Advertisement
introduction to protein science: Introduction to Protein Science Arthur Lesk, 2010-03-25 Starting by describing the structure of proteins and explaining how these structures can be studied, this book goes on to illustrate the wide range of protein functions by showing how the shape of a protein is intimately linked to its function. |
introduction to protein science: Introduction to Protein Science Arthur M. Lesk, 2016 Proteins are essential to life, having a vital role in all living organisms. They are the ultimate micro machines: some are building blocks, joining with other substances to make the cells from which we are all formed. Some are catalysts, speeding up essential biochemical reactions to keep our cells alive. Yet others help cells to communicate, to move, and to build up the complex mix of tissues that make up our bodies. Introduction to Protein Science provides a broad ranging introduction to the contemporary study of proteins suitable for students on biosciences degrees internationally. Starting by describing the structure of proteins and how these structures can be studied, the book goes on to illustrate the wide range of functions that proteins have, showing how the shape of a protein is intimately linked to the function that it has. The book then describes how new experimental and computational techniques are helping us to predict a protein s structure and function, and how this is paving the way for us to design new proteins with specific characteristics, with exciting implications in areas such as drug design. Written by Arthur Lesk, the author of the highly successful Introduc |
introduction to protein science: Introduction to Protein Structure Carl Ivar Branden, John Tooze, 2012-03-26 The VitalBook e-book of Introduction to Protein Structure, Second Edition is inly available in the US and Canada at the present time. To purchase or rent please visit http://store.vitalsource.com/show/9780815323051Introduction to Protein Structure provides an account of the principles of protein structure, with examples of key proteins in their bio |
introduction to protein science: Fundamentals of Protein Structure and Function Engelbert Buxbaum, 2015-11-27 This book serves as an introduction to protein structure and function. Starting with their makeup from simple building blocks, called amino acids, the 3-dimensional structure of proteins is explained. This leads to a discussion how misfolding of proteins causes diseases like cancer, various encephalopathies, or diabetes. Enzymology and modern concepts of enzyme kinetics are then introduced, taking into account the physiological, pharmacological and medical significance of this often neglected topic. This is followed by thorough coverage of hæmoglobin and myoglobin, immunoproteins, motor proteins and movement, cell-cell interactions, molecular chaperones and chaperonins, transport of proteins to various cell compartments and solute transport across biological membranes. Proteins in the laboratory are also covered, including a detailed description of the purification and determination of proteins, as well as their characterisation for size and shape, structure and molecular interactions. The book emphasises the link between protein structure, physiological function and medical significance. This book can be used for graduate and advanced undergraduate classes covering protein structure and function and as an introductory text for researchers in protein biochemistry, molecular and cell biology, chemistry, biophysics, biomedicine and related courses. About the author: Dr. Buxbaum is a biochemist with interest in enzymology and protein science. He has been working on the biochemistry of membrane transport proteins for nearly thirty years and has taught courses in biochemistry and biomedicine at several universities. |
introduction to protein science: Introduction to Proteins Amit Kessel, Nir Ben-Tal, 2018-03-22 Introduction to Proteins provides a comprehensive and state-of-the-art introduction to the structure, function, and motion of proteins for students, faculty, and researchers at all levels. The book covers proteins and enzymes across a wide range of contexts and applications, including medical disorders, drugs, toxins, chemical warfare, and animal behavior. Each chapter includes a Summary, Exercies, and References. New features in the thoroughly-updated second edition include: A brand-new chapter on enzymatic catalysis, describing enzyme biochemistry, classification, kinetics, thermodynamics, mechanisms, and applications in medicine and other industries. These are accompanied by multiple animations of biochemical reactions and mechanisms, accessible via embedded QR codes (which can be viewed by smartphones) An in-depth discussion of G-protein-coupled receptors (GPCRs) A wider-scale description of biochemical and biophysical methods for studying proteins, including fully accessible internet-based resources, such as databases and algorithms Animations of protein dynamics and conformational changes, accessible via embedded QR codes Additional features Extensive discussion of the energetics of protein folding, stability and interactions A comprehensive view of membrane proteins, with emphasis on structure-function relationship Coverage of intrinsically unstructured proteins, providing a complete, realistic view of the proteome and its underlying functions Exploration of