Advertisement
introductory statistics download: Introductory Statistics 2e Barbara Illowsky, Susan Dean, 2023-12-13 Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License. |
introductory statistics download: Introductory Statistics Douglas S. Shafer, 2022 |
introductory statistics download: Introductory Business Statistics 2e Alexander Holmes, Barbara Illowsky, Susan Dean, 2023-12-13 Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License. |
introductory statistics download: Using R for Introductory Statistics John Verzani, 2018-10-03 The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version. See What’s New in the Second Edition: Increased emphasis on more idiomatic R provides a grounding in the functionality of base R. Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible. Use of knitr package makes code easier to read and therefore easier to reason about. Additional information on computer-intensive approaches motivates the traditional approach. Updated examples and data make the information current and topical. The book has an accompanying package, UsingR, available from CRAN, R’s repository of user-contributed packages. The package contains the data sets mentioned in the text (data(package=UsingR)), answers to selected problems (answers()), a few demonstrations (demo()), the errata (errata()), and sample code from the text. The topics of this text line up closely with traditional teaching progression; however, the book also highlights computer-intensive approaches to motivate the more traditional approach. The authors emphasize realistic data and examples and rely on visualization techniques to gather insight. They introduce statistics and R seamlessly, giving students the tools they need to use R and the information they need to navigate the sometimes complex world of statistical computing. |
introductory statistics download: An Introduction to Statistical Learning Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Jonathan Taylor, 2023-06-30 An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users. |
introductory statistics download: OpenIntro Statistics David Diez, Christopher Barr, Mine Çetinkaya-Rundel, 2015-07-02 The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources. |
introductory statistics download: Online Statistics Education David M Lane, 2014-12-02 Online Statistics: An Interactive Multimedia Course of Study is a resource for learning and teaching introductory statistics. It contains material presented in textbook format and as video presentations. This resource features interactive demonstrations and simulations, case studies, and an analysis lab.This print edition of the public domain textbook gives the student an opportunity to own a physical copy to help enhance their educational experience. This part I features the book Front Matter, Chapters 1-10, and the full Glossary. Chapters Include:: I. Introduction, II. Graphing Distributions, III. Summarizing Distributions, IV. Describing Bivariate Data, V. Probability, VI. Research Design, VII. Normal Distributions, VIII. Advanced Graphs, IX. Sampling Distributions, and X. Estimation. Online Statistics Education: A Multimedia Course of Study (http: //onlinestatbook.com/). Project Leader: David M. Lane, Rice University. |
introductory statistics download: All of Statistics Larry Wasserman, 2004-09-17 This book is for people who want to learn probability and statistics quickly. It brings together many of the main ideas in modern statistics in one place. The book is suitable for students and researchers in statistics, computer science, data mining and machine learning. This book covers a much wider range of topics than a typical introductory text on mathematical statistics. It includes modern topics like nonparametric curve estimation, bootstrapping and classification, topics that are usually relegated to follow-up courses. The reader is assumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. The text can be used at the advanced undergraduate and graduate level. Larry Wasserman is Professor of Statistics at Carnegie Mellon University. He is also a member of the Center for Automated Learning and Discovery in the School of Computer Science. His research areas include nonparametric inference, asymptotic theory, causality, and applications to astrophysics, bioinformatics, and genetics. He is the 1999 winner of the Committee of Presidents of Statistical Societies Presidents' Award and the 2002 winner of the Centre de recherches mathematiques de Montreal–Statistical Society of Canada Prize in Statistics. He is Associate Editor of The Journal of the American Statistical Association and The Annals of Statistics. He is a fellow of the American Statistical Association and of the Institute of Mathematical Statistics. |
introductory statistics download: Introductory Statistics with R Peter Dalgaard, 2006-04-06 This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis. |
introductory statistics download: Learning Statistics with R Daniel Navarro, 2013-01-13 Learning Statistics with R covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com |
