Intro To Abstract Mathematics

Advertisement



  intro to abstract mathematics: An Introduction to Abstract Mathematics Robert J. Bond, William J. Keane, 1999 The goal of this book is to show students how mathematicians think and to glimpse some of the fascinating things they think about. Bond and Keane develop students' ability to do abstract mathematics by teaching the form of mathematics in the context of real and elementary mathematics. Students learn the fundamentals of mathematical logic; how to read and understand definitions, theorems, and proofs; and how to assimilate abstract ideas and communicate them in written form. Students will learn to write mathematical proofs coherently and correctly.
  intro to abstract mathematics: Linear Algebra As An Introduction To Abstract Mathematics Bruno Nachtergaele, Anne Schilling, Isaiah Lankham, 2015-11-30 This is an introductory textbook designed for undergraduate mathematics majors with an emphasis on abstraction and in particular, the concept of proofs in the setting of linear algebra. Typically such a student would have taken calculus, though the only prerequisite is suitable mathematical grounding. The purpose of this book is to bridge the gap between the more conceptual and computational oriented undergraduate classes to the more abstract oriented classes. The book begins with systems of linear equations and complex numbers, then relates these to the abstract notion of linear maps on finite-dimensional vector spaces, and covers diagonalization, eigenspaces, determinants, and the Spectral Theorem. Each chapter concludes with both proof-writing and computational exercises.
  intro to abstract mathematics: Introduction to Proof in Abstract Mathematics Andrew Wohlgemuth, 2014-06-10 The primary purpose of this undergraduate text is to teach students to do mathematical proofs. It enables readers to recognize the elements that constitute an acceptable proof, and it develops their ability to do proofs of routine problems as well as those requiring creative insights. The self-contained treatment features many exercises, problems, and selected answers, including worked-out solutions. Starting with sets and rules of inference, this text covers functions, relations, operation, and the integers. Additional topics include proofs in analysis, cardinality, and groups. Six appendixes offer supplemental material. Teachers will welcome the return of this long-out-of-print volume, appropriate for both one- and two-semester courses.
  intro to abstract mathematics: Introductory Concepts for Abstract Mathematics Kenneth E. Hummel, 2018-10-03 Beyond calculus, the world of mathematics grows increasingly abstract and places new and challenging demands on those venturing into that realm. As the focus of calculus instruction has become increasingly computational, it leaves many students ill prepared for more advanced work that requires the ability to understand and construct proofs. Introductory Concepts for Abstract Mathematics helps readers bridge that gap. It teaches them to work with abstract ideas and develop a facility with definitions, theorems, and proofs. They learn logical principles, and to justify arguments not by what seems right, but by strict adherence to principles of logic and proven mathematical assertions - and they learn to write clearly in the language of mathematics The author achieves these goals through a methodical treatment of set theory, relations and functions, and number systems, from the natural to the real. He introduces topics not usually addressed at this level, including the remarkable concepts of infinite sets and transfinite cardinal numbers Introductory Concepts for Abstract Mathematics takes readers into the world beyond calculus and ensures their voyage to that world is successful. It imparts a feeling for the beauty of mathematics and its internal harmony, and inspires an eagerness and increased enthusiasm for moving forward in the study of mathematics.
  intro to abstract mathematics: Sets, Groups, and Mappings: An Introduction to Abstract Mathematics Andrew D. Hwang, 2019-09-26 This book introduces students to the world of advanced mathematics using algebraic structures as a unifying theme. Having no prerequisites beyond precalculus and an interest in abstract reasoning, the book is suitable for students of math education, computer science or physics who are looking for an easy-going entry into discrete mathematics, induction and recursion, groups and symmetry, and plane geometry. In its presentation, the book takes special care to forge linguistic and conceptual links between formal precision and underlying intuition, tending toward the concrete, but continually aiming to extend students' comfort with abstraction, experimentation, and non-trivial computation. The main part of the book can be used as the basis for a transition-to-proofs course that balances theory with examples, logical care with intuitive plausibility, and has sufficient informality to be accessible to students with disparate backgrounds. For students and instructors who wish to go further, the book also explores the Sylow theorems, classification of finitely-generated Abelian groups, and discrete groups of Euclidean plane transformations.
  intro to abstract mathematics: Introduction to Abstract Mathematics John F. Lucas, 1990 This is a book about mathematics and mathematical thinking. It is intended for the serious learner who is interested in studying some deductive strategies in the context of a variety of elementary mathematical situations. No background beyond single-variable calculus is presumed.
