana K.P, 2024-08-13 Dr.Sudhakar.K, Associate Professor, Department of Artificial Intelligence & Data Science, NITTE Meenakshi Institute of Technology, Bangalore, Karnataka, India. Mrs.Geethanjali.S.G, Assistant Professor, Department of Computer Science & Engineering, DON BOSCO Institute of Technology, Bangalore, Karnataka, India. Mrs.Rashmi.D.M, Assistant Professor, Department of Computer Science & Engineering, DON BOSCO Institute of Technology, Bangalore, Karnataka, India. Mrs.Sinchana K.P, Assistant Professor, Department of Computer Science & Engineering, DON BOSCO Institute of Technology, Bangalore, Karnataka, India.
  kernel linear algebra: ARTIFICIAL INTELLIGENCE AND DATA SCIENCE ENGINEERING Dr.U.RAHAMATHUNNISA, Dr.K.SUDHAKAR, 2024-02-07 Dr.U.RAHAMATHUNNISA, Associate Professor, School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, Tamil Nadu, India. Dr.K.SUDHAKAR, Senior Assistant Professor, Department of Computer Science & Engineering, Madanapalle Institute of Technology & Science, Madanapalle, Andhra Pradesh, India.
The Linux Kernel Archives
Jun 8, 2025 · This site is operated by the Linux Kernel Organization, a 501(c)3 nonprofit corporation, with support from the following sponsors.501(c)3 nonprofit corporation, with …

The Linux Kernel Archives - Releases
May 26, 2025 · There are usually only a few bugfix kernel releases until next mainline kernel becomes available -- unless it is designated a "longterm maintenance kernel." Stable kernel …

The Linux Kernel documentation
The Linux Kernel documentation¶ This is the top level of the kernel’s documentation tree. Kernel documentation, like the kernel itself, is very much a work in progress; that is especially true as …

Linux Kernel Documentation
Standards documents applicable to the Linux kernel Single Unix Specification v4 (Also known as Open Group Base Specifications issue 7, and POSIX 2008. See especially system interfaces )

中文翻译 — The Linux Kernel documentation
另外,随时欢迎您对内核文档进行改进;如果您想提供帮助,请加入vger.kernel.org 上的linux-doc邮件列表,并按照Documentation/translations/zh_CN/how-to.rst的 指引提交补丁。提交补 …

About Linux Kernel
Aug 6, 2024 · If you're new to Linux, you don't want to download the kernel, which is just a component in a working Linux system. Instead, you want what is called a distribution of Linux, …

HOWTO do Linux kernel development
HOWTO do Linux kernel development¶ This is the be-all, end-all document on this topic. It contains instructions on how to become a Linux kernel developer and how to learn to work …

The Linux Kernel Archives - FAQ
Aug 6, 2024 · Where can I find kernel 3.10.0-1160.45.1.foo? Kernel versions that have a dash in them are packaged by distributions and are often extensively modified. Please contact the …

The kernel’s command-line parameters
Parameters for modules which are built into the kernel need to be specified on the kernel command line. modprobe looks through the kernel command line (/proc/cmdline) and collects …

The Linux Kernel Archives - About
Aug 6, 2024 · The Linux Kernel Organization is a California Public Benefit Corporation established in 2002 to distribute the Linux kernel and other Open Source software to the public without …

The Linux Kernel Archives
Jun 8, 2025 · This site is operated by the Linux Kernel Organization, a 501(c)3 nonprofit corporation, with support from the following sponsors.501(c)3 nonprofit corporation, with …

The Linux Kernel Archives - Releases
May 26, 2025 · There are usually only a few bugfix kernel releases until next mainline kernel becomes available -- unless it is designated a "longterm maintenance kernel." Stable kernel …

The Linux Kernel documentation
The Linux Kernel documentation¶ This is the top level of the kernel’s documentation tree. Kernel documentation, like the kernel itself, is very much a work in progress; that is especially true as …

Linux Kernel Documentation
Standards documents applicable to the Linux kernel Single Unix Specification v4 (Also known as Open Group Base Specifications issue 7, and POSIX 2008. See especially system interfaces )

中文翻译 — The Linux Kernel documentation
另外,随时欢迎您对内核文档进行改进;如果您想提供帮助,请加入vger.kernel.org 上的linux-doc邮件列表,并按照Documentation/translations/zh_CN/how-to.rst的 指引提交补丁。提交补 …

About Linux Kernel
Aug 6, 2024 · If you're new to Linux, you don't want to download the kernel, which is just a component in a working Linux system. Instead, you want what is called a distribution of Linux, …

HOWTO do Linux kernel development
HOWTO do Linux kernel development¶ This is the be-all, end-all document on this topic. It contains instructions on how to become a Linux kernel developer and how to learn to work …

The Linux Kernel Archives - FAQ
Aug 6, 2024 · Where can I find kernel 3.10.0-1160.45.1.foo? Kernel versions that have a dash in them are packaged by distributions and are often extensively modified. Please contact the …

The kernel’s command-line parameters
Parameters for modules which are built into the kernel need to be specified on the kernel command line. modprobe looks through the kernel command line (/proc/cmdline) and collects …

The Linux Kernel Archives - About
Aug 6, 2024 · The Linux Kernel Organization is a California Public Benefit Corporation established in 2002 to distribute the Linux kernel and other Open Source software to the public without …