introductory statistics download: Introduction to Statistics Wolfgang Karl Härdle, Sigbert Klinke, Bernd Rönz, 2015-12-25 This book covers all the topics found in introductory descriptive statistics courses, including simple linear regression and time series analysis, the fundamentals of inferential statistics (probability theory, random sampling and estimation theory), and inferential statistics itself (confidence intervals, testing). Each chapter starts with the necessary theoretical background, which is followed by a variety of examples. The core examples are based on the content of the respective chapter, while the advanced examples, designed to deepen students’ knowledge, also draw on information and material from previous chapters. The enhanced online version helps students grasp the complexity and the practical relevance of statistical analysis through interactive examples and is suitable for undergraduate and graduate students taking their first statistics courses, as well as for undergraduate students in non-mathematical fields, e.g. economics, the social sciences etc. |
introductory statistics download: Introductory Statistics and Analytics Peter C. Bruce, 2014-12-31 Concise, thoroughly class-tested primer that features basic statistical concepts in the concepts in the context of analytics, resampling, and the bootstrap A uniquely developed presentation of key statistical topics, Introductory Statistics and Analytics: A Resampling Perspective provides an accessible approach to statistical analytics, resampling, and the bootstrap for readers with various levels of exposure to basic probability and statistics. Originally class-tested at one of the first online learning companies in the discipline, www.statistics.com, the book primarily focuses on applications of statistical concepts developed via resampling, with a background discussion of mathematical theory. This feature stresses statistical literacy and understanding, which demonstrates the fundamental basis for statistical inference and demystifies traditional formulas. The book begins with illustrations that have the essential statistical topics interwoven throughout before moving on to demonstrate the proper design of studies. Meeting all of the Guidelines for Assessment and Instruction in Statistics Education (GAISE) requirements for an introductory statistics course, Introductory Statistics and Analytics: A Resampling Perspective also includes: Over 300 “Try It Yourself” exercises and intermittent practice questions, which challenge readers at multiple levels to investigate and explore key statistical concepts Numerous interactive links designed to provide solutions to exercises and further information on crucial concepts Linkages that connect statistics to the rapidly growing field of data science Multiple discussions of various software systems, such as Microsoft Office Excel®, StatCrunch, and R, to develop and analyze data Areas of concern and/or contrasting points-of-view indicated through the use of “Caution” icons Introductory Statistics and Analytics: A Resampling Perspective is an excellent primary textbook for courses in preliminary statistics as well as a supplement for courses in upper-level statistics and related fields, such as biostatistics and econometrics. The book is also a general reference for readers interested in revisiting the value of statistics. |
introductory statistics download: Introductory Statistics for Business and Economics Jan Ubøe, 2017-12-30 This textbook discusses central statistical concepts and their use in business and economics. To endure the hardship of abstract statistical thinking, business and economics students need to see interesting applications at an early stage. Accordingly, the book predominantly focuses on exercises, several of which draw on simple applications of non-linear theory. The main body presents central ideas in a simple, straightforward manner; the exposition is concise, without sacrificing rigor. The book bridges the gap between theory and applications, with most exercises formulated in an economic context. Its simplicity of style makes the book suitable for students at any level, and every chapter starts out with simple problems. Several exercises, however, are more challenging, as they are devoted to the discussion of non-trivial economic problems where statistics plays a central part. |
introductory statistics download: Introduction to the New Statistics Geoff Cumming, Robert Calin-Jageman, 2016-10-04 This is the first introductory statistics text to use an estimation approach from the start to help readers understand effect sizes, confidence intervals (CIs), and meta-analysis (‘the new statistics’). It is also the first text to explain the new and exciting Open Science practices, which encourage replication and enhance the trustworthiness of research. In addition, the book explains NHST fully so students can understand published research. Numerous real research examples are used throughout. The book uses today’s most effective learning strategies and promotes critical thinking, comprehension, and retention, to deepen users’ understanding of statistics and modern research methods. The free ESCI (Exploratory Software for