industrial applications of protein engineering and rational drug design Each chapter includes a Summary, Exercies, and References Approximately 300 color images Downloadable solutions manual available at www.crcpress.com For more information, including all presentations, tables, animations, and exercises, as well as a complete teaching course on proteins' structure and function, please visit the author's website: http://ibis.tau.ac.il/wiki/nir_bental/index.php/Introduction_to_Proteins_Book. Praise for the first edition This book captures, in a very accessible way, a growing body of literature on the structure, function and motion of proteins. This is a superb publication that would be very useful to undergraduates, graduate students, postdoctoral researchers, and instructors involved in structural biology or biophysics courses or in research on protein structure-function relationships. --David Sheehan, ChemBioChem, 2011 Introduction to Proteins is an excellent, state-of-the-art choice for students, faculty, or researchers needing a monograph on protein structure. This is an immensely informative, thoroughly researched, up-to-date text, with broad coverage and remarkable depth. Introduction to Proteins would provide an excellent basis for an upper-level or graduate course on protein structure, and a valuable addition to the libraries of professionals interested in this centrally important field. --Eric Martz, Biochemistry and Molecular Biology Education, 2012 |
introduction to protein science: Introduction to Protein Science Arthur M. Lesk, 2016 |
introduction to protein science: An Introduction to Protein Informatics Karl-Heinz Zimmermann, 2003-08-31 Protein informatics is a newer name for an already existing discipline. It encompasses the techniques used in bioinformatics and molecular modeling that are related to proteins. While bioinformatics is mainly concerned with the collection, organization, and analysis of biological data, molecular modeling is devoted to representation and manipulation of the structure of proteins. Protein informatics requires substantial prerequisites on computer science, mathematics, and molecular biology. The approach chosen here, allows a direct and rapid grasp on the subject starting from basic knowledge of algorithm design, calculus, linear algebra, and probability theory. An Introduction to Protein Informatics, a professional monograph will provide the reader a comprehensive introduction to the field of protein informatics. The text emphasizes mathematical and computational methods to tackle the central problems of alignment, phylogenetic reconstruction, and prediction and sampling of protein structure. An Introduction to Protein Informatics is designed for a professional audience, composed of researchers and practitioners within bioinformatics, molecular modeling, algorithm design, optimization, and pattern recognition. This book is also suitable as a graduate-level text for students in computer science, mathematics, and biomedicine. |
introduction to protein science: Protein Physics Alexei V. Finkelstein, Oleg Ptitsyn, 2016-06-22 Protein Physics: A Course of Lectures covers the most general problems of protein structure, folding and function. It describes key experimental facts and introduces concepts and theories, dealing with fibrous, membrane, and water-soluble globular proteins, in both their native and denatured states. The book systematically summarizes and presents the results of several decades of worldwide fundamental research on protein physics, structure, and folding, describing many physical models that help readers make estimates and predictions of physical processes that occur in proteins. New to this revised edition is the inclusion of novel information on amyloid aggregation, natively disordered proteins, protein folding in vivo, protein motors, misfolding, chameleon proteins, advances in protein engineering & design, and advances in the modeling of protein folding. Further, the book provides problems with solutions, many new and updated references, and physical and mathematical appendices. In addition, new figures (including stereo drawings, with a special appendix showing how to use them) are added, making this an ideal resource for graduate and advanced undergraduate students and researchers in academia in the fields of biophysics, physics, biochemistry, biologists, biotechnology, and chemistry. - Fully revised and expanded new edition based on the latest research developments in protein physics - Written by the world's top expert in the field - Deals with fibrous, membrane, and water-soluble globular proteins, in both their native and denatured states - Summarizes, in a systematic form, the results of several decades of worldwide fundamental research on protein physics and their structure and folding - Examines experimental data on protein structure in the post-genome era |
introduction to protein science: Introduction to Proteins and Protein Engineering Barry Robson, Jean Garnier, 1988 The desire to understand protein structure has been given new impetus by the explosive growth of biotechnology and the important role of proteins, natural and modified, in this technology. Protein molecules are machines, and protein engineering is opening up a whole new world of machinery on the molecular scale. This work is a simple, but in many ways detailed, introduction, to current knowledge, techniques, and applications. The volume is essentially in two parts, the first half covering a basic introduction to proteins appropriate at the undergraduate and early postgraduate level, which will prove a valuable teaching aid. The second half is a more advanced guide to concepts and methods, covering a range of aspects not previously collected in one volume. It will serve as a background reader and guide for advanced research study. |