  intro to abstract mathematics: Bridge to Abstract Mathematics Ralph W. Oberste-Vorth, Aristides Mouzakitis, Bonita A. Lawrence, 2020-02-20 A Bridge to Abstract Mathematics will prepare the mathematical novice to explore the universe of abstract mathematics. Mathematics is a science that concerns theorems that must be proved within the constraints of a logical system of axioms and definitions rather than theories that must be tested, revised, and retested. Readers will learn how to read mathematics beyond popular computational calculus courses. Moreover, readers will learn how to construct their own proofs. The book is intended as the primary text for an introductory course in proving theorems, as well as for self-study or as a reference. Throughout the text, some pieces (usually proofs) are left as exercises. Part V gives hints to help students find good approaches to the exercises. Part I introduces the language of mathematics and the methods of proof. The mathematical content of Parts II through IV were chosen so as not to seriously overlap the standard mathematics major. In Part II, students study sets, functions, equivalence and order relations, and cardinality. Part III concerns algebra. The goal is to prove that the real numbers form the unique, up to isomorphism, ordered field with the least upper bound. In the process, we construct the real numbers starting with the natural numbers. Students will be prepared for an abstract linear algebra or modern algebra course. Part IV studies analysis. Continuity and differentiation are considered in the context of time scales (nonempty, closed subsets of the real numbers). Students will be prepared for advanced calculus and general topology courses. There is a lot of room for instructors to skip and choose topics from among those that are presented.
  intro to abstract mathematics: Proofs and Fundamentals Ethan D. Bloch, 2013-12-01 In an effort to make advanced mathematics accessible to a wide variety of students, and to give even the most mathematically inclined students a solid basis upon which to build their continuing study of mathematics, there has been a tendency in recent years to introduce students to the for mulation and writing of rigorous mathematical proofs, and to teach topics such as sets, functions, relations and countability, in a transition course, rather than in traditional courses such as linear algebra. A transition course functions as a bridge between computational courses such as Calculus, and more theoretical courses such as linear algebra and abstract algebra. This text contains core topics that I believe any transition course should cover, as well as some optional material intended to give the instructor some flexibility in designing a course. The presentation is straightforward and focuses on the essentials, without being too elementary, too exces sively pedagogical, and too full to distractions. Some of features of this text are the following: (1) Symbolic logic and the use of logical notation are kept to a minimum. We discuss only what is absolutely necessary - as is the case in most advanced mathematics courses that are not focused on logic per se.
  intro to abstract mathematics: Introduction to Abstract Analysis Marvin E. Goldstein, Burt M. Rosenbaum, 2014-10-27 Concise text prepares readers to pursue abstract analysis in the literature of pure mathematics. Detailed, easy-to-follow proofs and examples illustrate topics including real numbers, vector and metric spaces, infinite series, and other concepts. 1969 edition.
  intro to abstract mathematics: A Book of Abstract Algebra Charles C Pinter, 2010-01-14 Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
  intro to abstract mathematics: A Transition to Abstract Mathematics Randall Maddox, 2008-10-13 Constructing concise and correct proofs is one of the most challenging aspects of learning to work with advanced mathematics. Meeting this challenge is a defining moment for those considering a career in mathematics or related fields. A Transition to Abstract Mathematics teaches readers to construct proofs and communicate with the precision necessary for working with abstraction. It is based on two premises: composing clear and accurate mathematical arguments is critical in abstract mathematics, and that this skill requires development and support. Abstraction is the destination, not the starting point.Maddox methodically builds toward a thorough understanding of the proof process, demonstrating and encouraging mathematical thinking along the way. Skillful use of analogy clarifies abstract ideas. Clearly presented methods of mathematical precision provide an understanding of the nature of mathematics and its defining structure. After mastering the art of the proof process, the reader may pursue two independent paths. The latter parts are purposefully designed to rest on the foundation of the first, and climb quickly into analysis or algebra. Maddox addresses fundamental principles in these two areas, so that readers can apply their mathematical thinking and writing skills to these new concepts. From this exposure, readers experience the beauty of the mathematical landscape and further develop their ability to work with abstract ideas. - Covers the full range of techniques used in proofs, including contrapositive, induction, and proof by contradiction - Explains identification of techniques and how they are applied in the specific problem - Illustrates how to read written proofs with many step by step examples - Includes 20% more exercises than the first edition that are integrated into the material instead of end of chapter