Confidence Intervals) software makes concepts visually vivid, and provides calculation and graphing facilities. The book can be used with or without ESCI. Other highlights include: - Coverage of both estimation and NHST approaches, and how to easily translate between the two. - Some exercises use ESCI to analyze data and create graphs including CIs, for best understanding of estimation methods. -Videos of the authors describing key concepts and demonstrating use of ESCI provide an engaging learning tool for traditional or flipped classrooms. -In-chapter exercises and quizzes with related commentary allow students to learn by doing, and to monitor their progress. -End-of-chapter exercises and commentary, many using real data, give practice for using the new statistics to analyze data, as well as for applying research judgment in realistic contexts. -Don’t fool yourself tips help students avoid common errors. -Red Flags highlight the meaning of significance and what p values actually mean. -Chapter outlines, defined key terms, sidebars of key points, and summarized take-home messages provide a study tool at exam time. -http://www.routledge.com/cw/cumming offers for students: ESCI downloads; data sets; key term flashcards; tips for using SPSS for analyzing data; and videos. For instructors it offers: tips for teaching the new statistics and Open Science; additional homework exercises; assessment items; answer keys for homework and assessment items; and downloadable text images; and PowerPoint lecture slides. Intended for introduction to statistics, data analysis, or quantitative methods courses in psychology, education, and other social and health sciences, researchers interested in understanding the new statistics will also appreciate this book. No familiarity with introductory statistics is assumed. |
introductory statistics download: Collaborative Statistics Barbara Illowsky, Susan Dean, 2015-02-18 Collaborative Stastistics is intended for introductory statistics courses being taken by students at two- and four-year colleges who are majoring in fields other than math or engineering. Intermediate algebra is the only prerequisite. The book focuses on applications of statistical knowledge rather than the theory behind it. Barbara Illowsky and Susan Dean are professors of mathematics and statistics at De Anza College in Cupertino, CA. They present nationally on integrating technology, distance learning, collaborative learning, and multiculturalism into the elementary statistics classroom. |
introductory statistics download: A Modern Introduction to Probability and Statistics F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, L.E. Meester, 2006-03-30 Many current texts in the area are just cookbooks and, as a result, students do not know why they perform the methods they are taught, or why the methods work. The strength of this book is that it readdresses these shortcomings; by using examples, often from real life and using real data, the authors show how the fundamentals of probabilistic and statistical theories arise intuitively. A Modern Introduction to Probability and Statistics has numerous quick exercises to give direct feedback to students. In addition there are over 350 exercises, half of which have answers, of which half have full solutions. A website gives access to the data files used in the text, and, for instructors, the remaining solutions. The only pre-requisite is a first course in calculus; the text covers standard statistics and probability material, and develops beyond traditional parametric models to the Poisson process, and on to modern methods such as the bootstrap. |
introductory statistics download: Statistics Using Technology, Second Edition Kathryn Kozak, 2015-12-12 Statistics With Technology, Second Edition, is an introductory statistics textbook. It uses the TI-83/84 calculator and R, an open source statistical software, for all calculations. Other technology can also be used besides the TI-83/84 calculator and the software R, but these are the ones that are presented in the text. This book presents probability and statistics from a more conceptual approach, and focuses less on computation. Analysis and interpretation of data is more important than how to compute basic statistical values. |
introductory statistics download: Introduction to Statistics and Data Analysis Christian Heumann, Michael Schomaker, Shalabh, 2023-01-30 Now in its second edition, this introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. This revised and extended edition features new chapters on logistic regression, simple random sampling, including bootstrapping, and causal inference. The text is primarily intended for undergraduate students in disciplines such as business administration, the social sciences, medicine, politics, and macroeconomics. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R, as well as supplementary material that will enable the reader to quickly adapt the methods to their own applications. |