introduction to protein science: Introduction to Protein Mass Spectrometry Pradip K. Ghosh, 2024-04-22 Introduction to Protein Mass Spectrometry, Second Edition provides a comprehensive overview of this increasingly important, yet complex, analytical technique. This book enables readers to understand how determinations about protein identity from mass spectrometric data are made. Coverage begins with the technical basics, including preparations, instruments, and spectrometric analysis of peptides and proteins, before exploring applied use in biological applications, bioinformatics, database, and software resources. This new edition is fully updated to include the latest developments in the field and will feature new content covering recent progress in the areas where there have been the most exciting advances. These include PNNL's multilevel-PCB-based SLIM realization, SLIM-Agilent QQQ field trials; employment of SLIM-IMS-cryo-IR combination in molecular structure determination; proximity-labelling mass spectrometry, and applications in neuroscience. - Offers up-to-date, introductory information for scientists and researchers new to the field, as well as advanced insights into the critical assessment of computer-analyzed mass spectrometric results and their current limitations - Provides examples of commonly used MS instruments from a range of key manufacturers/developers, including Bruker, Applied Biosystems, JEOL, Thermo Scientific/Thermo Fisher Scientific, IU, Waters and PNNL - Includes biological applications and exploration of analytical tools and databases for bioinformatics - Features definitions, case studies, and recent developments in protein mass spectrometry - Includes sections new to this edition on SLIM (Structures for Lossless Ion Manipulation) and mass spectrometry applications in neuroscience, including synaptic biology and Alzheimer's disease |
introduction to protein science: Nutrition Alice Callahan, Heather Leonard, Tamberly Powell, 2020 |
introduction to protein science: Introduction to Protein-DNA Interactions Gary Stormo, 2013 One of the foundations of molecular biology is how the interactions of proteins with DNA control many aspects of gene expression. Since the mid-20th century discoveries of the lac repressor and operator and the competition between the cI and cro proteins for the same segment of DNA, we have learned an enormous amount about the interactions of proteins with DNA and their control of fundamental processes in the cell. Introduction to Protein-DNA Interactions: Structure, Thermodynamics, and Bioinformatics describes what we know about protein-DNA interactions from the complementary perspectives of molecular and structural biology and bioinformatics and how each perspective informs the others. A particular emphasis is on how insights from experimental work can be translated into specific computational approaches to create unified view of the field and a fuller understanding of protein-DNA interactions. |
introduction to protein science: Proteins David Whitford, 2013-04-25 Proteins: Structure and Function is a comprehensive introduction to the study of proteins and their importance to modern biochemistry. Each chapter addresses the structure and function of proteins with a definitive theme designed to enhance student understanding. Opening with a brief historical overview of the subject the book moves on to discuss the ‘building blocks’ of proteins and their respective chemical and physical properties. Later chapters explore experimental and computational methods of comparing proteins, methods of protein purification and protein folding and stability. The latest developments in the field are included and key concepts introduced in a user-friendly way to ensure that students are able to grasp the essentials before moving on to more advanced study and analysis of proteins. An invaluable resource for students of Biochemistry, Molecular Biology, Medicine and Chemistry providing a modern approach to the subject of Proteins. |
introduction to protein science: Food Protein Chemistry Joe Regenstein, 2012-12-02 Food Protein Chemistry: An Introduction for Food Scientists discusses food proteins and how they are studied. Proteins are both biological entities and physicochemical compounds, and they will be examined in both contexts in this volume. The chemical and physical properties of proteins will be viewed from the perspective of chemists despite the fact that their use in the food supply emphasizes their biological nature. Key topics discussed include proteins as essential to life; amino acids; protein classification; selected proteins of the most important food systems; and protein structure. The book also includes chapters on protein measurement; protein purification; and spectral techniques for the study of proteins. The book requires readers to have the equivalent of the Institute of Food Technologists requirements for undergraduate food science majors. It also assumes a knowledge of math through calculus. While primarily intended for senior and first-year graduate food science students, the text may also be useful to researchers in allied fields. |