  intro to abstract mathematics: Introduction to Abstract Algebra Jonathan D. H. Smith, 2015-10-23 Introduction to Abstract Algebra, Second Edition presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It avoids the usual groups first/rings first dilemma by introducing semigroups and monoids, the multiplicative structures of rings, along with groups.This new edition of a widely adopted textbook covers
  intro to abstract mathematics: Logic, Sets, and Numbers Frank Blume, 2017-07-19 Logic, Sets, and Numbers is a brief introduction to abstract mathematics that is meant to familiarize the reader with the formal and conceptual rigor that higher-level undergraduate and graduate textbooks commonly employ. Beginning with formal logic and a fairly extensive discussion of concise formulations of mathematical statements, the text moves on to cover general patterns of proofs, elementary set theory, mathematical induction, cardinality, as well as, in the final chapter, the creation of the various number systems from the integers up to the complex numbers. On the whole, the book's intent is not only to reveal the nature of mathematical abstraction, but also its inherent beauty and purity.
  intro to abstract mathematics: An Invitation to Abstract Mathematics Béla Bajnok, 2020-10-27 This undergraduate textbook promotes an active transition to higher mathematics. Problem solving is the heart and soul of this book: each problem is carefully chosen to demonstrate, elucidate, or extend a concept. More than 300 exercises engage the reader in extensive arguments and creative approaches, while exploring connections between fundamental mathematical topics. Divided into four parts, this book begins with a playful exploration of the building blocks of mathematics, such as definitions, axioms, and proofs. A study of the fundamental concepts of logic, sets, and functions follows, before focus turns to methods of proof. Having covered the core of a transition course, the author goes on to present a selection of advanced topics that offer opportunities for extension or further study. Throughout, appendices touch on historical perspectives, current trends, and open questions, showing mathematics as a vibrant and dynamic human enterprise. This second edition has been reorganized to better reflect the layout and curriculum of standard transition courses. It also features recent developments and improved appendices. An Invitation to Abstract Mathematics is ideal for those seeking a challenging and engaging transition to advanced mathematics, and will appeal to both undergraduates majoring in mathematics, as well as non-math majors interested in exploring higher-level concepts. From reviews of the first edition: Bajnok’s new book truly invites students to enjoy the beauty, power, and challenge of abstract mathematics. ... The book can be used as a text for traditional transition or structure courses ... but since Bajnok invites all students, not just mathematics majors, to enjoy the subject, he assumes very little background knowledge. Jill Dietz, MAA Reviews The style of writing is careful, but joyously enthusiastic.... The author’s clear attitude is that mathematics consists of problem solving, and that writing a proof falls into this category. Students of mathematics are, therefore, engaged in problem solving, and should be given problems to solve, rather than problems to imitate. The author attributes this approach to his Hungarian background ... and encourages students to embrace the challenge in the same way an athlete engages in vigorous practice. John Perry, zbMATH
  intro to abstract mathematics: Introduction to Abstract Algebra Jonathan D.H. Smith, 2009 This book presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It uses semigroups and monoids as stepping stones to present the concepts of groups and rings. The author discusses the fundamentals of abstract algebra, before offering deeper coverage of group and ring theory. He also provides examples of abstract algebra concepts in matrices and calculus. The text contains numerous pedagogical elements, including exercises of varying levels of difficulty, chapter notes that point out ...
  intro to abstract mathematics: Abstract Algebra Thomas Judson, 2023-08-11 Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory.
  intro to abstract mathematics: Passage to Abstract Mathematics Mark E Watkins, Jeffrey L Meyer, 2020-08-12 Passage to Abstract Mathematics helps students progress from a facility with computational procedures to an understanding of abstract mathematical concepts. Students develop their ability in mathematical communication through reading proofs, constructing proofs, and writing proofs in correct mathematical language. Concise, practical, and highly valuable, the text is ideal for students who have taken lower-division mathematics courses and need the tools requisite to study more advanced, abstract mathematics. The text features material that instructors of upper-level courses in set theory, analysis, topology, and modern algebra presume students have already learned by the time they enter advanced courses. It places emphasis on complete and correct definitions, as well as expressing mathematics in correct syntax. The core material consists of the first five closely knit chapters: Logic, Numbers, Sets, Functions, and Induction. To support active and continuous learning, exercises are embedded within the text material immediately following a definition or theorem. The explanatory comments, hints to solutions, and thought-provoking questions that appear within brackets throughout the text all serve to deepen the student's understanding of the material. In the second edition, the chapter entitled Functions precedes the chapter entitled Induction, and select material has been clarified or corrected. Number theoretic digressions such as Euclid's Algorithm and the Chinese Remainder Theorem have been deleted.
