Advertisement
kernel methods and machine learning: Kernel Methods and Machine Learning S. Y. Kung, 2014-04-17 Covering the fundamentals of kernel-based learning theory, this is an essential resource for graduate students and professionals in computer science. |
kernel methods and machine learning: Kernel Methods for Pattern Analysis John Shawe-Taylor, Nello Cristianini, 2004-06-28 Publisher Description |
kernel methods and machine learning: Learning with Kernels Bernhard Scholkopf, Alexander J. Smola, 2018-06-05 A comprehensive introduction to Support Vector Machines and related kernel methods. In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs—-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years. |
kernel methods and machine learning: Kernel Methods in Computational Biology Bernhard Schölkopf, Koji Tsuda, Jean-Philippe Vert, 2004 A detailed overview of current research in kernel methods and their application to computational biology. |
kernel methods and machine learning: Kernel Methods for Remote Sensing Data Analysis Gustau Camps-Valls, Lorenzo Bruzzone, 2009-09-03 Kernel methods have long been established as effective techniques in the framework of machine learning and pattern recognition, and have now become the standard approach to many remote sensing applications. With algorithms that combine statistics and geometry, kernel methods have proven successful across many different domains related to the analysis of images of the Earth acquired from airborne and satellite sensors, including natural resource control, detection and monitoring of anthropic infrastructures (e.g. urban areas), agriculture inventorying, disaster prevention and damage assessment, and anomaly and target detection. Presenting the theoretical foundations of kernel methods (KMs) relevant to the remote sensing domain, this book serves as a practical guide to the design and implementation of these methods. Five distinct parts present state-of-the-art research related to remote sensing based on the recent advances in kernel methods, analysing the related methodological and practical challenges: Part I introduces the key concepts of machine learning for remote sensing, and the theoretical and practical foundations of kernel methods. Part II explores supervised image classification including Super Vector Machines (SVMs), kernel discriminant analysis, multi-temporal image classification, target detection with kernels, and Support Vector Data Description (SVDD) algorithms for anomaly detection. Part III looks at semi-supervised classification with transductive SVM approaches for hyperspectral image classification and kernel mean data classification. Part IV examines regression and model inversion, including the concept of a kernel unmixing algorithm for hyperspectral imagery, the theory and methods for quantitative remote sensing inverse problems with kernel-based equations, kernel-based BRDF (Bidirectional Reflectance Distribution Function), and temperature retrieval KMs. Part V deals with kernel-based feature extraction and provides a review of the principles of several multivariate analysis methods and their kernel extensions. This book is aimed at engineers, scientists and researchers involved in remote sensing data processing, and also those working within machine learning and pattern recognition. |
kernel methods and machine learning: Kernel Methods in Computer Vision Christoph H. Lampert, 2009 Few developments have influenced the field of computer vision in the last decade more than the introduction of statistical machine learning techniques. Particularly kernel-based classifiers, such as the support vector machine, have become indispensable tools, providing a unified framework for solving a wide range of image-related prediction tasks, including face recognition, object detection and action classification. By emphasizing the geometric intuition that all kernel methods rely on, Kernel Methods in Computer Vision provides an introduction to kernel-based machine learning techniques accessible to a wide audience including students, researchers and practitioners alike, without sacrificing mathematical correctness. It covers not only support vector machines but also less known techniques for kernel-based regression, outlier detection, clustering and dimensionality reduction. Additionally, it offers an outlook on recent developments in kernel methods that have not yet made it into the regular textbooks: structured prediction, dependency estimation and learning of the kernel function. Each topic is illustrated with examples of successful application in the computer vision literature, making Kernel Methods in Computer Vision a useful guide not only for those wanting to understand the working principles of kernel methods, but also for anyone wanting to apply them to real-life problems. |
kernel methods and machine learning: Digital Signal Processing with Kernel Methods Jose Luis Rojo-Alvarez, Manel Martinez-Ramon, Jordi Munoz-Mari, Gustau Camps-Valls, 2018-02-05 A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research. Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors: http://github.com/DSPKM • Presents the necessary basic ideas from both digital signal processing and machine learning concepts • Reviews the state-of-the-art in SVM algorithms for classification and detection problems in the context of signal processing • Surveys advances in kernel signal processing beyond SVM algorithms to present other highly relevant kernel methods for digital signal processing An excellent book for signal processing researchers and practitioners, Digital Signal Processing with Kernel Methods will also appeal to those involved in machine learning and pattern recognition. |