introduction to protein science: Molecular Biology of the Cell , 2002 |
introduction to protein science: Protein Structure and Function Gregory A. Petsko, Dagmar Ringe, 2004 Each title in the 'Primers in Biology' series is constructed on a modular principle that is intended to make them easy to teach from, to learn from, and to use for reference. |
introduction to protein science: Introduction to Genomics Arthur M. Lesk, 2007 Introduction to Genomics is a fascinating insight into what can be revealed from the study of genomics: how organisms differ or match; how different organisms evolved; how the genome is constructed and how it operates; and what our understanding of genomics means in terms of our future health and wellbeing. Covering the latest techniques that enable us to study the genome in ever-increasing detail, the book explores what the genome tells us about life at the level of the molecule, the cell, and the organism. Learning features throughout make this book the ideal teaching and learning tool: extensive end of chapter exercises and problems help the student to fully grasp the concepts being presented, while end of chapter WebLems (web-based problems) and lab assignments give the student the opportunity to engage with the subject in a hands-on manner. |
introduction to protein science: Textbook Of Structural Biology (Second Edition) Anders Liljas, Lars Liljas, Goran Lindblom, Poul Nissen, Morten Kjeldgaard, Miriam-rose Ash, 2016-09-27 This book provides a comprehensive coverage of the basic principles of structural biology, as well as an up-to-date summary of some main directions of research in the field. The relationship between structure and function is described in detail for soluble proteins, membrane proteins, membranes, and nucleic acids.There are several books covering protein structure and function, but none that give a complete picture, including nucleic acids, lipids, membranes and carbohydrates, all being of central importance in structural biology.The book covers state-of-the-art research in various areas. It is unique for its breadth of coverage by experts in the fields. The book is richly illustrated with more than 400 color figures to highlight the wide range of structures. |
introduction to protein science: Introduction to Proteins Amit Kessel, Nir Ben-Tal, 2010-12-17 As the tools and techniques of structural biophysics assume greater roles in biological research and a range of application areas, learning how proteins behave becomes crucial to understanding their connection to the most basic and important aspects of life. With more than 350 color images throughout, Introduction to Proteins: Structure, Function, and Motion presents a unified, in-depth treatment of the relationship between the structure, dynamics, and function of proteins. Taking a structural–biophysical approach, the authors discuss the molecular interactions and thermodynamic changes that transpire in these highly complex molecules. The text incorporates various biochemical, physical, functional, and medical aspects. It covers different levels of protein structure, current methods for structure determination, energetics of protein structure, protein folding and folded state dynamics, and the functions of intrinsically unstructured proteins. The authors also clarify the structure–function relationship of proteins by presenting the principles of protein action in the form of guidelines. This comprehensive, color book uses numerous proteins as examples to illustrate the topics and principles and to show how proteins can be analyzed in multiple ways. It refers to many everyday applications of proteins and enzymes in medical disorders, drugs, toxins, chemical warfare, and animal behavior. Downloadable questions for each chapter are available at CRC Press Online. |
introduction to protein science: Fundamentals of Protein NMR Spectroscopy Gordon S. Rule, T. Kevin Hitchens, 2006-02-16 NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data processing. End of chapter exercises are included to emphasize important concepts. Fundamentals of Protein NMR Spectroscopy not only offer students a systematic, in-depth, understanding of modern NMR spectroscopy and its application to biomolecular systems, but will also be a useful reference for the experienced investigator. |
introduction to protein science: Applied Food Protein Chemistry Zeynep Ustunol, 2014-12-19 Food proteins are of great interest, not only because of their nutritional importance and their functionality in foods, but also for their detrimental effects. Although proteins from milk, meats (including fish and poultry), eggs, cereals, legumes, and oilseeds have been the traditional sources of protein in the human diet, potentially any proteins from a biological source could serve as a food protein. The primary role of protein in the diet is to provide the building materials for the synthesis of muscle and other tissues, and they play a critical role in many biological processes. They are also responsible for food texture, color, and flavor. Today, food proteins are extracted, modified, and incorporated into processed foods to impart specific functional properties. They can also have adverse effects in the