  intro to abstract mathematics: Pure Mathematics for Beginners Steve Warner, 2018-09-25 Pure Mathematics for Beginners Pure Mathematics for Beginners consists of a series of lessons in Logic, Set Theory, Abstract Algebra, Number Theory, Real Analysis, Topology, Complex Analysis, and Linear Algebra. The 16 lessons in this book cover basic through intermediate material from each of these 8 topics. In addition, all the proofwriting skills that are essential for advanced study in mathematics are covered and reviewed extensively. Pure Mathematics for Beginners is perfect for professors teaching an introductory college course in higher mathematics high school teachers working with advanced math students students wishing to see the type of mathematics they would be exposed to as a math major. The material in this pure math book includes: 16 lessons in 8 subject areas. A problem set after each lesson arranged by difficulty level. A complete solution guide is included as a downloadable PDF file. Pure Math Book Table Of Contents (Selected) Here's a selection from the table of contents: Introduction Lesson 1 - Logic: Statements and Truth Lesson 2 - Set Theory: Sets and Subsets Lesson 3 - Abstract Algebra: Semigroups, Monoids, and Groups Lesson 4 - Number Theory: Ring of Integers Lesson 5 - Real Analysis: The Complete Ordered Field of Reals Lesson 6 - Topology: The Topology of R Lesson 7 - Complex Analysis: The field of Complex Numbers Lesson 8 - Linear Algebra: Vector Spaces Lesson 9 - Logic: Logical Arguments Lesson 10 - Set Theory: Relations and Functions Lesson 11 - Abstract Algebra: Structures and Homomorphisms Lesson 12 - Number Theory: Primes, GCD, and LCM Lesson 13 - Real Analysis: Limits and Continuity Lesson 14 - Topology: Spaces and Homeomorphisms Lesson 15 - Complex Analysis: Complex Valued Functions Lesson 16 - Linear Algebra: Linear Transformations
  intro to abstract mathematics: Mathematical Thinking and Writing Randall Maddox, 2001-07-24 The ability to construct proofs is one of the most challenging aspects of the world of mathematics. It is, essentially, the defining moment for those testing the waters in a mathematical career. Instead of being submerged to the point of drowning, readers of Mathematical Thinking and Writing are given guidance and support while learning the language of proof construction and critical analysis. Randall Maddox guides the reader with a warm, conversational style, through the task of gaining a thorough understanding of the proof process, and encourages inexperienced mathematicians to step up and learn how to think like a mathematician. A student's skills in critical analysis will develop and become more polished than previously conceived. Most significantly, Dr. Maddox has the unique approach of using analogy within his book to clarify abstract ideas and clearly demonstrate methods of mathematical precision.
  intro to abstract mathematics: Introduction to Abstract Algebra Louis Shapiro, 1975
  intro to abstract mathematics: Sets, Functions, and Logic Keith Devlin, 2018-10-03 Keith Devlin. You know him. You've read his columns in MAA Online, you've heard him on the radio, and you've seen his popular mathematics books. In between all those activities and his own research, he's been hard at work revising Sets, Functions and Logic, his standard-setting text that has smoothed the road to pure mathematics for legions of undergraduate students. Now in its third edition, Devlin has fully reworked the book to reflect a new generation. The narrative is more lively and less textbook-like. Remarks and asides link the topics presented to the real world of students' experience. The chapter on complex numbers and the discussion of formal symbolic logic are gone in favor of more exercises, and a new introductory chapter on the nature of mathematics--one that motivates readers and sets the stage for the challenges that lie ahead. Students crossing the bridge from calculus to higher mathematics need and deserve all the help they can get. Sets, Functions, and Logic, Third Edition is an affordable little book that all of your transition-course students not only can afford, but will actually read...and enjoy...and learn from. About the Author Dr. Keith Devlin is Executive Director of Stanford University's Center for the Study of Language and Information and a Consulting Professor of Mathematics at Stanford. He has written 23 books, one interactive book on CD-ROM, and over 70 published research articles. He is a Fellow of the American Association for the Advancement of Science, a World Economic Forum Fellow, and a former member of the Mathematical Sciences Education Board of the National Academy of Sciences,. Dr. Devlin is also one of the world's leading popularizers of mathematics. Known as The Math Guy on NPR's Weekend Edition, he is a frequent contributor to other local and national radio and TV shows in the US and Britain, writes a monthly column for the Web journal MAA Online, and regularly writes on mathematics and computers for the British newspaper The Guardian.
