Introduction To Statistics Mcgraw Hill

Advertisement



  introduction to statistics mcgraw hill: Elementary Statistics William Cyrus Navidi, 2013
  introduction to statistics mcgraw hill: Basic Statistics for Business and Economics Douglas A. Lind, William G. Marchal, Samuel Adam Wathen, 2003 The Fifth Edition of Basic Statistics for Business and Economics is a shorter version of Lind/Marchal/Wathen's Statistical Techniques in Business and Economics, 12e. The authors of this text continue to provide a student-oriented approach to business statistics. In this book you will find step-by-step solved examples, realistic exercises, and up-to-date technology and illustrations. Book jacket.
  introduction to statistics mcgraw hill: Introduction to Statistics Janet Susan Milton, Paul M. McTeer, James J. Corbet, 1997
  introduction to statistics mcgraw hill: Introduction to the Theory of Statistics Alexander MacFarlane Mood, Franklin A. Graybill, Duane C. Boes, 1974 This text offers a sound and self-contained introduction to classical statistical theory. The material is suitable for students who have successfully completed a single year's course in calculus, and no prior knowledge of statistics or probability is assumed. Practical examples and problems are included.
  introduction to statistics mcgraw hill: Introductory Statistics 2e Barbara Illowsky, Susan Dean, 2023-12-13 Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.
  introduction to statistics mcgraw hill: An Introduction to Statistical Learning Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Jonathan Taylor, 2023-06-30 An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
  introduction to statistics mcgraw hill: Bluman, Elementary Statistics: A Step by Step Approach, © 2015, 9e, Student Edition (Reinforced Binding) Allan G. Bluman, 2013-11-12 Elementary Statistics: A Step by Step Approach was written as an aid in the beginning statistics course to students whose mathematical background is limited to basic algebra. The book follows a nontheoretical approach without formal proofs, explaining concepts intuitively and supporting them with abundant examples. The applications span a broad range of topics certain to appeal to the interests of students of diverse backgrounds, and they include problems in business, sports, health, architecture, education, entertainment, political science, psychology, history, criminal justice, the environment, transportation, physical sciences, demographics, eating habits, and travel and leisure. Includes print student edition
  introduction to statistics mcgraw hill: Online Statistics Education David M Lane, 2014-12-02 Online Statistics: An Interactive Multimedia Course of Study is a resource for learning and teaching introductory statistics. It contains material presented in textbook format and as video presentations. This resource features interactive demonstrations and simulations, case studies, and an analysis lab.This print edition of the public domain textbook gives the student an opportunity to own a physical copy to help enhance their educational experience. This part I features the book Front Matter, Chapters 1-10, and the full Glossary. Chapters Include:: I. Introduction, II. Graphing Distributions, III. Summarizing Distributions, IV. Describing Bivariate Data, V. Probability, VI. Research Design, VII. Normal Distributions, VIII. Advanced Graphs, IX. Sampling Distributions, and X. Estimation. Online Statistics Education: A Multimedia Course of Study (http: //onlinestatbook.com/). Project Leader: David M. Lane, Rice University.
  introduction to statistics mcgraw hill: Elementary Statistics Mario F. Triola, 1997-08 Addison-Wesley is proud to celebrate the Tenth Edition of Elementary Statistics.& This text is highly regarded because of its engaging and understandable introduction to statistics. The&author's commitment to providing student-friendly guidance through the material and giving students opportunities to apply their newly learned skills in a real-world context has made Elementary Statistics the #1 best-seller in the market.
  introduction to statistics mcgraw hill: Introduction to Probability and Statistics for Engineers and Scientists Sheldon M. Ross, 1987 Elements of probability; Random variables and expectation; Special; random variables; Sampling; Parameter estimation; Hypothesis testing; Regression; Analysis of variance; Goodness of fit and nonparametric testing; Life testing; Quality control; Simulation.
  introduction to statistics mcgraw hill: A Modern Introduction to Probability and Statistics F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, L.E. Meester, 2006-03-30 Many current texts in the area are just cookbooks and, as a result, students do not know why they perform the methods they are taught, or why the methods work. The strength of this book is that it readdresses these shortcomings; by using examples, often from real life and using real data, the authors show how the fundamentals of probabilistic and statistical theories arise intuitively. A Modern Introduction to Probability and Statistics has numerous quick exercises to give direct feedback to students. In addition there are over 350 exercises, half of which have answers, of which half have full solutions. A website gives access to the data files used in the text, and, for instructors, the remaining solutions. The only pre-requisite is a first course in calculus; the text covers standard statistics and probability material, and develops beyond traditional parametric models to the Poisson process, and on to modern methods such as the bootstrap.
  introduction to statistics mcgraw hill: An Introduction to Linear Statistical Models Franklin A. Graybill, 1961
  introduction to statistics mcgraw hill: Applied Statistics in Business and Economics ISE David Doane, 2024-03-19