introductory statistics download: Introductory Statistics for the Health Sciences Lise DeShea, Larry E. Toothaker, 2015-03-25 Introductory Statistics for the Health Sciences takes students on a journey to a wilderness where science explores the unknown, providing students with a strong, practical foundation in statistics. Using a color format throughout, the book contains engaging figures that illustrate real data sets from published research. Examples come from many area |
introductory statistics download: Introductory Statistics with Applications in General Insurance I. B. Hossack, J. H. Pollard, B. Zehnwirth, 1999-04 This is a new edition of a very successful introduction to statistical methods for general insurance practitioners. No prior statistical knowledge is assumed, and the mathematical level required is approximately equivalent to school mathematics. Whilst the book is primarily introductory, the authors discuss some more advanced topics, including simulation, calculation of risk premiums, credibility theory, estimation of outstanding claim provisions and risk theory. All topics are illustrated by examples drawn from general insurance, and references for further reading are given. Solutions to most of the exercises are included. For the new edition the opportunity has been taken to make minor improvements and corrections throughout the text, to rewrite some sections to improve clarity, and to update the examples and references. A new section dealing with estimation has also been added. |
introductory statistics download: Introductory Statistics Volume 2 Textbook Equity Edition, 2014-02-10 Introductory Statistics is designed for the one-semester, introduction to statistics course and is geared toward students majoring in fields other than math or engineering. This text assumes students have been exposed to intermediate algebra, and it focuses on the applications of statistical knowledge rather than the theory behind it. The foundation of this textbook is Collaborative Statistics, by Barbara Illowsky and Susan Dean. Additional topics, examples, and ample opportunities for practice have been added to each chapter. The development choices for this textbook were made with the guidance of many faculty members who are deeply involved in teaching this course. These choices led to innovations in art, terminology, and practical applications, all with a goal of increasing relevance and accessibility for students. We strove to make the discipline meaningful, so that students can draw from it a working knowledge that will enrich their future studies and help them make sense of the world around them. |
introductory statistics download: Statistics Michael J. Crawley, 2005-05-06 Computer software is an essential tool for many statistical modelling and data analysis techniques, aiding in the implementation of large data sets in order to obtain useful results. R is one of the most powerful and flexible statistical software packages available, and enables the user to apply a wide variety of statistical methods ranging from simple regression to generalized linear modelling. Statistics: An Introduction using R is a clear and concise introductory textbook to statistical analysis using this powerful and free software, and follows on from the success of the author's previous best-selling title Statistical Computing. * Features step-by-step instructions that assume no mathematics, statistics or programming background, helping the non-statistician to fully understand the methodology. * Uses a series of realistic examples, developing step-wise from the simplest cases, with the emphasis on checking the assumptions (e.g. constancy of variance and normality of errors) and the adequacy of the model chosen to fit the data. * The emphasis throughout is on estimation of effect sizes and confidence intervals, rather than on hypothesis testing. * Covers the full range of statistical techniques likely to be need to analyse the data from research projects, including elementary material like t-tests and chi-squared tests, intermediate methods like regression and analysis of variance, and more advanced techniques like generalized linear modelling. * Includes numerous worked examples and exercises within each chapter. * Accompanied by a website featuring worked examples, data sets, exercises and solutions: http://www.imperial.ac.uk/bio/research/crawley/statistics Statistics: An Introduction using R is the first text to offer such a concise introduction to a broad array of statistical methods, at a level that is elementary enough to appeal to a broad range of disciplines. It is primarily aimed at undergraduate students in medicine, engineering, economics and biology - but will also appeal to postgraduates who have not previously covered this area, or wish to switch to using R. |