  intro to abstract mathematics: Foundations of Abstract Mathematics David C. Kurtz, 1992
  intro to abstract mathematics: Abstract Algebra Gregory T. Lee, 2018-04-13 This carefully written textbook offers a thorough introduction to abstract algebra, covering the fundamentals of groups, rings and fields. The first two chapters present preliminary topics such as properties of the integers and equivalence relations. The author then explores the first major algebraic structure, the group, progressing as far as the Sylow theorems and the classification of finite abelian groups. An introduction to ring theory follows, leading to a discussion of fields and polynomials that includes sections on splitting fields and the construction of finite fields. The final part contains applications to public key cryptography as well as classical straightedge and compass constructions. Explaining key topics at a gentle pace, this book is aimed at undergraduate students. It assumes no prior knowledge of the subject and contains over 500 exercises, half of which have detailed solutions provided.
  intro to abstract mathematics: Introduction to Algebra Peter J. Cameron, 2008 This Second Edition of a classic algebra text includes updated and comprehensive introductory chapters,new material on axiom of Choice, p-groups and local rings, discussion of theory and applications, and over 300 exercises. It is an ideal introductory text for all Year 1 and 2 undergraduate students in mathematics.
  intro to abstract mathematics: An Introduction to Mathematics Alfred North Whitehead, 1958 This distinguished little 'book' is a brisk introduction to a series of mathematical concepts, a history of their development, and a concise summary of how the contemporary reader may use them.- Publisher
  intro to abstract mathematics: Undergraduate Algebra Serge Lang, 2013-06-29 This book, together with Linear Algebra, constitutes a curriculum for an algebra program addressed to undergraduates. The separation of the linear algebra from the other basic algebraic structures fits all existing tendencies affecting undergraduate teaching, and I agree with these tendencies. I have made the present book self contained logically, but it is probably better if students take the linear algebra course before being introduced to the more abstract notions of groups, rings, and fields, and the systematic development of their basic abstract properties. There is of course a little overlap with the book Lin ear Algebra, since I wanted to make the present book self contained. I define vector spaces, matrices, and linear maps and prove their basic properties. The present book could be used for a one-term course, or a year's course, possibly combining it with Linear Algebra. I think it is important to do the field theory and the Galois theory, more important, say, than to do much more group theory than we have done here. There is a chapter on finite fields, which exhibit both features from general field theory, and special features due to characteristic p. Such fields have become important in coding theory.
  intro to abstract mathematics: Linear Algebra Robert J. Valenza, 1993 Based on lectures given at Claremont McKenna College, this text constitutes a substantial, abstract introduction to linear algebra. The presentation emphasizes the structural elements over the computational - for example by connecting matrices to linear transformations from the outset - and prepares the student for further study of abstract mathematics. Uniquely among algebra texts at this level, it introduces group theory early in the discussion, as an example of the rigorous development of informal axiomatic systems.
  intro to abstract mathematics: Abstract Algebra John W. Lawrence, Frank A. Zorzitto, 2021-04-15 Through this book, upper undergraduate mathematics majors will master a challenging yet rewarding subject, and approach advanced studies in algebra, number theory and geometry with confidence. Groups, rings and fields are covered in depth with a strong emphasis on irreducible polynomials, a fresh approach to modules and linear algebra, a fresh take on Gröbner theory, and a group theoretic treatment of Rejewski's deciphering of the Enigma machine. It includes a detailed treatment of the basics on finite groups, including Sylow theory and the structure of finite abelian groups. Galois theory and its applications to polynomial equations and geometric constructions are treated in depth. Those interested in computations will appreciate the novel treatment of division algorithms. This rigorous text 'gets to the point', focusing on concisely demonstrating the concept at hand, taking a 'definitions first, examples next' approach. Exercises reinforce the main ideas of the text and encourage students' creativity.
  intro to abstract mathematics: Concrete Approach to Abstract Algebra W. W. Sawyer, 2018-08-15 Brief, clear, and well written, this introductory treatment bridges the gap between traditional and modern algebra. Includes exercises with complete solutions. The only prerequisite is high school-level algebra. 1959 edition.