diet: proteins, such as walnuts, pecans, almonds, and cashews, soybean, wheat, milk, egg, crustacean, and fish proteins can be powerful allergens for some people. Applied Food Protein Chemistry is an applied reference which reviews the properties of food proteins and provides in-depth information on important plant and animal proteins consumed around the world. The book is grouped into three sections: (1) overview of food proteins, (2) plant proteins, and (3) animal proteins. Each chapter discusses world production, distribution, utilization, physicochemical properties, and the functional properties of each protein, as well as its food applications. The authors for each of the chapters are carefully selected experts in the field. This book will be a valuable reference tool for those who work on food proteins. It will also be an important text on applied food protein chemistry for upper-level students and graduate students of food science programs. |
introduction to protein science: Protein Engineering Mallorie N. Sheehan, 2013-07 Protein engineering is the process of developing useful or valuable proteins. It is a young discipline, with much research currently taking place into the understanding of protein folding and protein recognition for protein design principles. There are two general strategies for protein engineering. The first is known as rational design, in which the scientist uses detailed knowledge of the structure and function of the protein to make desired changes. The second strategy is known as directed evolution and this is where random mutagenesis is applied to a protein, and a selection regime is used to pick out variants that have the desired qualities. This book presents and reviews important data on protein engineering, such as application of engineered proteins and cell adhesive surfaces as scaffolds or other biomedical devices which has the potential to promote tissue repair and regeneration for a wide variety of tissues including bone and skin. |
introduction to protein science: Methods for Protein Analysis Robert A. Copeland, 2013-11-11 As protein science continues to become an increasingly important aspect of academic and commercial sciences and technology, the need has arisen for a ready source of laboratory protocols for the analysis and evaluation of these biological polymers. Methods for Protein Analysis presents the methods most relevant to the generalist bench scientist working with proteins. A concise yet thorough summary, it covers laboratory methods that can be reasonably performed in a standard protein laboratory, without specialized equipment or expertise. Taking a how to approach, this book examines the techniques used to answer common protein analytical questions and describes methods useful in daily laboratory work. Methods for Protein Analysis is the ideal reference for protein laboratories in academic, government and industrial settings. It is an essential benchtop manual for first-year graduate students beginning their laboratory experience as well as for chemists, biochemists, and molecular biologists in the pharmaceutical, biotechnological, food and specialty chemical industries, and for analysts concerned with the purity and structural integrity of protein. Featuring illustrations and a convenient spiral binding, this guide offers a glossary of common abbreviations and a list of suppliers for protein science. |
introduction to protein science: Principles of Protein Structure Ivet Bahar, Ken A. Dill, Hue-Sun Chan, Robert L. Jernigan, 2017-02-09 Protein Actions: Principles and Modeling is aimed at graduates, advanced undergraduates, and any professional who seeks an introduction to the biological, chemical, and physical properties of proteins. Broadly accessible to biophysicists and biochemists, it will be particularly useful to student and professional structural biologists and molecular biophysicists, bioinformaticians and computational biologists, biological chemists (particularly drug designers) and molecular bioengineers. The book begins by introducing the basic principles of protein structure and function. Some readers will be familiar with aspects of this, but the authors build up a more quantitative approach than their competitors. Emphasizing concepts and theory rather than experimental techniques, the book shows how proteins can be analyzed using the disciplines of elementary statistical mechanics, energetics, and kinetics. These chapters illuminate how proteins attain biologically active states and the properties of those states. The book ends with a synopsis the roles of computational biology and bioinformatics in protein science. |
introduction to protein science: Protein Homeostasis Diseases Angel L. Pey, 2020-02-19 Protein Homeostasis Diseases: Mechanisms and Novel Therapies offers an interdisciplinary examination of the fundamental aspects, biochemistry and molecular biology of protein homeostasis disease, including the use of natural and pharmacological small molecules to treat common and rare protein homeostasis disorders. Contributions from international experts discuss the biochemical and genetic components of protein homeostasis disorders, the mechanisms by which genetic variants may cause loss-of-function and gain-of-toxic-function, and how natural ligands can restore protein function and homeostasis in genetic diseases. Applied chapters provide guidance on employing high throughput sequencing and screening methodologies to develop pharmacological chaperones and repurpose approved drugs to treat protein homeostasis disorders. |