introductory statistics download: Introduction to Statistics Gottfried E. Noether, 2012-09-27 The introductory statistics course presents serious pedagogical problems to the instructor. For the great majority of students, the course represents the only formal contact with statistical thinking that he or she will have in college. Students come from many different fields of study, and a large number suffer from math anxiety. Thus, an instructor who is willing to settle for some limited objectives will have a much better chance of success than an instructor who aims for a broad exposure to statistics. Many statisticians agree that the primary objective of the introductory statistics course is to introduce students to variability and uncertainty and how to cope with them when drawing inferences from observed data. Addi tionally, the introductory COurse should enable students to handle a limited number of useful statistical techniques. The present text, which is the successor to the author's Introduction to Statistics: A Nonparametric Approach (Houghton Mifflin Company, Boston, 1976), tries to meet these objectives by introducing the student to the ba sic ideas of estimation and hypothesis testing early in the course after a rather brief introduction to data organization and some simple ideas about probability. Estimation and hypothesis testing are discussed in terms of the two-sample problem, which is both conceptually simpler and more realistic than the one-sample problem that customarily serves as the basis for the discussion of statistical inference. |
introductory statistics download: Introductory Statistics for Health and Nursing Using SPSS Louise Marston, 2009-12-15 Introductory Statistics for Health & Nursing using SPSS is an impressive introductory statistics text ideal for all health science and nursing students. Health and nursing students can be anxious and lacking in confidence when it comes to handling statistics. This book has been developed with this readership in mind. This accessible text eschews long and off-putting statistical formulae in favour of non-daunting practical and SPSS-based examples. What′s more, its content will fit ideally with the common course content of stats courses in the field. Introductory Statistics for Health & Nursing using SPSS is also accompanied by a companion website containing data-sets and examples for use by lecturers with their students. The inclusion of real-world data and a host of health-related examples should make this an ideal core text for any introductory statistics course in the field. |
introductory statistics download: Introduction to Probability and Statistics for Engineers and Scientists Sheldon M. Ross, 1987 Elements of probability; Random variables and expectation; Special; random variables; Sampling; Parameter estimation; Hypothesis testing; Regression; Analysis of variance; Goodness of fit and nonparametric testing; Life testing; Quality control; Simulation. |
introductory statistics download: Introductory Statistics with Randomization and Simulation David M. Diez, Christopher D. Barr, Mine Çetinkaya-Rundel, 2014-07-18 This textbook may be downloaded as a free PDF on the project's website, and the paperback is sold royalty-free. OpenIntro develops free textbooks and course resources for introductory statistics that exceeds the quality standards of traditional textbooks and resources, and that maximizes accessibility options for the typical student. The approach taken in this textbooks differs from OpenIntro Statistics in its introduction to inference. The foundations for inference are provided using randomization and simulation methods. Once a solid foundation is formed, a transition is made to traditional approaches, where the normal and t distributions are used for hypothesis testing and the construction of confidence intervals. |
introductory statistics download: Introductory Statistics for the Life and Biomedical Sciences Julie Vu, David Harrington, 2020-03 Introduction to Statistics for the Life and Biomedical Sciences has been written to be used in conjunction with a set of self-paced learning labs. These labs guide students through learning how to apply statistical ideas and concepts discussed in the text with the R computing language.The text discusses the important ideas used to support an interpretation (such as the notion of a confidence interval), rather than the process of generating such material from data (such as computing a confidence interval for a particular subset of individuals in a study). This allows students whose main focus is understanding statistical concepts to not be distracted by the details of a particular software package. In our experience, however, we have found that many students enter a research setting after only a single course in statistics. These students benefit from a practical introduction to data analysis that incorporates the use of a statistical computing language.In a classroom setting, we have found it beneficial for students to start working through the labs after having been exposed to the corresponding material in the text, either from self-reading or through an instructor presenting the main ideas. The labs are organized by chapter, and each lab corresponds to a particular section or set of sections in the text.There are traditional exercises at the end of each chapter that do not require the use of computing. In the current posting, Chapters 1 - 5 have end-of-chapter exercises. More complicated methods, such as multiple regression, do not lend themselves to hand calculation and computing is necessary for gaining practical experience with these methods. The lab exercises for these later chapters become an increasingly important part of mastering the material.An essential component of the learning labs are the Lab Notes accompanying each chapter. The lab notes are a detailed reference guide to the R functions that appear in the labs, written to be accessible to a first-time user of a computing language. They provide more explanation than available in the R help documentation, with examples specific to what is demonstrated in the labs. |