  introduction to statistics mcgraw hill: Introduction to Probability and Statistics Janet Susan Milton, Jesse C. Arnold, 2002-11-01 This well-respected text is designed for the first course in probability and statistics taken by students majoring in Engineering and the Computing Sciences. The prerequisite is one year of calculus. The text offers a balanced presentation of applications and theory. The authors take care to develop the theoretical foundations for the statistical methods presented at a level that is accessible to students with only a calculus background. They explore the practical implications of the formal results to problem-solving so students gain an understanding of the logic behind the techniques as well as practice in using them. The examples, exercises, and applications were chosen specifically for students in engineering and computer science and include opportunities for real data analysis.
  introduction to statistics mcgraw hill: Introduction to Statistics J. Susan Milton, P. M. McTeer, J. J. Corbet, 1996-10-01
  introduction to statistics mcgraw hill: Statistical Analysis in Psychology and Education George Andrew Ferguson, 1966
  introduction to statistics mcgraw hill: Principles of Statistics for Engineers and Scientists William Cyrus Navidi, 2010 Principles of Statistics for Engineers and Scientists offers the same crystal clear presentation of applied statistics as Bill Navidi's Statistics for Engineers and Scientists text, in a manner especially designed for the needs of a one-semester course that is focused on applications. By presenting ideas in the context of real-world data sets and with plentiful examples of computer output, the book is great for motivating students to understand the importance of statistics in their careers and their lives. The text features a unique approach highlighted by an engaging writing style that explains difficult concepts clearly and the use of contemporary real world data sets to help motivate students and show direct connections to industry and research. While focusing on practical applications of statistics, the text makes extensive use of examples to motivate fundamental concepts and to develop intuition.
  introduction to statistics mcgraw hill: Introduction to Probability and Statistics William Mendenhall, Robert J. Beaver, 1994 This classic text, focuses on statistical inference as the objective of statistics, emphasizes inference making, and features a highly polished and meticulous execution, with outstanding exercises. This revision introduces a range of modern ideas, while preserving the overall classical framework..
  introduction to statistics mcgraw hill: Introduction to Statistics Ronald E. Walpole, 1972
  introduction to statistics mcgraw hill: Introductory Business Statistics 2e Alexander Holmes, Barbara Illowsky, Susan Dean, 2023-12-13 Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.
  introduction to statistics mcgraw hill: OpenIntro Statistics David Diez, Christopher Barr, Mine Çetinkaya-Rundel, 2015-07-02 The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources.
  introduction to statistics mcgraw hill: Introduction to Statistics and Data Analysis Roxy Peck, Chris Olsen, Jay L. Devore, 2019
  introduction to statistics mcgraw hill: Statistics and Probability with Applications (High School) Daren Starnes, Josh Tabor, 2016-10-07 Statistics and Probability with Applications, Third Edition is the only introductory statistics text written by high school teachers for high school teachers and students. Daren Starnes, Josh Tabor, and the extended team of contributors bring their in-depth understanding of statistics and the challenges faced by high school students and teachers to development of the text and its accompanying suite of print and interactive resources for learning and instruction. A complete re-envisioning of the authors’ Statistics Through Applications, this new text covers the core content for the course in a series of brief, manageable lessons, making it easy for students and teachers to stay on pace. Throughout, new pedagogical tools and lively real-life examples help captivate students and prepare them to use statistics in college courses and in any career.
  introduction to statistics mcgraw hill: An Introduction to Statistical Problem Solving in Geography J. Chapman McGrew, Jr., Charles B. Monroe, 2009-04-22 Written for undergraduate geography majors and entry-level graduate students with limited backgrounds in statistical analysis and methods, McGrew and Monroe provide a comprehensive and understandable introduction to statistical methods in a problem-solving framework. Engaging examples and problems are drawn from a variety of topical areas in both human and physical geography and are fully integrated into the text. Without compromising statistical rigor or oversimplifying, the authors stress the importance of written narratives that explain each statistical technique. After introducing basic statistical concepts and terminology, the authors focus on nonspatial and spatial descriptive statistics. They transition to inferential problem solving, including probability, sampling, and estimation, before delving deeper into inferential statistics for geographic problem solving. The final chapters examine the related techniques of correlation and regression. A list of major goals and objectives is included at the end of each chapter, allowing students to monitor their own progress and mastery of geographic statistical materials. An epilogue, offering over 150 geographic situations, gives students a chance to figure out which statistical technique should be used for a particular situation.