kernel methods and machine learning: Kernel-based Data Fusion for Machine Learning Shi Yu, Léon-Charles Tranchevent, Bart Moor, Yves Moreau, 2011-03-29 Data fusion problems arise frequently in many different fields. This book provides a specific introduction to data fusion problems using support vector machines. In the first part, this book begins with a brief survey of additive models and Rayleigh quotient objectives in machine learning, and then introduces kernel fusion as the additive expansion of support vector machines in the dual problem. The second part presents several novel kernel fusion algorithms and some real applications in supervised and unsupervised learning. The last part of the book substantiates the value of the proposed theories and algorithms in MerKator, an open software to identify disease relevant genes based on the integration of heterogeneous genomic data sources in multiple species. The topics presented in this book are meant for researchers or students who use support vector machines. Several topics addressed in the book may also be interesting to computational biologists who want to tackle data fusion challenges in real applications. The background required of the reader is a good knowledge of data mining, machine learning and linear algebra. |
kernel methods and machine learning: Gaussian Processes for Machine Learning Carl Edward Rasmussen, Christopher K. I. Williams, 2005-11-23 A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes. |
kernel methods and machine learning: Learning Kernel Classifiers Ralf Herbrich, 2001-12-07 An overview of the theory and application of kernel classification methods. Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier—a limited, but well-established and comprehensively studied model—and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library. |
kernel methods and machine learning: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods Nello Cristianini, John Shawe-Taylor, 2000-03-23 This is a comprehensive introduction to Support Vector Machines, a generation learning system based on advances in statistical learning theory. |
kernel methods and machine learning: Kernels for Vector-Valued Functions Mauricio A. Álvarez, Lorenzo Rosasco, Neil D. Lawrence, 2012 This monograph reviews different methods to design or learn valid kernel functions for multiple outputs, paying particular attention to the connection between probabilistic and regularization methods. |
kernel methods and machine learning: Advances in Kernel Methods Bernhard Schölkopf, Christopher J. C. Burges, Alexander J. Smola, 1999 A young girl hears the story of her great-great-great-great- grandfather and his brother who came to the United States to make a better life for themselves helping to build the transcontinental railroad. |
kernel methods and machine learning: Machine Learning Methods in the Environmental Sciences William W. Hsieh, 2009-07-30 A graduate textbook that provides a unified treatment of machine learning methods and their applications in the environmental sciences. |
kernel methods and machine learning: Kernels for Structured Data Thomas Grtner, 2008 This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains. Originally, kernel methods were developed with data in mind that can easily be embedded in a Euclidean vector space. Much real-world data does not have this property but is inherently structured. An example of such data, often consulted in the book, is the (2D) graph structure of molecules formed by their atoms and bonds. The book guides the reader from the basics of kernel methods to advanced algorithms and kernel design for structured data. It is thus useful for readers who seek an entry point into the field as well as experienced researchers. |
kernel methods and machine learning: Machine Learning with Svm and Other Kernel Methods K.P. Soman, 2011 |
kernel methods and machine learning: Regularization, Optimization, Kernels, and Support Vector Machines Johan A.K. Suykens, Marco Signoretto, Andreas Argyriou, 2014-10-23 Regularization, Optimization, Kernels, and Support Vector Machines offers a snapshot of the current state of the art of large-scale machine learning, providing a single multidisciplinary source for the latest research and advances in regularization, sparsity, compressed sensing, convex and large-scale optimization, kernel methods, and support vector machines. Consisting of 21 chapters authored by leading researchers in machine learning, this comprehensive reference: Covers the relationship between support vector machines (SVMs) and the Lasso Discusses multi-layer SVMs Explores nonparametric feature selection, basis pursuit methods, and robust compressive sensing Describes graph-based regularization methods for single- and multi-task learning Considers regularized methods for dictionary learning and portfolio selection Addresses non-negative matrix factorization Examines low-rank matrix and tensor-based models Presents advanced kernel methods for batch and online machine learning, system identification, domain adaptation, and image processing Tackles large-scale algorithms including conditional gradient methods, (non-convex) proximal techniques, and stochastic gradient descent Regularization, Optimization, Kernels, and Support Vector Machines is ideal for researchers in machine learning, pattern recognition, data mining, signal processing, statistical learning, and related areas. |