introductory statistics download: Statistics for Linguists: An Introduction Using R Bodo Winter, 2019-10-30 Statistics for Linguists: An Introduction Using R is the first statistics textbook on linear models for linguistics. The book covers simple uses of linear models through generalized models to more advanced approaches, maintaining its focus on conceptual issues and avoiding excessive mathematical details. It contains many applied examples using the R statistical programming environment. Written in an accessible tone and style, this text is the ideal main resource for graduate and advanced undergraduate students of Linguistics statistics courses as well as those in other fields, including Psychology, Cognitive Science, and Data Science. |
introductory statistics download: Understanding Statistics Antony Davies, 2017-12-05 The modern world is brimming with statistical information—information relevant to our personal health and safety, the weather, or the robustness of the national or global economy, to name just a few examples. But don’t statistics lie? Well, no—people lie, and sometimes they use statistical language to do it. Knowing when you’re being hoodwinked requires a degree of statistical literacy, but most people don’t learn how to interpret statistical claims unless they take a formal course that trains them in the mathematical techniques of statistical analysis. This book won’t turn you into a statistician—that would require a much longer and more technical discussion—but it will give you the tools to understand statistical claims and avoid common pitfalls associated with translating statistical information from the language of mathematics to plain English. |
introductory statistics download: Introduction to Modern Statistics Mine Çetinkaya-Rundel, Johanna Hardin, 2021-06-12 |
introductory statistics download: Introductory Statistics Stephen Kokoska, 2008-01-01 |
introductory statistics download: Introduction to Statistics Jim Frost, 2020-07-21 Learn statistics without fear! Build a solid foundation in data analysis. Be confident that you understand what your data are telling you and that you can explain the results to others! I'll help you intuitively understand statistics by using simple language and deemphasizing formulas. This guide starts with an overview of statistics and why it is so important. We proceed to essential statistical skills and knowledge about different types of data, relationships, and distributions. Then we move to using inferential statistics to expand human knowledge, how it fits into the scientific method, and how to design and critique experiments. Learn the fundamentals of statistics. Why is the field of statistics so vital in our data-driven society? Interpret graphs and summary statistics. Find relationships between different types of variables. Understand the properties of data distributions. Use measures of central tendency and variability. Interpret correlations and percentiles. Use probability distributions to calculate probabilities. Learn about the normal distribution and the binomial distributions in depth. Grasp the differences between descriptive and inferential statistics. Use data collection methodologies properly and understand sample size considerations. Critique scientific experiments-whether it's your own or another researcher's. |
introductory statistics download: A Gentle Introduction to Statistics Using SAS Studio in the Cloud Ron Cody, 2021-05-07 .Point and click your way to performing statistics! Many people are intimidated by learning statistics, but A Gentle Introduction to Statistics Using SAS Studio in the Cloud is here to help. Whether you need to perform statistical analysis for a project or, perhaps, for a course in education, psychology, sociology, economics, or any other field that requires basic statistical skills, this book teaches the fundamentals of statistics, from designing your experiment through calculating logistic regressions. Serving as an introduction to many common statistical tests and principles, it explains concepts in an intuitive way with little math and very few formulas.The book is full of examples demonstrating the use of SAS Studio's easy point-and-click interface accessed with SAS OnDemand for Academics, an online delivery platform for teaching and learning statistical analysis that provides free access to SAS software via the cloud. Topics included in this book are: How to access SAS OnDemand for Academics Descriptive statistics One-sample tests T tests (for independent or paired samples) One-way analysis of variance (ANOVA) N-way ANOVA Correlation analysis Simple and multiple linear regression Binary logistic regression Categorical data, including two-way tables and chi-square Power and sample size calculations Questions are provided to test your knowledge and practice your skills. |