  introduction to statistics mcgraw hill: Statistics Michael J. Crawley, 2005-05-06 Computer software is an essential tool for many statistical modelling and data analysis techniques, aiding in the implementation of large data sets in order to obtain useful results. R is one of the most powerful and flexible statistical software packages available, and enables the user to apply a wide variety of statistical methods ranging from simple regression to generalized linear modelling. Statistics: An Introduction using R is a clear and concise introductory textbook to statistical analysis using this powerful and free software, and follows on from the success of the author's previous best-selling title Statistical Computing. * Features step-by-step instructions that assume no mathematics, statistics or programming background, helping the non-statistician to fully understand the methodology. * Uses a series of realistic examples, developing step-wise from the simplest cases, with the emphasis on checking the assumptions (e.g. constancy of variance and normality of errors) and the adequacy of the model chosen to fit the data. * The emphasis throughout is on estimation of effect sizes and confidence intervals, rather than on hypothesis testing. * Covers the full range of statistical techniques likely to be need to analyse the data from research projects, including elementary material like t-tests and chi-squared tests, intermediate methods like regression and analysis of variance, and more advanced techniques like generalized linear modelling. * Includes numerous worked examples and exercises within each chapter. * Accompanied by a website featuring worked examples, data sets, exercises and solutions: http://www.imperial.ac.uk/bio/research/crawley/statistics Statistics: An Introduction using R is the first text to offer such a concise introduction to a broad array of statistical methods, at a level that is elementary enough to appeal to a broad range of disciplines. It is primarily aimed at undergraduate students in medicine, engineering, economics and biology - but will also appeal to postgraduates who have not previously covered this area, or wish to switch to using R.
  introduction to statistics mcgraw hill: Introductory Statistics Prem S. Mann, 2010-02-02 When it comes to learning statistics, Mann delivers the information that business professionals need. The new edition incorporates the most up-to-date methods and applications to present the latest information in the field. It focuses on explaining how to apply the concepts through case studies and numerous examples. Data integrated throughout the chapters come from a wide range of disciplines and media sources. Over 200 examples are included along with marginal notes and step-by-step solutions. The Decide for Yourself feature also helps business professionals explore real-world problems and solutions.
  introduction to statistics mcgraw hill: Understanding Educational Research Deobold B. Van Dalen, 1973
  introduction to statistics mcgraw hill: Linear Models in Statistics Alvin C. Rencher, G. Bruce Schaalje, 2008-01-07 The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
  introduction to statistics mcgraw hill: Practice Makes Perfect Statistics Sandra McCune, 2009-05-26 A no-nonsense practical guide to statistics, providing concise summaries, clear model examples, and plenty of practice, making this workbook the ideal complement to class study or self-study, preparation for exams or a brush-up on rusty skills. About the Book Established as a successful practical workbook series with over 20 titles in the language learning category, Practice Makes Perfect now provides the same clear, concise approach and extensive exercises to key fields within mathematics. The key to the Practice Makes Perfect series is the extensive exercises that provide learners with all the practice they need for mastery. Not focused on any particular test or exam, but complementary to most statistics curricula Deliberately all-encompassing approach: international perspective and balance between traditional and newer approaches. Large trim allows clear presentation of worked problems, exercises, and explained answers. Features No-nonsense approach: provides clear presentation of content. Over 500 exercises and answers covering all aspects of statistics Successful series: Practice Makes Perfect has sales of 1,000,000 copies in the language category – now applied to mathematics Workbook is not exam specific, yet it provides thorough coverage of the statistics skills required in most math tests.
  introduction to statistics mcgraw hill: Essentials of Business Statistics Sanjiv Jaggia, Alison Kelly Hawke, 2019 Revised edition of the authors' Essentials of business statistics, c2014.
  introduction to statistics mcgraw hill: Loose Leaf Elementary Statistics, A Brief Version Student Allan Bluman, 2010-06-04 Elementary Statistics: A Brief Version, is a shorter version of the popular text Elementary Statistics: A Step by Step Approach. This softcover edition includes all the features of the longer book, but it is designed for a course in which the time available limits the number of topics covered. It is for general beginning statistics courses with a basic algebra prerequisite. The book is non-theoretical, explaining concepts intuitively and teaching problem solving through worked examples and step-by-step instructions. This edition places more emphasis on conceptual understanding and understanding results. This edition also features increased emphasis on Excel, MINITAB, and the TI-83 Plus and TI-84 Plus graphing calculators; computing technologies commonly used in such courses.