  intro to abstract mathematics: A Concise Introduction to Pure Mathematics Martin Liebeck, 2018-09-03 Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Fourth Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations; Euler’s formula for the numbers of corners, edges, and faces of a solid object and the five Platonic solids; the use of prime numbers to encode and decode secret information; the theory of how to compare the sizes of two infinite sets; and the rigorous theory of limits and continuous functions. New to the Fourth Edition Two new chapters that serve as an introduction to abstract algebra via the theory of groups, covering abstract reasoning as well as many examples and applications New material on inequalities, counting methods, the inclusion-exclusion principle, and Euler’s phi function Numerous new exercises, with solutions to the odd-numbered ones Through careful explanations and examples, this popular textbook illustrates the power and beauty of basic mathematical concepts in number theory, discrete mathematics, analysis, and abstract algebra. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher-level mathematics, enabling students to study more advanced courses in abstract algebra and analysis.
  intro to abstract mathematics: Algebra: Chapter 0 Paolo Aluffi, 2021-11-09 Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
  intro to abstract mathematics: Mathematical Reasoning Theodore A. Sundstrom, 2003 Focusing on the formal development of mathematics, this book demonstrates how to read and understand, write and construct mathematical proofs. It emphasizes active learning, and uses elementary number theory and congruence arithmetic throughout. Chapter content covers an introduction to writing in mathematics, logical reasoning, constructing proofs, set theory, mathematical induction, functions, equivalence relations, topics in number theory, and topics in set theory. For learners making the transition form calculus to more advanced mathematics.
  intro to abstract mathematics: Elements of Advanced Mathematics, Third Edition Steven G. Krantz, 2012-03-19 For many years, this classroom-tested, best-selling text has guided mathematics students to more advanced studies in topology, abstract algebra, and real analysis. Elements of Advanced Mathematics, Third Edition retains the content and character of previous editions while making the material more up-to-date and significant. This third edition adds four new chapters on point-set topology, theoretical computer science, the P/NP problem, and zero-knowledge proofs and RSA encryption. The topology chapter builds on the existing real analysis material. The computer science chapters connect basic set theory and logic with current hot topics in the technology sector. Presenting ideas at the cutting edge of modern cryptography and security analysis, the cryptography chapter shows students how mathematics is used in the real world and gives them the impetus for further exploration. This edition also includes more exercises sets in each chapter, expanded treatment of proofs, and new proof techniques. Continuing to bridge computationally oriented mathematics with more theoretically based mathematics, this text provides a path for students to understand the rigor, axiomatics, set theory, and proofs of mathematics. It gives them the background, tools, and skills needed in more advanced courses.
  intro to abstract mathematics: Book of Proof Richard H. Hammack, 2016-01-01 This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.
  intro to abstract mathematics: A Programmer's Introduction to Mathematics Jeremy Kun, 2018-11-27 A Programmer's Introduction to Mathematics uses your familiarity with ideas from programming and software to teach mathematics. You'll learn about the central objects and theorems of mathematics, including graphs, calculus, linear algebra, eigenvalues, optimization, and more. You'll also be immersed in the often unspoken cultural attitudes of mathematics, learning both how to read and write proofs while understanding why mathematics is the way it is. Between each technical chapter is an essay describing a different aspect of mathematical culture, and discussions of the insights and meta-insights that constitute mathematical intuition. As you learn, we'll use new mathematical ideas to create wondrous programs, from cryptographic schemes to neural networks to hyperbolic tessellations. Each chapter also contains a set of exercises that have you actively explore mathematical topics on your own. In short, this book will teach you to engage with mathematics. A Programmer's Introduction to Mathematics is written by Jeremy Kun, who has been writing about math and programming for 8 years on his blog Math Intersect Programming. As of 2018, he works in datacenter optimization at Google.
  intro to abstract mathematics: A Unified Introduction to Linear Algebra Alan Tucker, 1988
  intro to abstract mathematics: Mathematical Proofs Gary Chartrand, Albert D. Polimeni, Ping Zhang, 2013 This book prepares students for the more abstract mathematics courses that follow calculus. The author introduces students to proof techniques, analyzing proofs, and writing proofs of their own. It also provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as the theoretical aspects of fields such as number theory, abstract algebra, and group theory.
  intro to abstract mathematics: Basic Mathematics Serge Lang, 1988-01
Intro Maker - Create Intro Videos Online (1000 + templates)
Get your audience hooked from the first second with captivating and colorful intros using Renderforest’s rich library of intro templates. Our customization tools offer endless possibilities …