kernel methods and machine learning: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site. |
kernel methods and machine learning: Kernel Mean Embedding of Distributions Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, Bernhard Schölkopf, 2017-06-28 Provides a comprehensive review of kernel mean embeddings of distributions and, in the course of doing so, discusses some challenging issues that could potentially lead to new research directions. The targeted audience includes graduate students and researchers in machine learning and statistics. |
kernel methods and machine learning: Learning Theory and Kernel Machines Bernhard Schölkopf, Manfred K. Warmuth, 2003-11-11 This book constitutes the joint refereed proceedings of the 16th Annual Conference on Computational Learning Theory, COLT 2003, and the 7th Kernel Workshop, Kernel 2003, held in Washington, DC in August 2003. The 47 revised full papers presented together with 5 invited contributions and 8 open problem statements were carefully reviewed and selected from 92 submissions. The papers are organized in topical sections on kernel machines, statistical learning theory, online learning, other approaches, and inductive inference learning. |
kernel methods and machine learning: Computational and Ambient Intelligence Francisco Sandoval, Alberto Prieto, Joan Cabestany, Manuel Graña, 2007-09-21 This book constitutes the refereed proceedings of the 9th International Work-Conference on Artificial Neural Networks, IWANN 2007, held in San Sebastián, Spain in June 2007. Coverage includes theoretical concepts and neurocomputational formulations, evolutionary and genetic algorithms, data analysis, signal processing, robotics and planning motor control, as well as neural networks and other machine learning methods in cancer research. |
kernel methods and machine learning: Understanding Machine Learning Shai Shalev-Shwartz, Shai Ben-David, 2014-05-19 Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage. |
kernel methods and machine learning: Graph Representation Learning William L. Hamilton, 2022-06-01 Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning. |
kernel methods and machine learning: Machine Learning with SVM and Other Kernel Methods K.P. Soman, R. LOGANATHAN, V. AJAY, 2009-02-02 Support vector machines (SVMs) represent a breakthrough in the theory of learning systems. It is a new generation of learning algorithms based on recent advances in statistical learning theory. Designed for the undergraduate students of computer science and engineering, this book provides a comprehensive introduction to the state-of-the-art algorithm and techniques in this field. It covers most of the well known algorithms supplemented with code and data. One Class, Multiclass and hierarchical SVMs are included which will help the students to solve any pattern classification problems with ease and that too in Excel. KEY FEATURES Extensive coverage of Lagrangian duality and iterative methods for optimization Separate chapters on kernel based spectral clustering, text mining, and other applications in computational linguistics and speech processing A chapter on latest sequential minimization algorithms and its modifications to do online learning Step-by-step method of solving the SVM based classification problem in Excel. Kernel versions of PCA, CCA and ICA The CD accompanying the book includes animations on solving SVM training problem in Microsoft EXCEL and by using SVMLight software . In addition, Matlab codes are given for all the formulations of SVM along with the data sets mentioned in the exercise section of each chapter. |
kernel methods and machine learning: Foundations of Machine Learning Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, 2012-08-17 Fundamental topics in machine learning are presented along with theoretical and conceptual tools for the discussion and proof of algorithms. This graduate-level textbook introduces fundamental concepts and methods in machine learning. It describes several important modern algorithms, provides the theoretical underpinnings of these algorithms, and illustrates key aspects for their application. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning fills the need for a general textbook that also offers theoretical details and an emphasis on proofs. Certain topics that are often treated with insufficient attention are discussed in more detail here; for example, entire chapters are devoted to regression, multi-class classification, and ranking. The first three chapters lay the theoretical foundation for what follows, but each remaining chapter is mostly self-contained. The appendix offers a concise probability review, a short introduction to convex optimization, tools for concentration bounds, and several basic properties of matrices and norms used in the book. The book is intended for graduate students and researchers in machine learning, statistics, and related areas; it can be used either as a textbook or as a reference text for a research seminar. |
kernel methods and machine learning: Machine Learning with Quantum Computers Maria Schuld, Francesco Petruccione, 2021-10-17 This book offers an introduction into quantum machine learning research, covering approaches that range from near-term to fault-tolerant quantum machine learning algorithms, and from theoretical to practical techniques that help us understand how quantum computers can learn from data. Among the topics discussed are parameterized quantum circuits, hybrid optimization, data encoding, quantum feature maps and kernel methods, quantum learning theory, as well as quantum neural networks. The book aims at an audience of computer scientists and physicists at the graduate level onwards. The second edition extends the material beyond supervised learning and puts a special focus on the developments in near-term quantum machine learning seen over the past few years. |