  introduction to statistics mcgraw hill: Introduction to Statistical Quality Control Douglas C. Montgomery, 2019-11-06 Once solely the domain of engineers, quality control has become a vital business operation used to increase productivity and secure competitive advantage. Introduction to Statistical Quality Control offers a detailed presentation of the modern statistical methods for quality control and improvement. Thorough coverage of statistical process control (SPC) demonstrates the efficacy of statistically-oriented experiments in the context of process characterization, optimization, and acceptance sampling, while examination of the implementation process provides context to real-world applications. Emphasis on Six Sigma DMAIC (Define, Measure, Analyze, Improve and Control) provides a strategic problem-solving framework that can be applied across a variety of disciplines. Adopting a balanced approach to traditional and modern methods, this text includes coverage of SQC techniques in both industrial and non-manufacturing settings, providing fundamental knowledge to students of engineering, statistics, business, and management sciences. A strong pedagogical toolset, including multiple practice problems, real-world data sets and examples, and incorporation of Minitab statistics software, provides students with a solid base of conceptual and practical knowledge.
  introduction to statistics mcgraw hill: Introduction to the Theory of Statistics Alexander M. Mood, 1972
  introduction to statistics mcgraw hill: Essentials of Business Statistics Bruce L. Bowerman, Richard T. O'Connell, J. Burdeane Orris, 2011-02 The new edition of Essentials of Business Statisticsdelivers clear and understandable explanations of core business statistics concepts, making it ideal for a one-term course in business statistics. Containing continuing case studies that emphasize the theme of business improvement, the text offers real applications of statistics that are relevant to today's business students. The authors motivate students by showing persuasively how the use of statistical techniques in support of business decision-making helps to improve business processes. A variety of examples and exercises, and a robust, technology-based ancillary package are designed to help students master this subject. In addition, the authors have rewritten many of the discussions in this edition and have explained concepts more simply from first principles. The only prerequisite for this text is high school algebra.
  introduction to statistics mcgraw hill: Loose-Leaf for Applied Statistics in Business and Economics Lori . Seward, David Doane, 2021-01-12 Applied Statistics in Business and Economics, 7th edition, provides real meaning to the use of statistics in the real world by using real business situations and real data while appealing to students who want to know the why rather than just the how. The text emphasizes thinking about data, choosing appropriate analytic tools, using computers effectively, and recognizing the limitations of statistics. It motivates student learning through applied current exercises and cases that provide real-world relevance and includes analytics in action, careers, and applications of big data, Artificial Intelligence, and machine learning (including ethical issues). The Doane and Seward authors work as a team, integrating the digital and eBook assets seamlessly. In recognition of a growing interest in analytics training beyond Excel, the textbook now provides an optional introduction to R with illustrations of topics in each chapter. Support for R is further enhanced with Learning Stats modules, tables of R functions, and R-compatible Excel data sets.
  introduction to statistics mcgraw hill: Business Analytics Sanjiv Jaggia, Alison Kelly (Professor of economics), Kevin Lertwachara, Leida Chen, 2022 We wrote Business Analytics: Communicating with Numbers from the ground up to prepare students to understand, manage, and visualize the data; apply the appropriate analysis tools; and communicate the findings and their relevance. The text seamlessly threads the topics of data wrangling, descriptive analytics, predictive analytics, and prescriptive analytics into a cohesive whole. In the second edition of Business Analytics, we have made substantial revisions that meet the current needs of the instructors teaching the course and the companies that require the relevant skillset. These revisions are based on the feedback of reviewers and users of our first edition. The greatly expanded coverage of the text gives instructors the flexibility to select the topics that best align with their course objectives--
  introduction to statistics mcgraw hill: Introduction to Business Statistics Ronald M. Weiers, J. Brian Gray, 2008 Highly praised for its clarity and great examples, Weiers' INTRODUCTION TO BUSINESS STATISTICS, 6E introduces fundamental statistical concepts in a conversational language that connects with today's students. Even those intimidated by statistics quickly discover success with the book's proven learning aids, outstanding illustrations, non-technical terminology, and hundreds of current examples drawn from real-life experiences familiar to students. A continuing case and contemporary applications combine with more than 100 new or revised exercises and problems that reflect the latest changes in business today with an accuracy you can trust. You can easily introduce today's leading statistical software and teach not only how to complete calculations by hand and using Excel, but also how to determine which method is best for a particular task. The book's student-oriented approach is supported with a wealth of resources, including the innovative new CengageNOW online course management and learning system that saves you time while helping students master the statistical skills most important for business success.
  introduction to statistics mcgraw hill: Probability and Statistics for Engineering and the Sciences + Enhanced Webassign Access , 2017
  introduction to statistics mcgraw hill: Schaum's Outline of Theory and Problems of Probability and Statistics Murray R. Spiegel, 1996
  introduction to statistics mcgraw hill: Introduction to the Practice of Statistics David S. Moore, George P. McCabe, 1999 CD-ROM includes: Electronic Encyclopedia of Statistical Examples and Exercises, an interactive quiz for each chapter, video clips and some special electronic statistical tools.
INTRODUCTION Definition & Meaning - Merriam-Webster
The meaning of INTRODUCTION is something that introduces. How to use introduction in a sentence.