introductory statistics download: Introductory Statistics Robert Gould, Colleen N. Ryan, Robert Keller, 2011-12-27 This manual contains completely worked out solutions for all the odd-numbered exercises in the text. |
introductory statistics download: Introductory Statistics for Business and Economics Thomas H. Wonnacott, Ronald J. Wonnacott, 1984-05 This Fourth Edition includes new sections on graphs, robust estimation, expected value and the bootstrap, in addition to new material on the use of computers. The regression model is well covered, including both nonlinear and multiple regression. The chapters contain many real-life examples and are relatively self-contained, making adaptable to a variety of courses. |
introductory statistics download: Introductory Statistics, International Adaptation Prem S. Mann, 2024-02-06 Introductory Statistics, 10th edition, is written for a one- or two-semester first course in applied statistics and is intended for students who do not have a strong background in mathematics. The only prerequisite is knowledge of elementary algebra. Known for its realistic examples and exercises, clarity and brevity of presentation, and soundness of pedagogical approach, the book encourages statistical interpretation and literacy regardless of student background. The book employs a clear and straightforward writing style and uses abundant visuals and figures, which reinforce key concepts and relate new ideas to prior sections for a smooth transition between topics. This international edition offers new and updated materials and focuses on strengthening the coverage by including new sections on types of scales, negative binomial distribution, and two-way analysis of variance. Additionally, discussions on ogive curves, geometric mean, and harmonic mean have also been added. Many examples and exercises throughout the book are new or revised, providing varied ways for students to practice statistical concepts. |
introductory statistics download: Introduction to Statistical Thought , 2005 |
introductory statistics download: Book of R Tilman Davies M., 2016 |
introductory statistics download: Project-Based R Companion to Introductory Statistics Chelsea Myers, 2020-12-23 Project-Based R Companion to Introductory Statistics is envisioned as a companion to a traditional statistics or biostatistics textbook, with each chapter covering traditional topics such as descriptive statistics, regression, and hypothesis testing. However, unlike a traditional textbook, each chapter will present its material using a complete step-by-step analysis of a real publicly available dataset, with an emphasis on the practical skills of testing assumptions, data exploration, and forming conclusions. The chapters in the main body of the book include a worked example showing the R code used at each step followed by a multi-part project for students to complete. These projects, which could serve as alternatives to traditional discrete homework problems, will illustrate how to put the pieces together and conduct a complete start-to-finish data analysis using the R statistical software package. At the end of the book, there are several projects that require the use of multiple statistical techniques that could be used as a take-home final exam or final project for a class. Key features of the text: Organized in chapters focusing on the same topics found in typical introductory statistics textbooks (descriptive statistics, regression, two-way tables, hypothesis testing for means and proportions, etc.) so instructors can easily pair this supplementary material with course plans Includes student projects for each chapter which can be assigned as laboratory exercises or homework assignments to supplement traditional homework Features real-world datasets from scientific publications in the fields of history, pop culture, business, medicine, and forensics for students to analyze Allows students to gain experience working through a variety of statistical analyses from start to finish The book is written at the undergraduate level to be used in an introductory statistical methods course or subject-specific research methods course such as biostatistics or research methods for psychology or business analytics. Author After a 10-year career as a research biostatistician in the Department of Ophthalmology and Visual Sciences at the University of Wisconsin-Madison, Chelsea Myers teaches statistics and biostatistics at Rollins College and Valencia College in Central Florida. She has authored or co-authored more than 30 scientific papers and presentations and is the creator of the MCAT preparation website MCATMath.com. |
introductory statistics download: Introductory Statistics with R Peter Dalgaard, 2008-06-27 This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis. |
INTRODUCTORY Definition & Meaning - Merriam-Webster
May 31, 2012 · The meaning of INTRODUCTORY is of, relating to, or being a first step that sets something going or in proper perspective. How to use introductory in a sentence.