kernel methods and machine learning: Advanced Lectures on Machine Learning Shahar Mendelson, Alexander J. Smola, 2003-01-31 This book presents revised reviewed versions of lectures given during the Machine Learning Summer School held in Canberra, Australia, in February 2002. The lectures address the following key topics in algorithmic learning: statistical learning theory, kernel methods, boosting, reinforcement learning, theory learning, association rule learning, and learning linear classifier systems. Thus, the book is well balanced between classical topics and new approaches in machine learning. Advanced students and lecturers will find this book a coherent in-depth overview of this exciting area, while researchers will use this book as a valuable source of reference. |
kernel methods and machine learning: Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods Chris Aldrich, Lidia Auret, 2013-06-15 This unique text/reference describes in detail the latest advances in unsupervised process monitoring and fault diagnosis with machine learning methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections. Topics and features: discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods; examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning; describes the use of spectral methods in process fault diagnosis. |
kernel methods and machine learning: Kernel-based Approximation Methods Using Matlab Gregory E Fasshauer, Michael J Mccourt, 2015-07-30 In an attempt to introduce application scientists and graduate students to the exciting topic of positive definite kernels and radial basis functions, this book presents modern theoretical results on kernel-based approximation methods and demonstrates their implementation in various settings. The authors explore the historical context of this fascinating topic and explain recent advances as strategies to address long-standing problems. Examples are drawn from fields as diverse as function approximation, spatial statistics, boundary value problems, machine learning, surrogate modeling and finance. Researchers from those and other fields can recreate the results within using the documented MATLAB code, also available through the online library. This combination of a strong theoretical foundation and accessible experimentation empowers readers to use positive definite kernels on their own problems of interest. |
kernel methods and machine learning: Pattern Recognition Carl Edward Rasmussen, Heinrich H. Bülthoff, Bernhard Schölkopf, Martin A. Giese, 2004-08-10 This book constitutes the refereed proceedings of the 26th Symposium of the German Association for Pattern Recognition, DAGM 2004, held in Tbingen, Germany in August/September 2004. The 22 revised papers and 48 revised poster papers presented were carefully reviewed and selected from 146 submissions. The papers are organized in topical sections on learning, Bayesian approaches, vision and faces, vision and motion, biologically motivated approaches, segmentation, object recognition, and object recognition and synthesis. |
kernel methods and machine learning: Predicting Structured Data Neural Information Processing Systems Foundation, 2007 State-of-the-art algorithms and theory in a novel domain of machine learning, prediction when the output has structure. |
kernel methods and machine learning: Machine Learning Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, Thomas B. Schön, 2022-03-31 This book introduces machine learning for readers with some background in basic linear algebra, statistics, probability, and programming. In a coherent statistical framework it covers a selection of supervised machine learning methods, from the most fundamental (k-NN, decision trees, linear and logistic regression) to more advanced methods (deep neural networks, support vector machines, Gaussian processes, random forests and boosting), plus commonly-used unsupervised methods (generative modeling, k-means, PCA, autoencoders and generative adversarial networks). Careful explanations and pseudo-code are presented for all methods. The authors maintain a focus on the fundamentals by drawing connections between methods and discussing general concepts such as loss functions, maximum likelihood, the bias-variance decomposition, ensemble averaging, kernels and the Bayesian approach along with generally useful tools such as regularization, cross validation, evaluation metrics and optimization methods. The final chapters offer practical advice for solving real-world supervised machine learning problems and on ethical aspects of modern machine learning. |
kernel methods and machine learning: Interpretable Machine Learning Christoph Molnar, 2020 This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project. |
kernel methods and machine learning: The Principles of Deep Learning Theory Daniel A. Roberts, Sho Yaida, Boris Hanin, 2022-05-26 This volume develops an effective theory approach to understanding deep neural networks of practical relevance. |