introduction to protein science: Dynamics of Proteins and Nucleic Acids , 2013-08-14 Published continuously since 1944, Advances in Protein Chemistry and Structural Biology has been a continuous, essential resource for protein chemists. Covering reviews of methodology and research in all aspects of protein chemistry, including purification/expression, proteomics, modeling and structural determination and design, each volume brings forth new information about protocols and analysis of proteins while presenting the most recent findings from leading experts in a broad range of protein-related topics. - Covers reviews of methodology and research in all aspects of protein chemistry - Brings forth new information about protocols and analysis of proteins while presenting the most recent findings from leading experts in a broad range of protein-related topics |
introduction to protein science: Laryngeal Cooccurrence Restrictions Margaret R. MacEachern, 1999 |
introduction to protein science: Lectures On Statistical Physics And Protein Folding Kerson Huang, 2005-05-30 This book introduces an approach to protein folding from the point of view of kinetic theory. There is an abundance of data on protein folding, but few proposals are available on the mechanism driving the process. Here, presented for the first time, are suggestions on possible research directions, as developed by the author in collaboration with C C Lin.The first half of this invaluable book contains a concise but relatively complete review of relevant topics in statistical mechanics and kinetic theory. It includes standard topics such as thermodynamics, the Maxwell-Boltzmann distribution, and ensemble theory. Special discussions include the dynamics of phase transitions, and Brownian motion as an illustration of stochastic processes.The second half develops topics in molecular biology and protein structure, with a view to discovering mechanisms underlying protein folding. Attention is focused on the energy flow through the protein in its folded state. A mathematical model, based on the Brownian motion of coupled harmonic oscillators, is worked out in the appendix. |
introduction to protein science: The Molecular Nutrition of Amino Acids and Proteins Dominique Dardevet, 2016-06-08 The Molecular Nutrition of Amino Acids and Proteins provides an in-depth look at the involvement and role of amino acids and proteins in molecular nutrition. Editor Dominique Dardevet has assembled a collection of chapters written by leading researchers and top professors that provide the reader with a comprehensive understanding of amino acids and proteins. The book provides an introduction to the fundamentals of amino acids and proteins as well as the composition of food. It then delves into the molecular biology of the cell and genetic machinery and its function. The Molecular Nutrition of Amino Acids and Proteins also features reference guides for terms and bullet-point summaries, making it readily accessible to novices while still providing the most up-to-date and detailed information that experienced researchers need. Provides a gentle introduction to the subject by first addressing nutritional information and then building in molecular aspects, clearly establishing fundamental information for the reader Facilitates reader comprehension by including succinct summary points in each chapter Contains a glossary of definitions that allows readers to easily reference terms Provides both a deep and broad understanding of the subject by containing overviews as well as detail-focused chapters |
introduction to protein science: Proteomics and Protein-Protein Interactions Gabriel Waksman, 2005-12-21 The rapidly evolving field of protein science has now come to realize the ubiquity and importance of protein-protein interactions. It had been known for some time that proteins may interact with each other to form functional complexes, but it was thought to be the property of only a handful of key proteins. However, with the advent of high throughput proteomics to monitor protein-protein interactions at an organism level, we can now safely state that protein-protein interactions are the norm and not the exception. Thus, protein function must be understood in the larger context of the various binding complexes that each protein may form with interacting partners at a given time in the life cycle of a cell. Proteins are now seen as forming sophisticated interaction networks subject to remarkable regulation. The study of these interaction networks and regulatory mechanism, which I would like to term systems proteomics, is one of the thriving fields of proteomics. The bird-eye view that systems proteomics offers should not however mask the fact that proteins are each characterized by a unique set of physical and chemical properties. In other words, no protein looks and behaves like another. This complicates enormously the design of high-throughput proteomics methods. Unlike genes, which, by and large, display similar physico-chemical behaviors and thus can be easily used in a high throughput mode, proteins are not easily amenable to the same treatment. It is thus important to remind researchers active in the proteomics field the fundamental basis of protein