Free Intro Maker: Create YouTube Video Intros - Canva
Canva's YouTube intro maker creates professional-level intros that are simple to make—you can even customize and edit your video intro with others in real-time. Make a YouTube intro online in …

Intro Maker - Intro Video Templates for YouTube
Intro Maker is the easiest way to make a YouTube intro video. Customize your video in seconds without downloading any software. ... Find the perfect video template. Browse video templates …

Intro Templates for Video, YouTube & TikTok - FlexClip
With FlexClip's free intro maker online, you can effortlessly create and download a custom video intro in either 4K or HD by utilizing thousands of free intro templates and handy editing features. …

Intro Maker | Video Maker - Placeit
Making an intro video or outro is now super simple with Placeit's Intro Maker! Use this intro maker for YouTube to make engaging videos for your channel. All you need to do is pick a template and …

Free Intro Maker - Make Intros for Your Videos Online - VEED.IO
VEED’s free intro maker is extremely easy to use. You don’t need any video editing experience. You can drag and drop elements easily onto the timeline; add text, images, background music, and …

Intro Video Maker | Create a YouTube Intro Video Online - Biteable
Create a polished intro video in minutes with Biteable, the best online video intro maker. Stand out with professional animation, footage, and effects.

Free Intro Maker: YouTube Video Intros Made Easy - Kapwing
Choose from dozens of templates or use Kapwing's built-in video effects to create a video intro that's perfect for your YouTube channel. Add text to your videos, apply filters, generate subtitles, …

Online Intro Maker - Explore templates for every style - Videobolt
Browse Videobolt's intro templates and logo reveals. Find your style, customize and download a high-quality intro for any type of video.

Free Online Video Intro Maker | Adobe Express
Let Adobe Express be your video intro maker. Grow your audience on YouTube, TikTok, and so much more with an on-brand, custom video intro made in Adobe Express. Start with free, …

Intro Maker - Create Intro Videos Online (1000 + templates)
Get your audience hooked from the first second with captivating and colorful intros using Renderforest’s rich library of intro templates. Our customization tools offer endless possibilities …

Free Intro Maker: Create YouTube Video Intros - Canva
Canva's YouTube intro maker creates professional-level intros that are simple to make—you can even customize and edit your video intro with others in real-time. Make a YouTube intro online …

Intro Maker - Intro Video Templates for YouTube
Intro Maker is the easiest way to make a YouTube intro video. Customize your video in seconds without downloading any software. ... Find the perfect video template. Browse video templates …

Intro Templates for Video, YouTube & TikTok - FlexClip
With FlexClip's free intro maker online, you can effortlessly create and download a custom video intro in either 4K or HD by utilizing thousands of free intro templates and handy editing …

Intro Maker | Video Maker - Placeit
Making an intro video or outro is now super simple with Placeit's Intro Maker! Use this intro maker for YouTube to make engaging videos for your channel. All you need to do is pick a template …

Free Intro Maker - Make Intros for Your Videos Online - VEED.IO
VEED’s free intro maker is extremely easy to use. You don’t need any video editing experience. You can drag and drop elements easily onto the timeline; add text, images, background music, …

Intro Video Maker | Create a YouTube Intro Video Online - Biteable
Create a polished intro video in minutes with Biteable, the best online video intro maker. Stand out with professional animation, footage, and effects.

Free Intro Maker: YouTube Video Intros Made Easy - Kapwing
Choose from dozens of templates or use Kapwing's built-in video effects to create a video intro that's perfect for your YouTube channel. Add text to your videos, apply filters, generate …

Online Intro Maker - Explore templates for every style - Videobolt
Browse Videobolt's intro templates and logo reveals. Find your style, customize and download a high-quality intro for any type of video.

Free Online Video Intro Maker | Adobe Express
Let Adobe Express be your video intro maker. Grow your audience on YouTube, TikTok, and so much more with an on-brand, custom video intro made in Adobe Express. Start with free, …