kernel methods and machine learning: Knowledge Discovery with Support Vector Machines Lutz H. Hamel, 2011-09-20 An easy-to-follow introduction to support vector machines This book provides an in-depth, easy-to-follow introduction to support vector machines drawing only from minimal, carefully motivated technical and mathematical background material. It begins with a cohesive discussion of machine learning and goes on to cover: Knowledge discovery environments Describing data mathematically Linear decision surfaces and functions Perceptron learning Maximum margin classifiers Support vector machines Elements of statistical learning theory Multi-class classification Regression with support vector machines Novelty detection Complemented with hands-on exercises, algorithm descriptions, and data sets, Knowledge Discovery with Support Vector Machines is an invaluable textbook for advanced undergraduate and graduate courses. It is also an excellent tutorial on support vector machines for professionals who are pursuing research in machine learning and related areas. |
kernel methods and machine learning: Linear Algebra and Optimization for Machine Learning Charu C. Aggarwal, 2020-05-13 This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning. |
kernel methods and machine learning: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
kernel methods and machine learning: Kernel Based Algorithms for Mining Huge Data Sets Te-Ming Huang, Vojislav Kecman, Ivica Kopriva, 2006-03-02 This is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction and shows the similarities and differences between the two most popular unsupervised techniques. |
The Linux Kernel Archives
Jun 8, 2025 · This site is operated by the Linux Kernel Organization, a 501(c)3 nonprofit corporation, with support from the following sponsors.501(c)3 nonprofit corporation, with …
The Linux Kernel Archives - Releases
May 26, 2025 · There are usually only a few bugfix kernel releases until next mainline kernel becomes available -- unless it is designated a "longterm maintenance kernel." Stable kernel …
The Linux Kernel documentation
The Linux Kernel documentation¶ This is the top level of the kernel’s documentation tree. Kernel documentation, like the kernel itself, is very much a work in progress; that is especially true as …
Linux Kernel Documentation
Standards documents applicable to the Linux kernel Single Unix Specification v4 (Also known as Open Group Base Specifications issue 7, and POSIX 2008. See especially system interfaces )
中文翻译 — The Linux Kernel documentation
另外,随时欢迎您对内核文档进行改进;如果您想提供帮助,请加入vger.kernel.org 上的linux-doc邮件列表,并按照Documentation/translations/zh_CN/how-to.rst的 指引提交补丁。提交补 …
About Linux Kernel
Aug 6, 2024 · If you're new to Linux, you don't want to download the kernel, which is just a component in a working Linux system. Instead, you want what is called a distribution of Linux, …
HOWTO do Linux kernel development
HOWTO do Linux kernel development¶ This is the be-all, end-all document on this topic. It contains instructions on how to become a Linux kernel developer and how to learn to work …
The Linux Kernel Archives - FAQ
Aug 6, 2024 · Where can I find kernel 3.10.0-1160.45.1.foo? Kernel versions that have a dash in them are packaged by distributions and are often extensively modified. Please contact the …
The kernel’s command-line parameters
Parameters for modules which are built into the kernel need to be specified on the kernel command line. modprobe looks through the kernel command line (/proc/cmdline) and collects …
The Linux Kernel Archives - About
Aug 6, 2024 · The Linux Kernel Organization is a California Public Benefit Corporation established in 2002 to distribute the Linux kernel and other Open Source software to the public without …
The Linux Kernel Archives
Jun 8, 2025 · This site is operated by the Linux Kernel Organization, a 501(c)3 nonprofit corporation, with support from the following sponsors.501(c)3 nonprofit corporation, with …
The Linux Kernel Archives - Releases
May 26, 2025 · There are usually only a few bugfix kernel releases until next mainline kernel becomes available -- unless it is designated a "longterm maintenance kernel." Stable kernel …
The Linux Kernel documentation
The Linux Kernel documentation¶ This is the top level of the kernel’s documentation tree. Kernel documentation, like the kernel itself, is very much a work in progress; that is especially true as …
Linux Kernel Documentation
Standards documents applicable to the Linux kernel Single Unix Specification v4 (Also known as Open Group Base Specifications issue 7, and POSIX 2008. See especially system interfaces )
中文翻译 — The Linux Kernel documentation
另外,随时欢迎您对内核文档进行改进;如果您想提供帮助,请加入vger.kernel.org 上的linux-doc邮件列表,并按照Documentation/translations/zh_CN/how-to.rst的 指引提交补丁。提交补 …
About Linux Kernel
Aug 6, 2024 · If you're new to Linux, you don't want to download the kernel, which is just a component in a working Linux system. Instead, you want what is called a distribution of Linux, …
HOWTO do Linux kernel development
HOWTO do Linux kernel development¶ This is the be-all, end-all document on this topic. It contains instructions on how to become a Linux kernel developer and how to learn to work with …
The Linux Kernel Archives - FAQ
Aug 6, 2024 · Where can I find kernel 3.10.0-1160.45.1.foo? Kernel versions that have a dash in them are packaged by distributions and are often extensively modified. Please contact the …
The kernel’s command-line parameters
Parameters for modules which are built into the kernel need to be specified on the kernel command line. modprobe looks through the kernel command line (/proc/cmdline) and collects …
The Linux Kernel Archives - About
Aug 6, 2024 · The Linux Kernel Organization is a California Public Benefit Corporation established in 2002 to distribute the Linux kernel and other Open Source software to the public without …