chemistry. This book attempts to bridge the two extreme ends of protein science: on one end, systems proteomics, which describes, at a system level, the intricate connection network that proteins form in a cell, and on the other end, protein chemistry and biophysics, which describe the molecular properties of individual proteins and the structural and thermodynamic basis of their interactions within the network. Bridging the two ends of the spectrum is bioinformatics and computational chemistry. Large data sets created by systems proteomics need to be mined for meaningful information, methods need to be designed and implemented to improve experimental designs, extract signal over noise, and reject artifacts, and predictive methods need to be worked out and put to the test. Computational chemistry faces similar challenges. The prediction of binding thermodynamics of protein-protein interaction is still in its infancy. Proteins are large objects, and simplifying assumptions and shortcuts still need to be applied to make simulations manageable, and this despite exponential progress in computer technology. Finally, the study of proteins impacts directly on human health. It is an obvious statement to say that, for decades, enzymes, receptors, and key regulator proteins have been targeted for drug discovery. However, a recent and exciting development is the exploitation of our knowledge of protein-protein interaction for the design of new pharmaceuticals. This presents particular challenges because protein-protein interfaces are generally shallow and interactions are weak. However, progress is clearly being made and the book seeks to provide examples of successes in this area. |
introduction to protein science: Protein Folding Charis Ghélis, Jeannine Yon-Kahn, 1982 Protein Folding aims to collect the most important information in the field of protein folding and probes the main principles that govern formation of the three-dimensional structure of a protein from a nascent polypeptide chain, as well as how the functional properties appear. This text is organized into three sections and consists of 15 chapters. After an introductory chapter where the main problems of protein folding are considered at the cellular level in the context of protein biosynthesis, the discussion turns to the conformation of native globular proteins. Definitions and rules of nome ... |
introduction to protein science: Functionality of Proteins in Food Joseph F. Zayas, 2012-10-19 The book is devoted to expanding current views on the phenomena of protein functionality in food systems. Protein functionalities in foods have been the object ofextensive research over the last thirty to forty years and significant progress has been made in understanding the mechanism and factors influencing the functionality of proteins. The functionality of proteins is one of the fastest developing fields in the studies of protein utilization in foods. Currently, a broad spectrum of data related to protein functionality in food systems has been collected, however, much more needs to be known. In this volume, the most important functional properties offood proteins are presented: Protein solubility, water holding capacity and fat binding, emulsifying, foaming, and gelling properties as affected by protein source, environmental factors (pH, temperature, ionic strength) and protein concentration; Relationships between protein conformation, physicochemical properties, and functional properties; Protein functional properties as influenced by various food processing conditions, particularly heat treatment, dehydration, freezing and storage when frozen, extraction and other processes; Effects ofprotein modification on the enhancementofprotein functionality; Utilization ofvarious proteins in improving functional properties in food systems. Those aspects of protein functionality are presented which the author believes to be interesting and most important for protein utilization in food systems. The book is recommended to students and food scientists engaged in food protein research and food industry research, and development scientists. Table ofContents Introduction 1 References 5 Chapter 1 Solubility ofProteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 1. 1 Factors Affecting Solubility ofProteins. . . . . . . . . . . . . . . . . . . . . . . . |
introduction to protein science: Protein Folding Victor Muñoz, 2022-12-14 This volume provides comprehensive protocols on experimental and computational methods that are used to study probe protein folding reactions and mechanisms. Chapters divided into five parts detail protein engineering, protein chemistry, experimental approaches to investigate the thermodynamics and kinetics of protein folding transitions, probe protein folding at the single molecule, analysis and interpretation of computer simulations, procedures and tools for the prediction of protein folding properties. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Protein Folding: Methods and Protocols aims to be a useful practical guide to researches to help further their study in this field. |