INTRODUCTORY | English meaning - Cambridge Dictionary
INTRODUCTORY definition: 1. existing, used, or experienced for the first time: 2. written or said at the beginning: 3…. Learn more.
INTRODUCTORY Definition & Meaning | Dictionary.com
Introductory definition: serving or used to introduce; preliminary; beginning.. See examples of INTRODUCTORY used in a sentence.
introductory adjective - Definition, pictures, pronunciation and …
Definition of introductory adjective in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
INTRODUCTORY definition in American English - Collins Online …
An introductory remark, talk, or part of a book gives a small amount of general information about a particular subject, often before a more detailed explanation.
Introductory - definition of introductory by The Free Dictionary
Define introductory. introductory synonyms, introductory pronunciation, introductory translation, English dictionary definition of introductory. adj. Of, relating to, or constituting an introduction; …
Introductory - Definition, Meaning & Synonyms
Something introductory prefaces or explains what comes after it. An introductory paragraph at the start of your essay will sum up the ideas you plan to discuss. Introductory remarks before a …
introductory - WordReference.com Dictionary of English
beginning: an introductory course; an introductory paragraph. Also, in′tro•duc′tive. in′tro•duc′to•ri•ness, n. See preliminary. Synonyms: prefatory, initial, opening, precursory, …
INTRODUCTORY Synonyms: 62 Similar and Opposite Words - Merriam-Webster
Synonyms for INTRODUCTORY: preliminary, preparatory, primary, prefatory, beginning, preparative, basic, precursory; Antonyms of INTRODUCTORY: following, subsequent, after, …
Introductory Definition & Meaning | Britannica Dictionary
INTRODUCTORY meaning: 1 : providing information about someone who is about to speak, perform, etc., or something that is about to begin; 2 : providing basic information about a subject
INTRODUCTORY Definition & Meaning - Merriam-Webster
May 31, 2012 · The meaning of INTRODUCTORY is of, relating to, or being a first step that sets something going or in proper perspective. How to use introductory in a sentence.
INTRODUCTORY | English meaning - Cambridge Dictionary
INTRODUCTORY definition: 1. existing, used, or experienced for the first time: 2. written or said at the beginning: 3…. Learn more.
INTRODUCTORY Definition & Meaning | Dictionary.com
Introductory definition: serving or used to introduce; preliminary; beginning.. See examples of INTRODUCTORY used in a sentence.
introductory adjective - Definition, pictures, pronunciation and …
Definition of introductory adjective in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
INTRODUCTORY definition in American English - Collins Online …
An introductory remark, talk, or part of a book gives a small amount of general information about a particular subject, often before a more detailed explanation.
Introductory - definition of introductory by The Free Dictionary
Define introductory. introductory synonyms, introductory pronunciation, introductory translation, English dictionary definition of introductory. adj. Of, relating to, or constituting an introduction; …
Introductory - Definition, Meaning & Synonyms
Something introductory prefaces or explains what comes after it. An introductory paragraph at the start of your essay will sum up the ideas you plan to discuss. Introductory remarks before a …
introductory - WordReference.com Dictionary of English
beginning: an introductory course; an introductory paragraph. Also, in′tro•duc′tive. in′tro•duc′to•ri•ness, n. See preliminary. Synonyms: prefatory, initial, opening, precursory, …
INTRODUCTORY Synonyms: 62 Similar and Opposite Words - Merriam-Webster
Synonyms for INTRODUCTORY: preliminary, preparatory, primary, prefatory, beginning, preparative, basic, precursory; Antonyms of INTRODUCTORY: following, subsequent, after, …
Introductory Definition & Meaning | Britannica Dictionary
INTRODUCTORY meaning: 1 : providing information about someone who is about to speak, perform, etc., or something that is about to begin; 2 : providing basic information about a subject