How to Write an Introduction, With Examples | Grammarly
Oct 20, 2022 · An introduction should include three things: a hook to interest the reader, some background on the topic so the reader can understand it, and a thesis statement that clearly …

INTRODUCTION | English meaning - Cambridge Dictionary
INTRODUCTION definition: 1. an occasion when something is put into use or brought to a place for the first time: 2. the act…. Learn more.

What Is an Introduction? Definition & 25+ Examples - Enlightio
Nov 5, 2023 · An introduction is the initial section of a piece of writing, speech, or presentation wherein the author presents the topic and purpose of the material. It serves as a gateway for …

Introduction - definition of introduction by The Free Dictionary
Something spoken, written, or otherwise presented in beginning or introducing something, especially: a. A preface, as to a book. b. Music A short preliminary passage in a larger …

INTRODUCTION Definition & Meaning - Merriam-Webster
The meaning of INTRODUCTION is something that introduces. How to use introduction in a sentence.

How to Write an Introduction, With Examples | Grammarly
Oct 20, 2022 · An introduction should include three things: a hook to interest the reader, some background on the topic so the reader can understand it, and a thesis statement that clearly and …

INTRODUCTION | English meaning - Cambridge Dictionary
INTRODUCTION definition: 1. an occasion when something is put into use or brought to a place for the first time: 2. the act…. Learn more.

What Is an Introduction? Definition & 25+ Examples - Enlightio
Nov 5, 2023 · An introduction is the initial section of a piece of writing, speech, or presentation wherein the author presents the topic and purpose of the material. It serves as a gateway for the …

Introduction - definition of introduction by The Free Dictionary
Something spoken, written, or otherwise presented in beginning or introducing something, especially: a. A preface, as to a book. b. Music A short preliminary passage in a larger movement …