introduction to protein science: Principles of Protein Structure G.E. Schulz, R.H. Schirmer, 1996-12-01 New textbooks at all levels of chemistry appear with great regularity. Some fields like basic biochemistry, organic reaction mechanisms, and chemical thermodynamics are well represented by many excellent texts, and new or revised editions are published sufficiently often to keep up with progress in research. However, some areas of chemistry, especially many of those taught at the graduate level, suffer from a real lack of up-to-date textbooks. The most serious needs occur in fields that are rapidly changing. Textbooks in these subjects usually have to be written by scientists actually involved in the research which is advancing the field. It is not often easy to persuade such individuals to set time aside to help spread the knowledge they have accumulated. Our goal, in this series, is to pinpoint areas of chemistry where recent progress has outpaced what is covered in any available textbooks, and then seek out and persuade experts in these fields to produce relatively concise but instructive introductions to their fields. These should serve the needs of one semester or one quarter graduate courses in chemistry and biochemistry. In some cases the availability of texts in active research areas should help stimulate the creation of new courses. |
introduction to protein science: Techniques in Protein Chemistry Tony E. Hugli, 1989 |
introduction to protein science: An Interactive Introduction to Organismal and Molecular Biology Andrea Bierema, 2021 |
introduction to protein science: Computational Methods in Protein Evolution Tobias Sikosek, 2018-10-09 This volume presents a diverse collection of methodologies used to study various problems at the protein sequence and structure level. The chapters in this book look at issues ranging from broad concepts like protein space to specifics like antibody modeling. Topics include point mutations, gene duplication, de novo emergence of new genes, pairwise correlated mutations, ancestral protein reconstruction, homology modelling, protein stability and dynamics, and protein-protein interactions. The book also covers a wide range of computational approaches, including sequence and structure alignments, phylogenies, physics-based and mathematical approaches, machine learning, and more. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and prerequisites, step-by-step, readily reproducible computational protocols (using command line or graphical user interfaces, sometimes including computer code), and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Computational Methods in Protein Evolution is a valuable resource that offers useful workflows and techniques that will help both novice and expert researchers working with proteins computationally. |
introduction to protein science: Introduction to Bioinformatics Arthur M. Lesk, 2019 |
introduction to protein science: Principles of Biology Lisa Bartee, Walter Shiner, Catherine Creech, 2017 The Principles of Biology sequence (BI 211, 212 and 213) introduces biology as a scientific discipline for students planning to major in biology and other science disciplines. Laboratories and classroom activities introduce techniques used to study biological processes and provide opportunities for students to develop their ability to conduct research. |
introduction to protein science: Concepts of Biology Samantha Fowler, Rebecca Roush, James Wise, 2023-05-12 Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy. |
INTRODUCTION Definition & Meaning - Merriam-Webster
The meaning of INTRODUCTION is something that introduces. How to use introduction in a sentence.
How to Write an Introduction, With Examples | Grammarly
Oct 20, 2022 · An introduction should include three things: a hook to interest the reader, some background on the topic so the reader can understand it, and a thesis statement that clearly …
INTRODUCTION | English meaning - Cambridge Dictionary
INTRODUCTION definition: 1. an occasion when something is put into use or brought to a place for the first time: 2. the act…. Learn more.
What Is an Introduction? Definition & 25+ Examples - Enlightio
Nov 5, 2023 · An introduction is the initial section of a piece of writing, speech, or presentation wherein the author presents the topic and purpose of the material. It serves as a gateway for …
Introduction - definition of introduction by The Free Dictionary
Something spoken, written, or otherwise presented in beginning or introducing something, especially: a. A preface, as to a book. b. Music A short preliminary passage in a larger …
INTRODUCTION Definition & Meaning - Merriam-Webster
The meaning of INTRODUCTION is something that introduces. How to use introduction in a sentence.
How to Write an Introduction, With Examples | Grammarly
Oct 20, 2022 · An introduction should include three things: a hook to interest the reader, some background on the topic so the reader can understand it, and a thesis statement that clearly …
INTRODUCTION | English meaning - Cambridge Dictionary
INTRODUCTION definition: 1. an occasion when something is put into use or brought to a place for the first time: 2. the act…. Learn more.
What Is an Introduction? Definition & 25+ Examples - Enlightio
Nov 5, 2023 · An introduction is the initial section of a piece of writing, speech, or presentation wherein the author presents the topic and purpose of the material. It serves as a gateway for …
Introduction - definition of introduction by The Free Dictionary
Something spoken, written, or otherwise presented in beginning or introducing something, especially: a. A preface, as to a book. b. Music A short preliminary passage in a larger …